1//===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend is responsible for emitting arm_neon.h, which includes
11// a declaration and definition of each function specified by the ARM NEON
12// compiler interface.  See ARM document DUI0348B.
13//
14// Each NEON instruction is implemented in terms of 1 or more functions which
15// are suffixed with the element type of the input vectors.  Functions may be
16// implemented in terms of generic vector operations such as +, *, -, etc. or
17// by calling a __builtin_-prefixed function which will be handled by clang's
18// CodeGen library.
19//
20// Additional validation code can be generated by this file when runHeader() is
21// called, rather than the normal run() entry point.
22//
23// See also the documentation in include/clang/Basic/arm_neon.td.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/ADT/StringMap.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/TableGen/Error.h"
34#include "llvm/TableGen/Record.h"
35#include "llvm/TableGen/SetTheory.h"
36#include "llvm/TableGen/TableGenBackend.h"
37#include <string>
38#include <sstream>
39#include <vector>
40#include <map>
41#include <algorithm>
42using namespace llvm;
43
44namespace {
45
46// While globals are generally bad, this one allows us to perform assertions
47// liberally and somehow still trace them back to the def they indirectly
48// came from.
49static Record *CurrentRecord = nullptr;
50static void assert_with_loc(bool Assertion, const std::string &Str) {
51  if (!Assertion) {
52    if (CurrentRecord)
53      PrintFatalError(CurrentRecord->getLoc(), Str);
54    else
55      PrintFatalError(Str);
56  }
57}
58
59enum ClassKind {
60  ClassNone,
61  ClassI,     // generic integer instruction, e.g., "i8" suffix
62  ClassS,     // signed/unsigned/poly, e.g., "s8", "u8" or "p8" suffix
63  ClassW,     // width-specific instruction, e.g., "8" suffix
64  ClassB,     // bitcast arguments with enum argument to specify type
65  ClassL,     // Logical instructions which are op instructions
66              // but we need to not emit any suffix for in our
67              // tests.
68  ClassNoTest // Instructions which we do not test since they are
69              // not TRUE instructions.
70};
71
72/// NeonTypeFlags - Flags to identify the types for overloaded Neon
73/// builtins.  These must be kept in sync with the flags in
74/// include/clang/Basic/TargetBuiltins.h.
75namespace NeonTypeFlags {
76enum { EltTypeMask = 0xf, UnsignedFlag = 0x10, QuadFlag = 0x20 };
77
78enum EltType {
79  Int8,
80  Int16,
81  Int32,
82  Int64,
83  Poly8,
84  Poly16,
85  Poly64,
86  Poly128,
87  Float16,
88  Float32,
89  Float64
90};
91}
92
93class Intrinsic;
94class NeonEmitter;
95class Type;
96class Variable;
97
98//===----------------------------------------------------------------------===//
99// TypeSpec
100//===----------------------------------------------------------------------===//
101
102/// A TypeSpec is just a simple wrapper around a string, but gets its own type
103/// for strong typing purposes.
104///
105/// A TypeSpec can be used to create a type.
106class TypeSpec : public std::string {
107public:
108  static std::vector<TypeSpec> fromTypeSpecs(StringRef Str) {
109    std::vector<TypeSpec> Ret;
110    TypeSpec Acc;
111    for (char I : Str.str()) {
112      if (islower(I)) {
113        Acc.push_back(I);
114        Ret.push_back(TypeSpec(Acc));
115        Acc.clear();
116      } else {
117        Acc.push_back(I);
118      }
119    }
120    return Ret;
121  }
122};
123
124//===----------------------------------------------------------------------===//
125// Type
126//===----------------------------------------------------------------------===//
127
128/// A Type. Not much more to say here.
129class Type {
130private:
131  TypeSpec TS;
132
133  bool Float, Signed, Void, Poly, Constant, Pointer;
134  // ScalarForMangling and NoManglingQ are really not suited to live here as
135  // they are not related to the type. But they live in the TypeSpec (not the
136  // prototype), so this is really the only place to store them.
137  bool ScalarForMangling, NoManglingQ;
138  unsigned Bitwidth, ElementBitwidth, NumVectors;
139
140public:
141  Type()
142      : Float(false), Signed(false), Void(true), Poly(false), Constant(false),
143        Pointer(false), ScalarForMangling(false), NoManglingQ(false),
144        Bitwidth(0), ElementBitwidth(0), NumVectors(0) {}
145
146  Type(TypeSpec TS, char CharMod)
147      : TS(TS), Float(false), Signed(false), Void(false), Poly(false),
148        Constant(false), Pointer(false), ScalarForMangling(false),
149        NoManglingQ(false), Bitwidth(0), ElementBitwidth(0), NumVectors(0) {
150    applyModifier(CharMod);
151  }
152
153  /// Returns a type representing "void".
154  static Type getVoid() { return Type(); }
155
156  bool operator==(const Type &Other) const { return str() == Other.str(); }
157  bool operator!=(const Type &Other) const { return !operator==(Other); }
158
159  //
160  // Query functions
161  //
162  bool isScalarForMangling() const { return ScalarForMangling; }
163  bool noManglingQ() const { return NoManglingQ; }
164
165  bool isPointer() const { return Pointer; }
166  bool isFloating() const { return Float; }
167  bool isInteger() const { return !Float && !Poly; }
168  bool isSigned() const { return Signed; }
169  bool isScalar() const { return NumVectors == 0; }
170  bool isVector() const { return NumVectors > 0; }
171  bool isFloat() const { return Float && ElementBitwidth == 32; }
172  bool isDouble() const { return Float && ElementBitwidth == 64; }
173  bool isHalf() const { return Float && ElementBitwidth == 16; }
174  bool isPoly() const { return Poly; }
175  bool isChar() const { return ElementBitwidth == 8; }
176  bool isShort() const { return !Float && ElementBitwidth == 16; }
177  bool isInt() const { return !Float && ElementBitwidth == 32; }
178  bool isLong() const { return !Float && ElementBitwidth == 64; }
179  bool isVoid() const { return Void; }
180  unsigned getNumElements() const { return Bitwidth / ElementBitwidth; }
181  unsigned getSizeInBits() const { return Bitwidth; }
182  unsigned getElementSizeInBits() const { return ElementBitwidth; }
183  unsigned getNumVectors() const { return NumVectors; }
184
185  //
186  // Mutator functions
187  //
188  void makeUnsigned() { Signed = false; }
189  void makeSigned() { Signed = true; }
190  void makeInteger(unsigned ElemWidth, bool Sign) {
191    Float = false;
192    Poly = false;
193    Signed = Sign;
194    ElementBitwidth = ElemWidth;
195  }
196  void makeScalar() {
197    Bitwidth = ElementBitwidth;
198    NumVectors = 0;
199  }
200  void makeOneVector() {
201    assert(isVector());
202    NumVectors = 1;
203  }
204  void doubleLanes() {
205    assert_with_loc(Bitwidth != 128, "Can't get bigger than 128!");
206    Bitwidth = 128;
207  }
208  void halveLanes() {
209    assert_with_loc(Bitwidth != 64, "Can't get smaller than 64!");
210    Bitwidth = 64;
211  }
212
213  /// Return the C string representation of a type, which is the typename
214  /// defined in stdint.h or arm_neon.h.
215  std::string str() const;
216
217  /// Return the string representation of a type, which is an encoded
218  /// string for passing to the BUILTIN() macro in Builtins.def.
219  std::string builtin_str() const;
220
221  /// Return the value in NeonTypeFlags for this type.
222  unsigned getNeonEnum() const;
223
224  /// Parse a type from a stdint.h or arm_neon.h typedef name,
225  /// for example uint32x2_t or int64_t.
226  static Type fromTypedefName(StringRef Name);
227
228private:
229  /// Creates the type based on the typespec string in TS.
230  /// Sets "Quad" to true if the "Q" or "H" modifiers were
231  /// seen. This is needed by applyModifier as some modifiers
232  /// only take effect if the type size was changed by "Q" or "H".
233  void applyTypespec(bool &Quad);
234  /// Applies a prototype modifier to the type.
235  void applyModifier(char Mod);
236};
237
238//===----------------------------------------------------------------------===//
239// Variable
240//===----------------------------------------------------------------------===//
241
242/// A variable is a simple class that just has a type and a name.
243class Variable {
244  Type T;
245  std::string N;
246
247public:
248  Variable() : T(Type::getVoid()), N("") {}
249  Variable(Type T, std::string N) : T(T), N(N) {}
250
251  Type getType() const { return T; }
252  std::string getName() const { return "__" + N; }
253};
254
255//===----------------------------------------------------------------------===//
256// Intrinsic
257//===----------------------------------------------------------------------===//
258
259/// The main grunt class. This represents an instantiation of an intrinsic with
260/// a particular typespec and prototype.
261class Intrinsic {
262  friend class DagEmitter;
263
264  /// The Record this intrinsic was created from.
265  Record *R;
266  /// The unmangled name and prototype.
267  std::string Name, Proto;
268  /// The input and output typespecs. InTS == OutTS except when
269  /// CartesianProductOfTypes is 1 - this is the case for vreinterpret.
270  TypeSpec OutTS, InTS;
271  /// The base class kind. Most intrinsics use ClassS, which has full type
272  /// info for integers (s32/u32). Some use ClassI, which doesn't care about
273  /// signedness (i32), while some (ClassB) have no type at all, only a width
274  /// (32).
275  ClassKind CK;
276  /// The list of DAGs for the body. May be empty, in which case we should
277  /// emit a builtin call.
278  ListInit *Body;
279  /// The architectural #ifdef guard.
280  std::string Guard;
281  /// Set if the Unvailable bit is 1. This means we don't generate a body,
282  /// just an "unavailable" attribute on a declaration.
283  bool IsUnavailable;
284  /// Is this intrinsic safe for big-endian? or does it need its arguments
285  /// reversing?
286  bool BigEndianSafe;
287
288  /// The types of return value [0] and parameters [1..].
289  std::vector<Type> Types;
290  /// The local variables defined.
291  std::map<std::string, Variable> Variables;
292  /// NeededEarly - set if any other intrinsic depends on this intrinsic.
