Store.cpp revision ef15831780b705475e7b237ac16418e9b53cb7a6
1//== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defined the types Store and StoreManager.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
15#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclObjC.h"
19
20using namespace clang;
21using namespace ento;
22
23StoreManager::StoreManager(ProgramStateManager &stateMgr)
24  : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
25    MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
26
27StoreRef StoreManager::enterStackFrame(Store OldStore,
28                                       const CallEvent &Call,
29                                       const StackFrameContext *LCtx) {
30  StoreRef Store = StoreRef(OldStore, *this);
31
32  SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
33  Call.getInitialStackFrameContents(LCtx, InitialBindings);
34
35  for (CallEvent::BindingsTy::iterator I = InitialBindings.begin(),
36                                       E = InitialBindings.end();
37       I != E; ++I) {
38    Store = Bind(Store.getStore(), I->first, I->second);
39  }
40
41  return Store;
42}
43
44const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
45                                              QualType EleTy, uint64_t index) {
46  NonLoc idx = svalBuilder.makeArrayIndex(index);
47  return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
48}
49
50// FIXME: Merge with the implementation of the same method in MemRegion.cpp
51static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
52  if (const RecordType *RT = Ty->getAs<RecordType>()) {
53    const RecordDecl *D = RT->getDecl();
54    if (!D->getDefinition())
55      return false;
56  }
57
58  return true;
59}
60
61StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
62  return StoreRef(store, *this);
63}
64
65const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R,
66                                                        QualType T) {
67  NonLoc idx = svalBuilder.makeZeroArrayIndex();
68  assert(!T.isNull());
69  return MRMgr.getElementRegion(T, idx, R, Ctx);
70}
71
72const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
73
74  ASTContext &Ctx = StateMgr.getContext();
75
76  // Handle casts to Objective-C objects.
77  if (CastToTy->isObjCObjectPointerType())
78    return R->StripCasts();
79
80  if (CastToTy->isBlockPointerType()) {
81    // FIXME: We may need different solutions, depending on the symbol
82    // involved.  Blocks can be casted to/from 'id', as they can be treated
83    // as Objective-C objects.  This could possibly be handled by enhancing
84    // our reasoning of downcasts of symbolic objects.
85    if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
86      return R;
87
88    // We don't know what to make of it.  Return a NULL region, which
89    // will be interpretted as UnknownVal.
90    return NULL;
91  }
92
93  // Now assume we are casting from pointer to pointer. Other cases should
94  // already be handled.
95  QualType PointeeTy = CastToTy->getPointeeType();
96  QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
97
98  // Handle casts to void*.  We just pass the region through.
99  if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
100    return R;
101
102  // Handle casts from compatible types.
103  if (R->isBoundable())
104    if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
105      QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
106      if (CanonPointeeTy == ObjTy)
107        return R;
108    }
109
110  // Process region cast according to the kind of the region being cast.
111  switch (R->getKind()) {
112    case MemRegion::CXXThisRegionKind:
113    case MemRegion::GenericMemSpaceRegionKind:
114    case MemRegion::StackLocalsSpaceRegionKind:
115    case MemRegion::StackArgumentsSpaceRegionKind:
116    case MemRegion::HeapSpaceRegionKind:
117    case MemRegion::UnknownSpaceRegionKind:
118    case MemRegion::StaticGlobalSpaceRegionKind:
119    case MemRegion::GlobalInternalSpaceRegionKind:
120    case MemRegion::GlobalSystemSpaceRegionKind:
121    case MemRegion::GlobalImmutableSpaceRegionKind: {
122      llvm_unreachable("Invalid region cast");
123    }
124
125    case MemRegion::FunctionTextRegionKind:
126    case MemRegion::BlockTextRegionKind:
127    case MemRegion::BlockDataRegionKind:
128    case MemRegion::StringRegionKind:
129      // FIXME: Need to handle arbitrary downcasts.