293  bool NeededEarly;
294  /// UseMacro - set if we should implement using a macro or unset for a
295  ///            function.
296  bool UseMacro;
297  /// The set of intrinsics that this intrinsic uses/requires.
298  std::set<Intrinsic *> Dependencies;
299  /// The "base type", which is Type('d', OutTS). InBaseType is only
300  /// different if CartesianProductOfTypes = 1 (for vreinterpret).
301  Type BaseType, InBaseType;
302  /// The return variable.
303  Variable RetVar;
304  /// A postfix to apply to every variable. Defaults to "".
305  std::string VariablePostfix;
306
307  NeonEmitter &Emitter;
308  std::stringstream OS;
309
310public:
311  Intrinsic(Record *R, StringRef Name, StringRef Proto, TypeSpec OutTS,
312            TypeSpec InTS, ClassKind CK, ListInit *Body, NeonEmitter &Emitter,
313            StringRef Guard, bool IsUnavailable, bool BigEndianSafe)
314      : R(R), Name(Name.str()), Proto(Proto.str()), OutTS(OutTS), InTS(InTS),
315        CK(CK), Body(Body), Guard(Guard.str()), IsUnavailable(IsUnavailable),
316        BigEndianSafe(BigEndianSafe), NeededEarly(false), UseMacro(false),
317        BaseType(OutTS, 'd'), InBaseType(InTS, 'd'), Emitter(Emitter) {
318    // If this builtin takes an immediate argument, we need to #define it rather
319    // than use a standard declaration, so that SemaChecking can range check
320    // the immediate passed by the user.
321    if (Proto.find('i') != std::string::npos)
322      UseMacro = true;
323
324    // Pointer arguments need to use macros to avoid hiding aligned attributes
325    // from the pointer type.
326    if (Proto.find('p') != std::string::npos ||
327        Proto.find('c') != std::string::npos)
328      UseMacro = true;
329
330    // It is not permitted to pass or return an __fp16 by value, so intrinsics
331    // taking a scalar float16_t must be implemented as macros.
332    if (OutTS.find('h') != std::string::npos &&
333        Proto.find('s') != std::string::npos)
334      UseMacro = true;
335
336    // Modify the TypeSpec per-argument to get a concrete Type, and create
337    // known variables for each.
338    // Types[0] is the return value.
339    Types.push_back(Type(OutTS, Proto[0]));
340    for (unsigned I = 1; I < Proto.size(); ++I)
341      Types.push_back(Type(InTS, Proto[I]));
342  }
343
344  /// Get the Record that this intrinsic is based off.
345  Record *getRecord() const { return R; }
346  /// Get the set of Intrinsics that this intrinsic calls.
347  /// this is the set of immediate dependencies, NOT the
348  /// transitive closure.
349  const std::set<Intrinsic *> &getDependencies() const { return Dependencies; }
350  /// Get the architectural guard string (#ifdef).
351  std::string getGuard() const { return Guard; }
352  /// Get the non-mangled name.
353  std::string getName() const { return Name; }
354
355  /// Return true if the intrinsic takes an immediate operand.
356  bool hasImmediate() const {
357    return Proto.find('i') != std::string::npos;
358  }
359  /// Return the parameter index of the immediate operand.
360  unsigned getImmediateIdx() const {
361    assert(hasImmediate());
362    unsigned Idx = Proto.find('i');
363    assert(Idx > 0 && "Can't return an immediate!");
364    return Idx - 1;
365  }
366
367  /// Return true if the intrinsic takes an splat operand.
368  bool hasSplat() const { return Proto.find('a') != std::string::npos; }
369  /// Return the parameter index of the splat operand.
370  unsigned getSplatIdx() const {
371    assert(hasSplat());
372    unsigned Idx = Proto.find('a');
373    assert(Idx > 0 && "Can't return a splat!");
374    return Idx - 1;
375  }
376
377  unsigned getNumParams() const { return Proto.size() - 1; }
378  Type getReturnType() const { return Types[0]; }
379  Type getParamType(unsigned I) const { return Types[I + 1]; }
380  Type getBaseType() const { return BaseType; }
381  /// Return the raw prototype string.
382  std::string getProto() const { return Proto; }
383
384  /// Return true if the prototype has a scalar argument.
385  /// This does not return true for the "splat" code ('a').
386  bool protoHasScalar();
387
388  /// Return the index that parameter PIndex will sit at
389  /// in a generated function call. This is often just PIndex,
390  /// but may not be as things such as multiple-vector operands
391  /// and sret parameters need to be taken into accont.
392  unsigned getGeneratedParamIdx(unsigned PIndex) {
393    unsigned Idx = 0;
394    if (getReturnType().getNumVectors() > 1)
395      // Multiple vectors are passed as sret.
396      ++Idx;
397
398    for (unsigned I = 0; I < PIndex; ++I)
399      Idx += std::max(1U, getParamType(I).getNumVectors());
400
401    return Idx;
402  }
403
404  bool hasBody() const { return Body && Body->getValues().size() > 0; }
405
406  void setNeededEarly() { NeededEarly = true; }
407
408  bool operator<(const Intrinsic &Other) const {
409    // Sort lexicographically on a two-tuple (Guard, Name)
410    if (Guard != Other.Guard)
411      return Guard < Other.Guard;
412    return Name < Other.Name;
413  }
414
415  ClassKind getClassKind(bool UseClassBIfScalar = false) {
416    if (UseClassBIfScalar && !protoHasScalar())
417      return ClassB;
418    return CK;
419  }
420
421  /// Return the name, mangled with type information.
422  /// If ForceClassS is true, use ClassS (u32/s32) instead
423  /// of the intrinsic's own type class.
424  std::string getMangledName(bool ForceClassS = false);
425  /// Return the type code for a builtin function call.
426  std::string getInstTypeCode(Type T, ClassKind CK);
427  /// Return the type string for a BUILTIN() macro in Builtins.def.
428  std::string getBuiltinTypeStr();
429
430  /// Generate the intrinsic, returning code.
431  std::string generate();
432  /// Perform type checking and populate the dependency graph, but
433  /// don't generate code yet.
434  void indexBody();
435
436private:
437  std::string mangleName(std::string Name, ClassKind CK);
438
439  void initVariables();
440  std::string replaceParamsIn(std::string S);
441
442  void emitBodyAsBuiltinCall();
443
444  void generateImpl(bool ReverseArguments,
445                    StringRef NamePrefix, StringRef CallPrefix);
446  void emitReturn();
447  void emitBody(StringRef CallPrefix);
448  void emitShadowedArgs();
449  void emitArgumentReversal();
450  void emitReturnReversal();
451  void emitReverseVariable(Variable &Dest, Variable &Src);
452  void emitNewLine();
453  void emitClosingBrace();
454  void emitOpeningBrace();
455  void emitPrototype(StringRef NamePrefix);
456
457  class DagEmitter {
458    Intrinsic &Intr;
459    StringRef CallPrefix;
460
461  public:
462    DagEmitter(Intrinsic &Intr, StringRef CallPrefix) :
463      Intr(Intr), CallPrefix(CallPrefix) {
464    }
465    std::pair<Type, std::string> emitDagArg(Init *Arg, std::string ArgName);
466    std::pair<Type, std::string> emitDagSaveTemp(DagInit *DI);
467    std::pair<Type, std::string> emitDagSplat(DagInit *DI);
468    std::pair<Type, std::string> emitDagDup(DagInit *DI);
469    std::pair<Type, std::string> emitDagShuffle(DagInit *DI);
470    std::pair<Type, std::string> emitDagCast(DagInit *DI, bool IsBitCast);
471    std::pair<Type, std::string> emitDagCall(DagInit *DI);
472    std::pair<Type, std::string> emitDagNameReplace(DagInit *DI);
473    std::pair<Type, std::string> emitDagLiteral(DagInit *DI);
474    std::pair<Type, std::string> emitDagOp(DagInit *DI);
475    std::pair<Type, std::string> emitDag(DagInit *DI);
476  };
477
478};
479
480//===----------------------------------------------------------------------===//
481// NeonEmitter
482//===----------------------------------------------------------------------===//
483
484class NeonEmitter {
485  RecordKeeper &Records;
486  DenseMap<Record *, ClassKind> ClassMap;
487  std::map<std::string, std::vector<Intrinsic *>> IntrinsicMap;
488  unsigned UniqueNumber;
489
490  void createIntrinsic(Record *R, SmallVectorImpl<Intrinsic *> &Out);
491  void genBuiltinsDef(raw_ostream &OS, SmallVectorImpl<Intrinsic *> &Defs);
492  void genOverloadTypeCheckCode(raw_ostream &OS,
493                                SmallVectorImpl<Intrinsic *> &Defs);
494  void genIntrinsicRangeCheckCode(raw_ostream &OS,
495                                  SmallVectorImpl<Intrinsic *> &Defs);
496
497public:
498  /// Called by Intrinsic - this attempts to get an intrinsic that takes
499  /// the given types as arguments.
500  Intrinsic *getIntrinsic(StringRef Name, ArrayRef<Type> Types);
501
502  /// Called by Intrinsic - returns a globally-unique number.
503  unsigned getUniqueNumber() { return UniqueNumber++; }
504
505  NeonEmitter(RecordKeeper &R) : Records(R), UniqueNumber(0) {
506    Record *SI = R.getClass("SInst");
507    Record *II = R.getClass("IInst");
508    Record *WI = R.getClass("WInst");
509    Record *SOpI = R.getClass("SOpInst");
510    Record *IOpI = R.getClass("IOpInst");
511    Record *WOpI = R.getClass("WOpInst");
512    Record *LOpI = R.getClass("LOpInst");
513    Record *NoTestOpI = R.getClass("NoTestOpInst");
514
515    ClassMap[SI] = ClassS;
516    ClassMap[II] = ClassI;
517    ClassMap[WI] = ClassW;
518    ClassMap[SOpI] = ClassS;
519    ClassMap[IOpI] = ClassI;
520    ClassMap[WOpI] = ClassW;
521    ClassMap[LOpI] = ClassL;
522    ClassMap[NoTestOpI] = ClassNoTest;
523  }
524
525  // run - Emit arm_neon.h.inc
526  void run(raw_ostream &o);
527
528  // runHeader - Emit all the __builtin prototypes used in arm_neon.h
529  void runHeader(raw_ostream &o);
530
531  // runTests - Emit tests for all the Neon intrinsics.
532  void runTests(raw_ostream &o);
533};
534
535} // end anonymous namespace
536
537//===----------------------------------------------------------------------===//
538// Type implementation
539//===----------------------------------------------------------------------===//
540
541std::string Type::str() const {
542  if (Void)
543    return "void";
544  std::string S;
545
546  if (!Signed && isInteger())
547    S += "u";
548
549  if (Poly)
550    S += "poly";
551  else if (Float)
552    S += "float";
553  else
554    S += "int";
555
556  S += utostr(ElementBitwidth);
557  if (isVector())
558    S += "x" + utostr(getNumElements());
559  if (NumVectors > 1)
560    S += "x" + utostr(NumVectors);
561  S += "_t";
562
563  if (Constant)
564    S += " const";
565  if (Pointer)
566    S += " *";
567
568  return S;
569}
570
571std::string Type::builtin_str() const {
572  std::string S;
573  if (isVoid())
574    return "v";
575
576  if (Pointer)
577    // All pointers are void pointers.
578    S += "v";
579  else if (isInteger())
580    switch (ElementBitwidth) {
581    case 8: S += "c"; break;
582    case 16: S += "s"; break;
583    case 32: S += "i"; break;
584    case 64: S += "Wi"; break;
585    case 128: S += "LLLi"; break;
586    default: llvm_unreachable("Unhandled case!");
587    }
588  else
589    switch (ElementBitwidth) {
590    case 16: S += "h"; break;
591    case 32: S += "f"; break;
592    case 64: S += "d"; break;
593    default: llvm_unreachable("Unhandled case!");
594    }
595
596  if (isChar() && !Pointer)
597    // Make chars explicitly signed.
598    S = "S" + S;
599  else if (isInteger() && !Pointer && !Signed)
600    S = "U" + S;
601
602  if (isScalar()) {
603    if (Constant) S += "C";
604    if (Pointer) S += "*";
605    return S;
606  }
607
608  std::string Ret;
609  for (unsigned I = 0; I < NumVectors; ++I)
610    Ret += "V" + utostr(getNumElements()) + S;
611
612  return Ret;
613}
614
615unsigned Type::getNeonEnum() const {
616  unsigned Addend;
617  switch (ElementBitwidth) {
618  case 8: Addend = 0; break;
619  case 16: Addend = 1; break;
620  case 32: Addend = 2; break;
621  case 64: Addend = 3; break;
622  case 128: Addend = 4; break;
623  default: llvm_unreachable("Unhandled element bitwidth!");
624  }
625
626  unsigned Base = (unsigned)NeonTypeFlags::Int8 + Addend;
627  if (Poly) {
628    // Adjustment needed because Poly32 doesn't exist.
629    if (Addend >= 2)
630      --Addend;
631    Base = (unsigned)NeonTypeFlags::Poly8 + Addend;
632  }
633  if (Float) {
634    assert(Addend != 0 && "Float8 doesn't exist!");
635    Base = (unsigned)NeonTypeFlags::Float16 + (Addend - 1);
636  }
637
638  if (Bitwidth == 128)
639    Base |= (unsigned)NeonTypeFlags::QuadFlag;
640  if (isInteger() && !Signed)
641    Base |= (unsigned)NeonTypeFlags::UnsignedFlag;
642
643  return Base;
644}
645
646Type Type::fromTypedefName(StringRef Name) {
647  Type T;
648  T.Void = false;
649  T.Float = false;
650  T.Poly = false;
651
652  if (Name.front() == 'u') {
653    T.Signed = false;
654    Name = Name.drop_front();
655  } else {
656    T.Signed = true;
657  }
658
659  if (Name.startswith("float")) {
660    T.Float = true;
661    Name = Name.drop_front(5);
662  } else if (Name.startswith("poly")) {
663    T.Poly = true;
664    Name = Name.drop_front(4);
665  } else {
666    assert(Name.startswith("int"));
667    Name = Name.drop_front(3);
668  }
669
670  unsigned I = 0;
671  for (I = 0; I < Name.size(); ++I) {
672    if (!isdigit(Name[I]))
673      break;
674  }
675  Name.substr(0, I).getAsInteger(10, T.ElementBitwidth);
676  Name = Name.drop_front(I);
677
678  T.Bitwidth = T.ElementBitwidth;
679  T.NumVectors = 1;
680
681  if (Name.front() == 'x') {
682    Name = Name.drop_front();
683    unsigned I = 0;
684    for (I = 0; I < Name.size(); ++I) {
685      if (!isdigit(Name[I]))
686        break;
687    }
688    unsigned NumLanes;
689    Name.substr(0, I).getAsInteger(10, NumLanes);
690    Name = Name.drop_front(I);
691    T.Bitwidth = T.ElementBitwidth * NumLanes;
692  } else {
693    // Was scalar.
694    T.NumVectors = 0;
695  }
696  if (Name.front() == 'x') {
697    Name = Name.drop_front();
698    unsigned I = 0;
699    for (I = 0; I < Name.size(); ++I) {
700      if (!isdigit(Name[I]))
701        break;
702    }
703    Name.substr(0, I).getAsInteger(10, T.NumVectors);
704    Name = Name.drop_front(I);
705  }
706
707  assert(Name.startswith("_t") && "Malformed typedef!");
708  return T;
709}
710
711void Type::applyTypespec(bool &Quad) {
712  std::string S = TS;
713  ScalarForMangling = false;
714  Void = false;
715  Poly = Float = false;
716  ElementBitwidth = ~0U;
717  Signed = true;
718  NumVectors = 1;
719
720  for (char I : S) {
721    switch (I) {
722    case 'S':
723      ScalarForMangling = true;
724      break;
725    case 'H':
726      NoManglingQ = true;
727      Quad = true;
728      break;
729    case 'Q':
730      Quad = true;
731      break;
732    case 'P':
733      Poly = true;
734      break;
735    case 'U':
736      Signed = false;
737      break;
738    case 'c':
739      ElementBitwidth = 8;
740      break;
741    case 'h':
742      Float = true;
743    // Fall through
744    case 's':
745      ElementBitwidth = 16;
746      break;
747    case 'f':
748      Float = true;
749    // Fall through
750    case 'i':
751      ElementBitwidth = 32;
752      break;
753    case 'd':
754      Float = true;
755    // Fall through
756    case 'l':
757      ElementBitwidth = 64;
758      break;
759    case 'k':
760      ElementBitwidth = 128;
761      // Poly doesn't have a 128x1 type.
762      if (Poly)
763        NumVectors = 0;
764      break;
765    default:
766      llvm_unreachable("Unhandled type code!");
767    }
768  }
769  assert(ElementBitwidth != ~0U && "Bad element bitwidth!");
770
771  Bitwidth = Quad ? 128 : 64;
772}
773
774void Type::applyModifier(char Mod) {
775  bool AppliedQuad = false;
776  applyTypespec(AppliedQuad);
777
778  switch (Mod) {
779  case 'v':
780    Void = true;
781    break;
782  case 't':
783    if (Poly) {
784      Poly = false;
785      Signed = false;
786    }
787    break;
788  case 'b':
789    Signed = false;
790    Float = false;
791    Poly = false;
792    NumVectors = 0;
793    Bitwidth = ElementBitwidth;
794    break;
795  case '$':
796    Signed = true;
797    Float = false;
798    Poly = false;
799    NumVectors = 0;
800    Bitwidth = ElementBitwidth;
801    break;
802  case 'u':
803    Signed = false;
804    Poly = false;
805    Float = false;
806    break;
807  case 'x':
808    Signed = true;
809    assert(!Poly && "'u' can't be used with poly types!");
810    Float = false;
811    break;
812  case 'o':
813    Bitwidth = ElementBitwidth = 64;
814    NumVectors = 0;
815    Float = true;
816    break;
817  case 'y':
818    Bitwidth = ElementBitwidth = 32;
819    NumVectors = 0;
820    Float = true;
821    break;
822  case 'f':
823    // Special case - if we're half-precision, a floating
824    // point argument needs to be 128-bits (double size).