130    case MemRegion::SymbolicRegionKind:
131    case MemRegion::AllocaRegionKind:
132    case MemRegion::CompoundLiteralRegionKind:
133    case MemRegion::FieldRegionKind:
134    case MemRegion::ObjCIvarRegionKind:
135    case MemRegion::ObjCStringRegionKind:
136    case MemRegion::VarRegionKind:
137    case MemRegion::CXXTempObjectRegionKind:
138    case MemRegion::CXXBaseObjectRegionKind:
139      return MakeElementRegion(R, PointeeTy);
140
141    case MemRegion::ElementRegionKind: {
142      // If we are casting from an ElementRegion to another type, the
143      // algorithm is as follows:
144      //
145      // (1) Compute the "raw offset" of the ElementRegion from the
146      //     base region.  This is done by calling 'getAsRawOffset()'.
147      //
148      // (2a) If we get a 'RegionRawOffset' after calling
149      //      'getAsRawOffset()', determine if the absolute offset
150      //      can be exactly divided into chunks of the size of the
151      //      casted-pointee type.  If so, create a new ElementRegion with
152      //      the pointee-cast type as the new ElementType and the index
153      //      being the offset divded by the chunk size.  If not, create
154      //      a new ElementRegion at offset 0 off the raw offset region.
155      //
156      // (2b) If we don't a get a 'RegionRawOffset' after calling
157      //      'getAsRawOffset()', it means that we are at offset 0.
158      //
159      // FIXME: Handle symbolic raw offsets.
160
161      const ElementRegion *elementR = cast<ElementRegion>(R);
162      const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
163      const MemRegion *baseR = rawOff.getRegion();
164
165      // If we cannot compute a raw offset, throw up our hands and return
166      // a NULL MemRegion*.
167      if (!baseR)
168        return NULL;
169
170      CharUnits off = rawOff.getOffset();
171
172      if (off.isZero()) {
173        // Edge case: we are at 0 bytes off the beginning of baseR.  We
174        // check to see if type we are casting to is the same as the base
175        // region.  If so, just return the base region.
176        if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
177          QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
178          QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
179          if (CanonPointeeTy == ObjTy)
180            return baseR;
181        }
182
183        // Otherwise, create a new ElementRegion at offset 0.
184        return MakeElementRegion(baseR, PointeeTy);
185      }
186
187      // We have a non-zero offset from the base region.  We want to determine
188      // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
189      // we create an ElementRegion whose index is that value.  Otherwise, we
190      // create two ElementRegions, one that reflects a raw offset and the other
191      // that reflects the cast.
192
193      // Compute the index for the new ElementRegion.
194      int64_t newIndex = 0;
195      const MemRegion *newSuperR = 0;
196
197      // We can only compute sizeof(PointeeTy) if it is a complete type.
198      if (IsCompleteType(Ctx, PointeeTy)) {
199        // Compute the size in **bytes**.
200        CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
201        if (!pointeeTySize.isZero()) {
202          // Is the offset a multiple of the size?  If so, we can layer the
203          // ElementRegion (with elementType == PointeeTy) directly on top of
204          // the base region.
205          if (off % pointeeTySize == 0) {
206            newIndex = off / pointeeTySize;
207            newSuperR = baseR;
208          }
209        }
210      }
211
212      if (!newSuperR) {
213        // Create an intermediate ElementRegion to represent the raw byte.
214        // This will be the super region of the final ElementRegion.
215        newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
216      }
217
218      return MakeElementRegion(newSuperR, PointeeTy, newIndex);
219    }
220  }
221
222  llvm_unreachable("unreachable");
223}
224
225
226/// CastRetrievedVal - Used by subclasses of StoreManager to implement
227///  implicit casts that arise from loads from regions that are reinterpreted
228///  as another region.
229SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
230                                    QualType castTy, bool performTestOnly) {
231
232  if (castTy.isNull() || V.isUnknownOrUndef())
233    return V;
234
235  ASTContext &Ctx = svalBuilder.getContext();
236
237  if (performTestOnly) {
238    // Automatically translate references to pointers.