825    if (isHalf())
826      Bitwidth = 128;
827    Float = true;
828    ElementBitwidth = 32;
829    break;
830  case 'F':
831    Float = true;
832    ElementBitwidth = 64;
833    break;
834  case 'g':
835    if (AppliedQuad)
836      Bitwidth /= 2;
837    break;
838  case 'j':
839    if (!AppliedQuad)
840      Bitwidth *= 2;
841    break;
842  case 'w':
843    ElementBitwidth *= 2;
844    Bitwidth *= 2;
845    break;
846  case 'n':
847    ElementBitwidth *= 2;
848    break;
849  case 'i':
850    Float = false;
851    Poly = false;
852    ElementBitwidth = Bitwidth = 32;
853    NumVectors = 0;
854    Signed = true;
855    break;
856  case 'l':
857    Float = false;
858    Poly = false;
859    ElementBitwidth = Bitwidth = 64;
860    NumVectors = 0;
861    Signed = false;
862    break;
863  case 'z':
864    ElementBitwidth /= 2;
865    Bitwidth = ElementBitwidth;
866    NumVectors = 0;
867    break;
868  case 'r':
869    ElementBitwidth *= 2;
870    Bitwidth = ElementBitwidth;
871    NumVectors = 0;
872    break;
873  case 's':
874  case 'a':
875    Bitwidth = ElementBitwidth;
876    NumVectors = 0;
877    break;
878  case 'k':
879    Bitwidth *= 2;
880    break;
881  case 'c':
882    Constant = true;
883  // Fall through
884  case 'p':
885    Pointer = true;
886    Bitwidth = ElementBitwidth;
887    NumVectors = 0;
888    break;
889  case 'h':
890    ElementBitwidth /= 2;
891    break;
892  case 'q':
893    ElementBitwidth /= 2;
894    Bitwidth *= 2;
895    break;
896  case 'e':
897    ElementBitwidth /= 2;
898    Signed = false;
899    break;
900  case 'm':
901    ElementBitwidth /= 2;
902    Bitwidth /= 2;
903    break;
904  case 'd':
905    break;
906  case '2':
907    NumVectors = 2;
908    break;
909  case '3':
910    NumVectors = 3;
911    break;
912  case '4':
913    NumVectors = 4;
914    break;
915  case 'B':
916    NumVectors = 2;
917    if (!AppliedQuad)
918      Bitwidth *= 2;
919    break;
920  case 'C':
921    NumVectors = 3;
922    if (!AppliedQuad)
923      Bitwidth *= 2;
924    break;
925  case 'D':
926    NumVectors = 4;
927    if (!AppliedQuad)
928      Bitwidth *= 2;
929    break;
930  default:
931    llvm_unreachable("Unhandled character!");
932  }
933}
934
935//===----------------------------------------------------------------------===//
936// Intrinsic implementation
937//===----------------------------------------------------------------------===//
938
939std::string Intrinsic::getInstTypeCode(Type T, ClassKind CK) {
940  char typeCode = '\0';
941  bool printNumber = true;
942
943  if (CK == ClassB)
944    return "";
945
946  if (T.isPoly())
947    typeCode = 'p';
948  else if (T.isInteger())
949    typeCode = T.isSigned() ? 's' : 'u';
950  else
951    typeCode = 'f';
952
953  if (CK == ClassI) {
954    switch (typeCode) {
955    default:
956      break;
957    case 's':
958    case 'u':
959    case 'p':
960      typeCode = 'i';
961      break;
962    }
963  }
964  if (CK == ClassB) {
965    typeCode = '\0';
966  }
967
968  std::string S;
969  if (typeCode != '\0')
970    S.push_back(typeCode);
971  if (printNumber)
972    S += utostr(T.getElementSizeInBits());
973
974  return S;
975}
976
977std::string Intrinsic::getBuiltinTypeStr() {
978  ClassKind LocalCK = getClassKind(true);
979  std::string S;
980
981  Type RetT = getReturnType();
982  if ((LocalCK == ClassI || LocalCK == ClassW) && RetT.isScalar() &&
983      !RetT.isFloating())
984    RetT.makeInteger(RetT.getElementSizeInBits(), false);
985
986  // Since the return value must be one type, return a vector type of the
987  // appropriate width which we will bitcast.  An exception is made for
988  // returning structs of 2, 3, or 4 vectors which are returned in a sret-like
989  // fashion, storing them to a pointer arg.
990  if (RetT.getNumVectors() > 1) {
991    S += "vv*"; // void result with void* first argument
992  } else {
993    if (RetT.isPoly())
994      RetT.makeInteger(RetT.getElementSizeInBits(), false);
995    if (!RetT.isScalar() && !RetT.isSigned())
996      RetT.makeSigned();
997
998    bool ForcedVectorFloatingType = Proto[0] == 'F' || Proto[0] == 'f';
999    if (LocalCK == ClassB && !RetT.isScalar() && !ForcedVectorFloatingType)
1000      // Cast to vector of 8-bit elements.
1001      RetT.makeInteger(8, true);
1002
1003    S += RetT.builtin_str();
1004  }
1005
1006  for (unsigned I = 0; I < getNumParams(); ++I) {
1007    Type T = getParamType(I);
1008    if (T.isPoly())
1009      T.makeInteger(T.getElementSizeInBits(), false);
1010
1011    bool ForcedFloatingType = Proto[I + 1] == 'F' || Proto[I + 1] == 'f';
1012    if (LocalCK == ClassB && !T.isScalar() && !ForcedFloatingType)
1013      T.makeInteger(8, true);
1014    // Halves always get converted to 8-bit elements.
1015    if (T.isHalf() && T.isVector() && !T.isScalarForMangling())
1016      T.makeInteger(8, true);
1017
1018    if (LocalCK == ClassI)
1019      T.makeSigned();
1020
1021    // Constant indices are always just "int".
1022    if (hasImmediate() && getImmediateIdx() == I)
1023      T.makeInteger(32, true);
1024
1025    S += T.builtin_str();
1026  }
1027
1028  // Extra constant integer to hold type class enum for this function, e.g. s8
1029  if (LocalCK == ClassB)
1030    S += "i";
1031
1032  return S;
1033}
1034
1035std::string Intrinsic::getMangledName(bool ForceClassS) {
1036  // Check if the prototype has a scalar operand with the type of the vector
1037  // elements.  If not, bitcasting the args will take care of arg checking.
1038  // The actual signedness etc. will be taken care of with special enums.
1039  ClassKind LocalCK = CK;
1040  if (!protoHasScalar())
1041    LocalCK = ClassB;
1042
1043  return mangleName(Name, ForceClassS ? ClassS : LocalCK);
1044}
1045
1046std::string Intrinsic::mangleName(std::string Name, ClassKind LocalCK) {
1047  std::string typeCode = getInstTypeCode(BaseType, LocalCK);
1048  std::string S = Name;
1049
1050  if (Name == "vcvt_f32_f16" || Name == "vcvt_f32_f64" ||
1051      Name == "vcvt_f64_f32")
1052    return Name;
1053
1054  if (typeCode.size() > 0) {
1055    // If the name ends with _xN (N = 2,3,4), insert the typeCode before _xN.
1056    if (Name.size() >= 3 && isdigit(Name.back()) &&
1057        Name[Name.length() - 2] == 'x' && Name[Name.length() - 3] == '_')
1058      S.insert(S.length() - 3, "_" + typeCode);
1059    else
1060      S += "_" + typeCode;
1061  }
1062
1063  if (BaseType != InBaseType) {
1064    // A reinterpret - out the input base type at the end.
1065    S += "_" + getInstTypeCode(InBaseType, LocalCK);
1066  }
1067
1068  if (LocalCK == ClassB)
1069    S += "_v";
1070
1071  // Insert a 'q' before the first '_' character so that it ends up before
1072  // _lane or _n on vector-scalar operations.
1073  if (BaseType.getSizeInBits() == 128 && !BaseType.noManglingQ()) {
1074    size_t Pos = S.find('_');
1075    S.insert(Pos, "q");
1076  }
1077
1078  char Suffix = '\0';
1079  if (BaseType.isScalarForMangling()) {
1080    switch (BaseType.getElementSizeInBits()) {
1081    case 8: Suffix = 'b'; break;
1082    case 16: Suffix = 'h'; break;
1083    case 32: Suffix = 's'; break;
1084    case 64: Suffix = 'd'; break;
1085    default: llvm_unreachable("Bad suffix!");
1086    }
1087  }
1088  if (Suffix != '\0') {
1089    size_t Pos = S.find('_');
1090    S.insert(Pos, &Suffix, 1);
1091  }
1092
1093  return S;
1094}
1095
1096std::string Intrinsic::replaceParamsIn(std::string S) {
1097  while (S.find('$') != std::string::npos) {
1098    size_t Pos = S.find('$');
1099    size_t End = Pos + 1;
1100    while (isalpha(S[End]))
1101      ++End;
1102
1103    std::string VarName = S.substr(Pos + 1, End - Pos - 1);
1104    assert_with_loc(Variables.find(VarName) != Variables.end(),
1105                    "Variable not defined!");
1106    S.replace(Pos, End - Pos, Variables.find(VarName)->second.getName());
1107  }
1108
1109  return S;
1110}
1111
1112void Intrinsic::initVariables() {
1113  Variables.clear();
1114
1115  // Modify the TypeSpec per-argument to get a concrete Type, and create
1116  // known variables for each.
1117  for (unsigned I = 1; I < Proto.size(); ++I) {
1118    char NameC = '0' + (I - 1);
1119    std::string Name = "p";
1120    Name.push_back(NameC);
1121
1122    Variables[Name] = Variable(Types[I], Name + VariablePostfix);
1123  }
1124  RetVar = Variable(Types[0], "ret" + VariablePostfix);
1125}
1126
1127void Intrinsic::emitPrototype(StringRef NamePrefix) {
1128  if (UseMacro)
1129    OS << "#define ";
1130  else
1131    OS << "__ai " << Types[0].str() << " ";
1132
1133  OS << NamePrefix.str() << mangleName(Name, ClassS) << "(";
1134
1135  for (unsigned I = 0; I < getNumParams(); ++I) {
1136    if (I != 0)
1137      OS << ", ";
1138
1139    char NameC = '0' + I;
1140    std::string Name = "p";
1141    Name.push_back(NameC);
1142    assert(Variables.find(Name) != Variables.end());
1143    Variable &V = Variables[Name];
1144
1145    if (!UseMacro)
1146      OS << V.getType().str() << " ";
1147    OS << V.getName();
1148  }
1149
1150  OS << ")";
1151}
1152
1153void Intrinsic::emitOpeningBrace() {
1154  if (UseMacro)
1155    OS << " __extension__ ({";
1156  else
1157    OS << " {";
1158  emitNewLine();
1159}
1160
1161void Intrinsic::emitClosingBrace() {
1162  if (UseMacro)
1163    OS << "})";
1164  else
1165    OS << "}";
1166}
1167
1168void Intrinsic::emitNewLine() {
1169  if (UseMacro)
1170    OS << " \\\n";
1171  else
1172    OS << "\n";
1173}
1174
1175void Intrinsic::emitReverseVariable(Variable &Dest, Variable &Src) {
1176  if (Dest.getType().getNumVectors() > 1) {
1177    emitNewLine();
1178
1179    for (unsigned K = 0; K < Dest.getType().getNumVectors(); ++K) {
1180      OS << "  " << Dest.getName() << ".val[" << utostr(K) << "] = "
1181         << "__builtin_shufflevector("
1182         << Src.getName() << ".val[" << utostr(K) << "], "
1183         << Src.getName() << ".val[" << utostr(K) << "]";
1184      for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1185        OS << ", " << utostr(J);
1186      OS << ");";
1187      emitNewLine();
1188    }
1189  } else {
1190    OS << "  " << Dest.getName()
1191       << " = __builtin_shufflevector(" << Src.getName() << ", " << Src.getName();
1192    for (int J = Dest.getType().getNumElements() - 1; J >= 0; --J)
1193      OS << ", " << utostr(J);
1194    OS << ");";
1195    emitNewLine();
1196  }
1197}
1198
1199void Intrinsic::emitArgumentReversal() {
1200  if (BigEndianSafe)
1201    return;
1202
1203  // Reverse all vector arguments.
1204  for (unsigned I = 0; I < getNumParams(); ++I) {
1205    std::string Name = "p" + utostr(I);
1206    std::string NewName = "rev" + utostr(I);
1207
1208    Variable &V = Variables[Name];
1209    Variable NewV(V.getType(), NewName + VariablePostfix);
1210
1211    if (!NewV.getType().isVector() || NewV.getType().getNumElements() == 1)
1212      continue;
1213
1214    OS << "  " << NewV.getType().str() << " " << NewV.getName() << ";";
1215    emitReverseVariable(NewV, V);
1216    V = NewV;
1217  }
1218}
1219
1220void Intrinsic::emitReturnReversal() {
1221  if (BigEndianSafe)
1222    return;
1223  if (!getReturnType().isVector() || getReturnType().isVoid() ||
1224      getReturnType().getNumElements() == 1)
1225    return;
1226  emitReverseVariable(RetVar, RetVar);
1227}
1228
1229
1230void Intrinsic::emitShadowedArgs() {
1231  // Macro arguments are not type-checked like inline function arguments,
1232  // so assign them to local temporaries to get the right type checking.
1233  if (!UseMacro)
1234    return;
1235
1236  for (unsigned I = 0; I < getNumParams(); ++I) {
1237    // Do not create a temporary for an immediate argument.
1238    // That would defeat the whole point of using a macro!
1239    if (hasImmediate() && Proto[I+1] == 'i')
1240      continue;
1241    // Do not create a temporary for pointer arguments. The input
1242    // pointer may have an alignment hint.
1243    if (getParamType(I).isPointer())
1244      continue;
1245
1246    std::string Name = "p" + utostr(I);
1247
1248    assert(Variables.find(Name) != Variables.end());
1249    Variable &V = Variables[Name];
1250
1251    std::string NewName = "s" + utostr(I);
1252    Variable V2(V.getType(), NewName + VariablePostfix);
1253
1254    OS << "  " << V2.getType().str() << " " << V2.getName() << " = "
1255       << V.getName() << ";";
1256    emitNewLine();
1257
1258    V = V2;
1259  }
1260}
1261
1262// We don't check 'a' in this function, because for builtin function the
1263// argument matching to 'a' uses a vector type splatted from a scalar type.
1264bool Intrinsic::protoHasScalar() {
1265  return (Proto.find('s') != std::string::npos ||
1266          Proto.find('z') != std::string::npos ||
1267          Proto.find('r') != std::string::npos ||
1268          Proto.find('b') != std::string::npos ||
1269          Proto.find('$') != std::string::npos ||
1270          Proto.find('y') != std::string::npos ||
1271          Proto.find('o') != std::string::npos);
1272}
1273
1274void Intrinsic::emitBodyAsBuiltinCall() {
1275  std::string S;
1276
1277  // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit
1278  // sret-like argument.
1279  bool SRet = getReturnType().getNumVectors() >= 2;
1280
1281  StringRef N = Name;
1282  if (hasSplat()) {
1283    // Call the non-splat builtin: chop off the "_n" suffix from the name.
1284    assert(N.endswith("_n"));
1285    N = N.drop_back(2);
1286  }
1287
1288  ClassKind LocalCK = CK;
1289  if (!protoHasScalar())
1290    LocalCK = ClassB;
1291
1292  if (!getReturnType().isVoid() && !SRet)
1293    S += "(" + RetVar.getType().str() + ") ";
1294
1295  S += "__builtin_neon_" + mangleName(N, LocalCK) + "(";
1296
1297  if (SRet)
1298    S += "&" + RetVar.getName() + ", ";
1299
1300  for (unsigned I = 0; I < getNumParams(); ++I) {
1301    Variable &V = Variables["p" + utostr(I)];
1302    Type T = V.getType();
1303
1304    // Handle multiple-vector values specially, emitting each subvector as an
1305    // argument to the builtin.
1306    if (T.getNumVectors() > 1) {
1307      // Check if an explicit cast is needed.
1308      std::string Cast;
1309      if (T.isChar() || T.isPoly() || !T.isSigned()) {
1310        Type T2 = T;
1311        T2.makeOneVector();
1312        T2.makeInteger(8, /*Signed=*/true);
1313        Cast = "(" + T2.str() + ")";
1314      }
1315
1316      for (unsigned J = 0; J < T.getNumVectors(); ++J)
1317        S += Cast + V.getName() + ".val[" + utostr(J) + "], ";
1318      continue;
1319    }
1320
1321    std::string Arg;
1322    Type CastToType = T;
1323    if (hasSplat() && I == getSplatIdx()) {
1324      Arg = "(" + BaseType.str() + ") {";
1325      for (unsigned J = 0; J < BaseType.getNumElements(); ++J) {
1326        if (J != 0)
1327          Arg += ", ";
1328        Arg += V.getName();
1329      }
1330      Arg += "}";
1331
1332      CastToType = BaseType;
1333    } else {
1334      Arg = V.getName();
1335    }
1336
1337    // Check if an explicit cast is needed.
1338    if (CastToType.isVector()) {
1339      CastToType.makeInteger(8, true);
1340      Arg = "(" + CastToType.str() + ")" + Arg;
1341    }
1342
1343    S += Arg + ", ";
1344  }
1345
1346  // Extra constant integer to hold type class enum for this function, e.g. s8
1347  if (getClassKind(true) == ClassB) {
1348    Type ThisTy = getReturnType();
1349    if (Proto[0] == 'v' || Proto[0] == 'f' || Proto[0] == 'F')
1350      ThisTy = getParamType(0);
1351    if (ThisTy.isPointer())
1352      ThisTy = getParamType(1);
1353
1354    S += utostr(ThisTy.getNeonEnum());
1355  } else {
1356    // Remove extraneous ", ".
1357    S.pop_back();
1358    S.pop_back();
1359  }
1360  S += ");";
1361
1362  std::string RetExpr;
1363  if (!SRet && !RetVar.getType().isVoid())
1364    RetExpr = RetVar.getName() + " = ";
1365
1366  OS << "  " << RetExpr << S;
1367  emitNewLine();
1368}
1369
1370void Intrinsic::emitBody(StringRef CallPrefix) {
1371  std::vector<std::string> Lines;
1372
1373  assert(RetVar.getType() == Types[0]);
1374  // Create a return variable, if we're not void.
1375  if (!RetVar.getType().isVoid()) {
1376    OS << "  " << RetVar.getType().str() << " " << RetVar.getName() << ";";
1377    emitNewLine();
1378  }
1379
1380  if (!Body || Body->getValues().size() == 0) {
1381    // Nothing specific to output - must output a builtin.
1382    emitBodyAsBuiltinCall();
1383    return;
1384  }
1385
1386  // We have a list of "things to output". The last should be returned.
1387  for (auto *I : Body->getValues()) {
1388    if (StringInit *SI = dyn_cast<StringInit>(I)) {
1389      Lines.push_back(replaceParamsIn(SI->getAsString()));
1390    } else if (DagInit *DI = dyn_cast<DagInit>(I)) {
1391      DagEmitter DE(*this, CallPrefix);
1392      Lines.push_back(DE.emitDag(DI).second + ";");
1393    }
1394  }
1395
1396  assert(Lines.size() && "Empty def?");
1397  if (!RetVar.getType().isVoid())
1398    Lines.back().insert(0, RetVar.getName() + " = ");
1399
1400  for (auto &L : Lines) {
1401    OS << "  " << L;
1402    emitNewLine();
1403  }
1404}
1405
1406void Intrinsic::emitReturn() {
1407  if (RetVar.getType().isVoid())
1408    return;
1409  if (UseMacro)
1410    OS << "  " << RetVar.getName() << ";";
1411  else
1412    OS << "  return " << RetVar.getName() << ";";
1413  emitNewLine();
1414}
1415
1416std::pair<Type, std::string> Intrinsic::DagEmitter::emitDag(DagInit *DI) {
1417  // At this point we should only be seeing a def.
1418  DefInit *DefI = cast<DefInit>(DI->getOperator());
1419  std::string Op = DefI->getAsString();
1420
1421  if (Op == "cast" || Op == "bitcast")
1422    return emitDagCast(DI, Op == "bitcast");
1423  if (Op == "shuffle")
1424    return emitDagShuffle(DI);
1425  if (Op == "dup")
1426    return emitDagDup(DI);
1427  if (Op == "splat")
1428    return emitDagSplat(DI);
1429  if (Op == "save_temp")
1430    return emitDagSaveTemp(DI);
1431  if (Op == "op")
1432    return emitDagOp(DI);
1433  if (Op == "call")
1434    return emitDagCall(DI);
1435  if (Op == "name_replace")
1436    return emitDagNameReplace(DI);
1437  if (Op == "literal")
1438    return emitDagLiteral(DI);
1439  assert_with_loc(false, "Unknown operation!");
1440  return std::make_pair(Type::getVoid(), "");
1441}
1442
1443std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagOp(DagInit *DI) {
1444  std::string Op = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1445  if (DI->getNumArgs() == 2) {
1446    // Unary op.