239    QualType T = R->getValueType();
240    if (const ReferenceType *RT = T->getAs<ReferenceType>())
241      T = Ctx.getPointerType(RT->getPointeeType());
242
243    assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
244    return V;
245  }
246
247  return svalBuilder.dispatchCast(V, castTy);
248}
249
250SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
251  if (Base.isUnknownOrUndef())
252    return Base;
253
254  Loc BaseL = cast<Loc>(Base);
255  const MemRegion* BaseR = 0;
256
257  switch (BaseL.getSubKind()) {
258  case loc::MemRegionKind:
259    BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
260    break;
261
262  case loc::GotoLabelKind:
263    // These are anormal cases. Flag an undefined value.
264    return UndefinedVal();
265
266  case loc::ConcreteIntKind:
267    // While these seem funny, this can happen through casts.
268    // FIXME: What we should return is the field offset.  For example,
269    //  add the field offset to the integer value.  That way funny things
270    //  like this work properly:  &(((struct foo *) 0xa)->f)
271    return Base;
272
273  default:
274    llvm_unreachable("Unhandled Base.");
275  }
276
277  // NOTE: We must have this check first because ObjCIvarDecl is a subclass
278  // of FieldDecl.
279  if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
280    return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
281
282  return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
283}
284
285SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
286  return getLValueFieldOrIvar(decl, base);
287}
288
289SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
290                                    SVal Base) {
291
292  // If the base is an unknown or undefined value, just return it back.
293  // FIXME: For absolute pointer addresses, we just return that value back as
294  //  well, although in reality we should return the offset added to that
295  //  value.
296  if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
297    return Base;
298
299  const MemRegion* BaseRegion = cast<loc::MemRegionVal>(Base).getRegion();
300
301  // Pointer of any type can be cast and used as array base.
302  const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
303
304  // Convert the offset to the appropriate size and signedness.
305  Offset = cast<NonLoc>(svalBuilder.convertToArrayIndex(Offset));
306
307  if (!ElemR) {
308    //
309    // If the base region is not an ElementRegion, create one.
310    // This can happen in the following example:
311    //
312    //   char *p = __builtin_alloc(10);
313    //   p[1] = 8;
314    //
315    //  Observe that 'p' binds to an AllocaRegion.
316    //
317    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
318                                                    BaseRegion, Ctx));
319  }
320
321  SVal BaseIdx = ElemR->getIndex();
322
323  if (!isa<nonloc::ConcreteInt>(BaseIdx))
324    return UnknownVal();
325
326  const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue();
327
328  // Only allow non-integer offsets if the base region has no offset itself.
329  // FIXME: This is a somewhat arbitrary restriction. We should be using
330  // SValBuilder here to add the two offsets without checking their types.
331  if (!isa<nonloc::ConcreteInt>(Offset)) {
332    if (isa<ElementRegion>(BaseRegion->StripCasts()))
333      return UnknownVal();
334
335    return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
336                                                    ElemR->getSuperRegion(),
337                                                    Ctx));
338  }
339
340  const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue();
341  assert(BaseIdxI.isSigned());
342
343  // Compute the new index.
344  nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
345                                                                    OffI));
346
347  // Construct the new ElementRegion.
348  const MemRegion *ArrayR = ElemR->getSuperRegion();
349  return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
350                                                  Ctx));
351}
352
353StoreManager::BindingsHandler::~BindingsHandler() {}
354
355bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
356                                                    Store store,
357                                                    const MemRegion* R,
358                                                    SVal val) {
359  SymbolRef SymV = val.getAsLocSymbol();
360  if (!SymV || SymV != Sym)
361    return true;
362
363  if (Binding) {
364    First = false;
365    return false;
366  }
367  else
368    Binding = R;
369
370  return true;
371}
372
373void SubRegionMap::anchor() { }
374void SubRegionMap::Visitor::anchor() { }
375