1447    std::pair<Type, std::string> R =
1448        emitDagArg(DI->getArg(1), DI->getArgName(1));
1449    return std::make_pair(R.first, Op + R.second);
1450  } else {
1451    assert(DI->getNumArgs() == 3 && "Can only handle unary and binary ops!");
1452    std::pair<Type, std::string> R1 =
1453        emitDagArg(DI->getArg(1), DI->getArgName(1));
1454    std::pair<Type, std::string> R2 =
1455        emitDagArg(DI->getArg(2), DI->getArgName(2));
1456    assert_with_loc(R1.first == R2.first, "Argument type mismatch!");
1457    return std::make_pair(R1.first, R1.second + " " + Op + " " + R2.second);
1458  }
1459}
1460
1461std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCall(DagInit *DI) {
1462  std::vector<Type> Types;
1463  std::vector<std::string> Values;
1464  for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1465    std::pair<Type, std::string> R =
1466        emitDagArg(DI->getArg(I + 1), DI->getArgName(I + 1));
1467    Types.push_back(R.first);
1468    Values.push_back(R.second);
1469  }
1470
1471  // Look up the called intrinsic.
1472  std::string N;
1473  if (StringInit *SI = dyn_cast<StringInit>(DI->getArg(0)))
1474    N = SI->getAsUnquotedString();
1475  else
1476    N = emitDagArg(DI->getArg(0), "").second;
1477  Intrinsic *Callee = Intr.Emitter.getIntrinsic(N, Types);
1478  assert(Callee && "getIntrinsic should not return us nullptr!");
1479
1480  // Make sure the callee is known as an early def.
1481  Callee->setNeededEarly();
1482  Intr.Dependencies.insert(Callee);
1483
1484  // Now create the call itself.
1485  std::string S = CallPrefix.str() + Callee->getMangledName(true) + "(";
1486  for (unsigned I = 0; I < DI->getNumArgs() - 1; ++I) {
1487    if (I != 0)
1488      S += ", ";
1489    S += Values[I];
1490  }
1491  S += ")";
1492
1493  return std::make_pair(Callee->getReturnType(), S);
1494}
1495
1496std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagCast(DagInit *DI,
1497                                                                bool IsBitCast){
1498  // (cast MOD* VAL) -> cast VAL to type given by MOD.
1499  std::pair<Type, std::string> R = emitDagArg(
1500      DI->getArg(DI->getNumArgs() - 1), DI->getArgName(DI->getNumArgs() - 1));
1501  Type castToType = R.first;
1502  for (unsigned ArgIdx = 0; ArgIdx < DI->getNumArgs() - 1; ++ArgIdx) {
1503
1504    // MOD can take several forms:
1505    //   1. $X - take the type of parameter / variable X.
1506    //   2. The value "R" - take the type of the return type.
1507    //   3. a type string
1508    //   4. The value "U" or "S" to switch the signedness.
1509    //   5. The value "H" or "D" to half or double the bitwidth.
1510    //   6. The value "8" to convert to 8-bit (signed) integer lanes.
1511    if (DI->getArgName(ArgIdx).size()) {
1512      assert_with_loc(Intr.Variables.find(DI->getArgName(ArgIdx)) !=
1513                      Intr.Variables.end(),
1514                      "Variable not found");
1515      castToType = Intr.Variables[DI->getArgName(ArgIdx)].getType();
1516    } else {
1517      StringInit *SI = dyn_cast<StringInit>(DI->getArg(ArgIdx));
1518      assert_with_loc(SI, "Expected string type or $Name for cast type");
1519
1520      if (SI->getAsUnquotedString() == "R") {
1521        castToType = Intr.getReturnType();
1522      } else if (SI->getAsUnquotedString() == "U") {
1523        castToType.makeUnsigned();
1524      } else if (SI->getAsUnquotedString() == "S") {
1525        castToType.makeSigned();
1526      } else if (SI->getAsUnquotedString() == "H") {
1527        castToType.halveLanes();
1528      } else if (SI->getAsUnquotedString() == "D") {
1529        castToType.doubleLanes();
1530      } else if (SI->getAsUnquotedString() == "8") {
1531        castToType.makeInteger(8, true);
1532      } else {
1533        castToType = Type::fromTypedefName(SI->getAsUnquotedString());
1534        assert_with_loc(!castToType.isVoid(), "Unknown typedef");
1535      }
1536    }
1537  }
1538
1539  std::string S;
1540  if (IsBitCast) {
1541    // Emit a reinterpret cast. The second operand must be an lvalue, so create
1542    // a temporary.
1543    std::string N = "reint";
1544    unsigned I = 0;
1545    while (Intr.Variables.find(N) != Intr.Variables.end())
1546      N = "reint" + utostr(++I);
1547    Intr.Variables[N] = Variable(R.first, N + Intr.VariablePostfix);
1548
1549    Intr.OS << R.first.str() << " " << Intr.Variables[N].getName() << " = "
1550            << R.second << ";";
1551    Intr.emitNewLine();
1552
1553    S = "*(" + castToType.str() + " *) &" + Intr.Variables[N].getName() + "";
1554  } else {
1555    // Emit a normal (static) cast.
1556    S = "(" + castToType.str() + ")(" + R.second + ")";
1557  }
1558
1559  return std::make_pair(castToType, S);
1560}
1561
1562std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagShuffle(DagInit *DI){
1563  // See the documentation in arm_neon.td for a description of these operators.
1564  class LowHalf : public SetTheory::Operator {
1565  public:
1566    virtual void anchor() {}
1567    virtual ~LowHalf() {}
1568    virtual void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1569                       ArrayRef<SMLoc> Loc) {
1570      SetTheory::RecSet Elts2;
1571      ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1572      Elts.insert(Elts2.begin(), Elts2.begin() + (Elts2.size() / 2));
1573    }
1574  };
1575  class HighHalf : public SetTheory::Operator {
1576  public:
1577    virtual void anchor() {}
1578    virtual ~HighHalf() {}
1579    virtual void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1580                       ArrayRef<SMLoc> Loc) {
1581      SetTheory::RecSet Elts2;
1582      ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts2, Loc);
1583      Elts.insert(Elts2.begin() + (Elts2.size() / 2), Elts2.end());
1584    }
1585  };
1586  class Rev : public SetTheory::Operator {
1587    unsigned ElementSize;
1588
1589  public:
1590    Rev(unsigned ElementSize) : ElementSize(ElementSize) {}
1591    virtual void anchor() {}
1592    virtual ~Rev() {}
1593    virtual void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
1594                       ArrayRef<SMLoc> Loc) {
1595      SetTheory::RecSet Elts2;
1596      ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Elts2, Loc);
1597
1598      int64_t VectorSize = cast<IntInit>(Expr->getArg(0))->getValue();
1599      VectorSize /= ElementSize;
1600
1601      std::vector<Record *> Revved;
1602      for (unsigned VI = 0; VI < Elts2.size(); VI += VectorSize) {
1603        for (int LI = VectorSize - 1; LI >= 0; --LI) {
1604          Revved.push_back(Elts2[VI + LI]);
1605        }
1606      }
1607
1608      Elts.insert(Revved.begin(), Revved.end());
1609    }
1610  };
1611  class MaskExpander : public SetTheory::Expander {
1612    unsigned N;
1613
1614  public:
1615    MaskExpander(unsigned N) : N(N) {}
1616    virtual void anchor() {}
1617    virtual ~MaskExpander() {}
1618    virtual void expand(SetTheory &ST, Record *R, SetTheory::RecSet &Elts) {
1619      unsigned Addend = 0;
1620      if (R->getName() == "mask0")
1621        Addend = 0;
1622      else if (R->getName() == "mask1")
1623        Addend = N;
1624      else
1625        return;
1626      for (unsigned I = 0; I < N; ++I)
1627        Elts.insert(R->getRecords().getDef("sv" + utostr(I + Addend)));
1628    }
1629  };
1630
1631  // (shuffle arg1, arg2, sequence)
1632  std::pair<Type, std::string> Arg1 =
1633      emitDagArg(DI->getArg(0), DI->getArgName(0));
1634  std::pair<Type, std::string> Arg2 =
1635      emitDagArg(DI->getArg(1), DI->getArgName(1));
1636  assert_with_loc(Arg1.first == Arg2.first,
1637                  "Different types in arguments to shuffle!");
1638
1639  SetTheory ST;
1640  LowHalf LH;
1641  HighHalf HH;
1642  MaskExpander ME(Arg1.first.getNumElements());
1643  Rev R(Arg1.first.getElementSizeInBits());
1644  SetTheory::RecSet Elts;
1645  ST.addOperator("lowhalf", &LH);
1646  ST.addOperator("highhalf", &HH);
1647  ST.addOperator("rev", &R);
1648  ST.addExpander("MaskExpand", &ME);
1649  ST.evaluate(DI->getArg(2), Elts, ArrayRef<SMLoc>());
1650
1651  std::string S = "__builtin_shufflevector(" + Arg1.second + ", " + Arg2.second;
1652  for (auto &E : Elts) {
1653    StringRef Name = E->getName();
1654    assert_with_loc(Name.startswith("sv"),
1655                    "Incorrect element kind in shuffle mask!");
1656    S += ", " + Name.drop_front(2).str();
1657  }
1658  S += ")";
1659
1660  // Recalculate the return type - the shuffle may have halved or doubled it.
1661  Type T(Arg1.first);
1662  if (Elts.size() > T.getNumElements()) {
1663    assert_with_loc(
1664        Elts.size() == T.getNumElements() * 2,
1665        "Can only double or half the number of elements in a shuffle!");
1666    T.doubleLanes();
1667  } else if (Elts.size() < T.getNumElements()) {
1668    assert_with_loc(
1669        Elts.size() == T.getNumElements() / 2,
1670        "Can only double or half the number of elements in a shuffle!");
1671    T.halveLanes();
1672  }
1673
1674  return std::make_pair(T, S);
1675}
1676
1677std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagDup(DagInit *DI) {
1678  assert_with_loc(DI->getNumArgs() == 1, "dup() expects one argument");
1679  std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
1680  assert_with_loc(A.first.isScalar(), "dup() expects a scalar argument");
1681
1682  Type T = Intr.getBaseType();
1683  assert_with_loc(T.isVector(), "dup() used but default type is scalar!");
1684  std::string S = "(" + T.str() + ") {";
1685  for (unsigned I = 0; I < T.getNumElements(); ++I) {
1686    if (I != 0)
1687      S += ", ";
1688    S += A.second;
1689  }
1690  S += "}";
1691
1692  return std::make_pair(T, S);
1693}
1694
1695std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSplat(DagInit *DI) {
1696  assert_with_loc(DI->getNumArgs() == 2, "splat() expects two arguments");
1697  std::pair<Type, std::string> A = emitDagArg(DI->getArg(0), DI->getArgName(0));
1698  std::pair<Type, std::string> B = emitDagArg(DI->getArg(1), DI->getArgName(1));
1699
1700  assert_with_loc(B.first.isScalar(),
1701                  "splat() requires a scalar int as the second argument");
1702
1703  std::string S = "__builtin_shufflevector(" + A.second + ", " + A.second;
1704  for (unsigned I = 0; I < Intr.getBaseType().getNumElements(); ++I) {
1705    S += ", " + B.second;
1706  }
1707  S += ")";
1708
1709  return std::make_pair(Intr.getBaseType(), S);
1710}
1711
1712std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagSaveTemp(DagInit *DI) {
1713  assert_with_loc(DI->getNumArgs() == 2, "save_temp() expects two arguments");
1714  std::pair<Type, std::string> A = emitDagArg(DI->getArg(1), DI->getArgName(1));
1715
1716  assert_with_loc(!A.first.isVoid(),
1717                  "Argument to save_temp() must have non-void type!");
1718
1719  std::string N = DI->getArgName(0);
1720  assert_with_loc(N.size(), "save_temp() expects a name as the first argument");
1721
1722  assert_with_loc(Intr.Variables.find(N) == Intr.Variables.end(),
1723                  "Variable already defined!");
1724  Intr.Variables[N] = Variable(A.first, N + Intr.VariablePostfix);
1725
1726  std::string S =
1727      A.first.str() + " " + Intr.Variables[N].getName() + " = " + A.second;
1728
1729  return std::make_pair(Type::getVoid(), S);
1730}
1731
1732std::pair<Type, std::string>
1733Intrinsic::DagEmitter::emitDagNameReplace(DagInit *DI) {
1734  std::string S = Intr.Name;
1735
1736  assert_with_loc(DI->getNumArgs() == 2, "name_replace requires 2 arguments!");
1737  std::string ToReplace = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1738  std::string ReplaceWith = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1739
1740  size_t Idx = S.find(ToReplace);
1741
1742  assert_with_loc(Idx != std::string::npos, "name should contain '" + ToReplace + "'!");
1743  S.replace(Idx, ToReplace.size(), ReplaceWith);
1744
1745  return std::make_pair(Type::getVoid(), S);
1746}
1747
1748std::pair<Type, std::string> Intrinsic::DagEmitter::emitDagLiteral(DagInit *DI){
1749  std::string Ty = cast<StringInit>(DI->getArg(0))->getAsUnquotedString();
1750  std::string Value = cast<StringInit>(DI->getArg(1))->getAsUnquotedString();
1751  return std::make_pair(Type::fromTypedefName(Ty), Value);
1752}
1753
1754std::pair<Type, std::string>
1755Intrinsic::DagEmitter::emitDagArg(Init *Arg, std::string ArgName) {
1756  if (ArgName.size()) {
1757    assert_with_loc(!Arg->isComplete(),
1758                    "Arguments must either be DAGs or names, not both!");
1759    assert_with_loc(Intr.Variables.find(ArgName) != Intr.Variables.end(),
1760                    "Variable not defined!");
1761    Variable &V = Intr.Variables[ArgName];
1762    return std::make_pair(V.getType(), V.getName());
1763  }
1764
1765  assert(Arg && "Neither ArgName nor Arg?!");
1766  DagInit *DI = dyn_cast<DagInit>(Arg);
1767  assert_with_loc(DI, "Arguments must either be DAGs or names!");
1768
1769  return emitDag(DI);
1770}
1771
1772std::string Intrinsic::generate() {
1773  // Little endian intrinsics are simple and don't require any argument
1774  // swapping.
1775  OS << "#ifdef __LITTLE_ENDIAN__\n";
1776
1777  generateImpl(false, "", "");
1778
1779  OS << "#else\n";
1780
1781  // Big endian intrinsics are more complex. The user intended these
1782  // intrinsics to operate on a vector "as-if" loaded by (V)LDR,
1783  // but we load as-if (V)LD1. So we should swap all arguments and
1784  // swap the return value too.
1785  //
1786  // If we call sub-intrinsics, we should call a version that does
1787  // not re-swap the arguments!
1788  generateImpl(true, "", "__noswap_");
1789
1790  // If we're needed early, create a non-swapping variant for
1791  // big-endian.
1792  if (NeededEarly) {
1793    generateImpl(false, "__noswap_", "__noswap_");
1794  }
1795  OS << "#endif\n\n";
1796
1797  return OS.str();
1798}
1799
1800void Intrinsic::generateImpl(bool ReverseArguments,
1801                             StringRef NamePrefix, StringRef CallPrefix) {
1802  CurrentRecord = R;
1803
1804  // If we call a macro, our local variables may be corrupted due to
1805  // lack of proper lexical scoping. So, add a globally unique postfix
1806  // to every variable.
1807  //
1808  // indexBody() should have set up the Dependencies set by now.
1809  for (auto *I : Dependencies)
1810    if (I->UseMacro) {
1811      VariablePostfix = "_" + utostr(Emitter.getUniqueNumber());
1812      break;
1813    }
1814
1815  initVariables();
1816
1817  emitPrototype(NamePrefix);
1818
1819  if (IsUnavailable) {
1820    OS << " __attribute__((unavailable));";
1821  } else {
1822    emitOpeningBrace();
1823    emitShadowedArgs();
1824    if (ReverseArguments)
1825      emitArgumentReversal();
1826    emitBody(CallPrefix);
1827    if (ReverseArguments)
1828      emitReturnReversal();
1829    emitReturn();
1830    emitClosingBrace();
1831  }
1832  OS << "\n";
1833
1834  CurrentRecord = nullptr;
1835}
1836
1837void Intrinsic::indexBody() {
1838  CurrentRecord = R;
1839
1840  initVariables();
1841  emitBody("");
1842  OS.str("");
1843
1844  CurrentRecord = nullptr;
1845}
1846
1847//===----------------------------------------------------------------------===//
1848// NeonEmitter implementation
1849//===----------------------------------------------------------------------===//
1850
1851Intrinsic *NeonEmitter::getIntrinsic(StringRef Name, ArrayRef<Type> Types) {
1852  // First, look up the name in the intrinsic map.
1853  assert_with_loc(IntrinsicMap.find(Name.str()) != IntrinsicMap.end(),
1854                  ("Intrinsic '" + Name + "' not found!").str());
1855  std::vector<Intrinsic *> &V = IntrinsicMap[Name.str()];
1856  std::vector<Intrinsic *> GoodVec;
1857
1858  // Create a string to print if we end up failing.
1859  std::string ErrMsg = "looking up intrinsic '" + Name.str() + "(";
1860  for (unsigned I = 0; I < Types.size(); ++I) {
1861    if (I != 0)
1862      ErrMsg += ", ";
1863    ErrMsg += Types[I].str();
1864  }
1865  ErrMsg += ")'\n";
1866  ErrMsg += "Available overloads:\n";
1867
1868  // Now, look through each intrinsic implementation and see if the types are
1869  // compatible.
1870  for (auto *I : V) {
1871    ErrMsg += "  - " + I->getReturnType().str() + " " + I->getMangledName();
1872    ErrMsg += "(";
1873    for (unsigned A = 0; A < I->getNumParams(); ++A) {
1874      if (A != 0)
1875        ErrMsg += ", ";
1876      ErrMsg += I->getParamType(A).str();
1877    }
1878    ErrMsg += ")\n";
1879
1880    if (I->getNumParams() != Types.size())
1881      continue;
1882
1883    bool Good = true;
1884    for (unsigned Arg = 0; Arg < Types.size(); ++Arg) {
1885      if (I->getParamType(Arg) != Types[Arg]) {
1886        Good = false;
1887        break;
1888      }
1889    }
1890    if (Good)
1891      GoodVec.push_back(I);
1892  }
1893
1894  assert_with_loc(GoodVec.size() > 0,
1895                  "No compatible intrinsic found - " + ErrMsg);
1896  assert_with_loc(GoodVec.size() == 1, "Multiple overloads found - " + ErrMsg);
1897
1898  return GoodVec.front();
1899}
1900
1901void NeonEmitter::createIntrinsic(Record *R,
1902                                  SmallVectorImpl<Intrinsic *> &Out) {
1903  std::string Name = R->getValueAsString("Name");
1904  std::string Proto = R->getValueAsString("Prototype");
1905  std::string Types = R->getValueAsString("Types");
1906  Record *OperationRec = R->getValueAsDef("Operation");
1907  bool CartesianProductOfTypes = R->getValueAsBit("CartesianProductOfTypes");
1908  bool BigEndianSafe  = R->getValueAsBit("BigEndianSafe");
1909  std::string Guard = R->getValueAsString("ArchGuard");
1910  bool IsUnavailable = OperationRec->getValueAsBit("Unavailable");
1911
1912  // Set the global current record. This allows assert_with_loc to produce
1913  // decent location information even when highly nested.
1914  CurrentRecord = R;
1915
1916  ListInit *Body = OperationRec->getValueAsListInit("Ops");
1917
1918  std::vector<TypeSpec> TypeSpecs = TypeSpec::fromTypeSpecs(Types);
1919
1920  ClassKind CK = ClassNone;
1921  if (R->getSuperClasses().size() >= 2)
1922    CK = ClassMap[R->getSuperClasses()[1]];
1923
1924  std::vector<std::pair<TypeSpec, TypeSpec>> NewTypeSpecs;
1925  for (auto TS : TypeSpecs) {
1926    if (CartesianProductOfTypes) {
1927      Type DefaultT(TS, 'd');
1928      for (auto SrcTS : TypeSpecs) {
1929        Type DefaultSrcT(SrcTS, 'd');
1930        if (TS == SrcTS ||
1931            DefaultSrcT.getSizeInBits() != DefaultT.getSizeInBits())
1932          continue;
1933        NewTypeSpecs.push_back(std::make_pair(TS, SrcTS));
1934      }
1935    } else {
1936      NewTypeSpecs.push_back(std::make_pair(TS, TS));
1937    }
1938  }
1939
1940  std::sort(NewTypeSpecs.begin(), NewTypeSpecs.end());
1941  std::unique(NewTypeSpecs.begin(), NewTypeSpecs.end());
1942
1943  for (auto &I : NewTypeSpecs) {
1944    Intrinsic *IT = new Intrinsic(R, Name, Proto, I.first, I.second, CK, Body,
1945                                  *this, Guard, IsUnavailable, BigEndianSafe);
1946
1947    IntrinsicMap[Name].push_back(IT);
1948    Out.push_back(IT);
1949  }
1950
1951  CurrentRecord = nullptr;
1952}
1953
1954/// genBuiltinsDef: Generate the BuiltinsARM.def and  BuiltinsAArch64.def
1955/// declaration of builtins, checking for unique builtin declarations.
1956void NeonEmitter::genBuiltinsDef(raw_ostream &OS,
1957                                 SmallVectorImpl<Intrinsic *> &Defs) {
1958  OS << "#ifdef GET_NEON_BUILTINS\n";
1959
1960  // We only want to emit a builtin once, and we want to emit them in
1961  // alphabetical order, so use a std::set.
1962  std::set<std::string> Builtins;
1963
1964  for (auto *Def : Defs) {
1965    if (Def->hasBody())
1966      continue;
1967    // Functions with 'a' (the splat code) in the type prototype should not get
1968    // their own builtin as they use the non-splat variant.
1969    if (Def->hasSplat())
1970      continue;
1971
1972    std::string S = "BUILTIN(__builtin_neon_" + Def->getMangledName() + ", \"";
1973
1974    S += Def->getBuiltinTypeStr();
1975    S += "\", \"n\")";
1976
1977    Builtins.insert(S);
1978  }
1979
1980  for (auto &S : Builtins)
1981    OS << S << "\n";
1982  OS << "#endif\n\n";
1983}
1984
1985/// Generate the ARM and AArch64 overloaded type checking code for
1986/// SemaChecking.cpp, checking for unique builtin declarations.
1987void NeonEmitter::genOverloadTypeCheckCode(raw_ostream &OS,
1988                                           SmallVectorImpl<Intrinsic *> &Defs) {
1989  OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n";
1990
1991  // We record each overload check line before emitting because subsequent Inst
1992  // definitions may extend the number of permitted types (i.e. augment the
1993  // Mask). Use std::map to avoid sorting the table by hash number.
1994  struct OverloadInfo {
1995    uint64_t Mask;
1996    int PtrArgNum;
1997    bool HasConstPtr;
1998    OverloadInfo() : Mask(0ULL), PtrArgNum(0), HasConstPtr(false) {}
1999  };
2000  std::map<std::string, OverloadInfo> OverloadMap;
2001
2002  for (auto *Def : Defs) {
2003    // If the def has a body (that is, it has Operation DAGs), it won't call
2004    // __builtin_neon_* so we don't need to generate a definition for it.
2005    if (Def->hasBody())
2006      continue;
2007    // Functions with 'a' (the splat code) in the type prototype should not get
2008    // their own builtin as they use the non-splat variant.
2009    if (Def->hasSplat())
2010      continue;
2011    // Functions which have a scalar argument cannot be overloaded, no need to
2012    // check them if we are emitting the type checking code.
2013    if (Def->protoHasScalar())
2014      continue;
2015
2016    uint64_t Mask = 0ULL;
2017    Type Ty = Def->getReturnType();
2018    if (Def->getProto()[0] == 'v' || Def->getProto()[0] == 'f' ||
2019        Def->getProto()[0] == 'F')
2020      Ty = Def->getParamType(0);
2021    if (Ty.isPointer())
2022      Ty = Def->getParamType(1);
2023
2024    Mask |= 1ULL << Ty.getNeonEnum();
2025
2026    // Check if the function has a pointer or const pointer argument.
2027    std::string Proto = Def->getProto();
2028    int PtrArgNum = -1;
2029    bool HasConstPtr = false;
2030    for (unsigned I = 0; I < Def->getNumParams(); ++I) {
2031      char ArgType = Proto[I + 1];
2032      if (ArgType == 'c') {
2033        HasConstPtr = true;
2034        PtrArgNum = I;
2035        break;
2036      }
2037      if (ArgType == 'p') {
2038        PtrArgNum = I;
2039        break;
2040      }
2041    }
2042    // For sret builtins, adjust the pointer argument index.
2043    if (PtrArgNum >= 0 && Def->getReturnType().getNumVectors() > 1)
2044      PtrArgNum += 1;
2045
2046    std::string Name = Def->getName();
2047    // Omit type checking for the pointer arguments of vld1_lane, vld1_dup,
2048    // and vst1_lane intrinsics.  Using a pointer to the vector element
2049    // type with one of those operations causes codegen to select an aligned
2050    // load/store instruction.  If you want an unaligned operation,
2051    // the pointer argument needs to have less alignment than element type,
2052    // so just accept any pointer type.
2053    if (Name == "vld1_lane" || Name == "vld1_dup" || Name == "vst1_lane") {
2054      PtrArgNum = -1;
2055      HasConstPtr = false;
2056    }
2057
2058    if (Mask) {
2059      std::string Name = Def->getMangledName();
2060      OverloadMap.insert(std::make_pair(Name, OverloadInfo()));
2061      OverloadInfo &OI = OverloadMap[Name];
2062      OI.Mask |= Mask;
2063      OI.PtrArgNum |= PtrArgNum;
2064      OI.HasConstPtr = HasConstPtr;
2065    }
2066  }
2067
2068  for (auto &I : OverloadMap) {
2069    OverloadInfo &OI = I.second;
2070
2071    OS << "case NEON::BI__builtin_neon_" << I.first << ": ";
2072    OS << "mask = 0x" << utohexstr(OI.Mask) << "ULL";
2073    if (OI.PtrArgNum >= 0)
2074      OS << "; PtrArgNum = " << OI.PtrArgNum;
2075    if (OI.HasConstPtr)
2076      OS << "; HasConstPtr = true";
2077    OS << "; break;\n";
2078  }
2079  OS << "#endif\n\n";
2080}
2081
2082void
2083NeonEmitter::genIntrinsicRangeCheckCode(raw_ostream &OS,
2084                                        SmallVectorImpl<Intrinsic *> &Defs) {
2085  OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n";
2086
2087  std::set<std::string> Emitted;
2088
2089  for (auto *Def : Defs) {
2090    if (Def->hasBody())
2091      continue;
2092    // Functions with 'a' (the splat code) in the type prototype should not get
2093    // their own builtin as they use the non-splat variant.
2094    if (Def->hasSplat())
2095      continue;
2096    // Functions which do not have an immediate do not ned to have range
2097    // checking
2098    // code emitted.
2099    if (!Def->hasImmediate())
2100      continue;
2101    if (Emitted.find(Def->getMangledName()) != Emitted.end())
2102      continue;
2103
2104    std::string LowerBound, UpperBound;
2105
2106    Record *R = Def->getRecord();
2107    if (R->getValueAsBit("isVCVT_N")) {
2108      // VCVT between floating- and fixed-point values takes an immediate
2109      // in the range [1, 32) for f32 or [1, 64) for f64.
2110      LowerBound = "1";
2111      if (Def->getBaseType().getElementSizeInBits() == 32)
2112        UpperBound = "31";
2113      else
2114        UpperBound = "63";
2115    } else if (R->getValueAsBit("isScalarShift")) {
2116      // Right shifts have an 'r' in the name, left shifts do not. Convert
2117      // instructions have the same bounds and right shifts.
2118      if (Def->getName().find('r') != std::string::npos ||
2119          Def->getName().find("cvt") != std::string::npos)
2120        LowerBound = "1";
2121
2122      UpperBound = utostr(Def->getReturnType().getElementSizeInBits() - 1);
2123    } else if (R->getValueAsBit("isShift")) {
2124      // Builtins which are overloaded by type will need to have thier upper
2125      // bound computed at Sema time based on the type constant.
2126
2127      // Right shifts have an 'r' in the name, left shifts do not.
2128      if (Def->getName().find('r') != std::string::npos)
2129        LowerBound = "1";
2130      UpperBound = "RFT(TV, true)";
2131    } else if (Def->getClassKind(true) == ClassB) {
2132      // ClassB intrinsics have a type (and hence lane number) that is only
2133      // known at runtime.
2134      if (R->getValueAsBit("isLaneQ"))
2135        UpperBound = "RFT(TV, false, true)";
2136      else
2137        UpperBound = "RFT(TV, false, false)";
2138    } else {
2139      // The immediate generally refers to a lane in the preceding argument.
2140      assert(Def->getImmediateIdx() > 0);
2141      Type T = Def->getParamType(Def->getImmediateIdx() - 1);
2142      UpperBound = utostr(T.getNumElements() - 1);
2143    }
2144
2145    // Calculate the index of the immediate that should be range checked.
2146    unsigned Idx = Def->getNumParams();
2147    if (Def->hasImmediate())
2148      Idx = Def->getGeneratedParamIdx(Def->getImmediateIdx());
2149
2150    OS << "case NEON::BI__builtin_neon_" << Def->getMangledName() << ": "
2151       << "i = " << Idx << ";";
2152    if (LowerBound.size())
2153      OS << " l = " << LowerBound << ";";
2154    if (UpperBound.size())
2155      OS << " u = " << UpperBound << ";";
2156    OS << " break;\n";
2157
2158    Emitted.insert(Def->getMangledName());
2159  }
2160
2161  OS << "#endif\n\n";
2162}
2163
2164/// runHeader - Emit a file with sections defining:
2165/// 1. the NEON section of BuiltinsARM.def and BuiltinsAArch64.def.
2166/// 2. the SemaChecking code for the type overload checking.
2167/// 3. the SemaChecking code for validation of intrinsic immediate arguments.
2168void NeonEmitter::runHeader(raw_ostream &OS) {
2169  std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2170
2171  SmallVector<Intrinsic *, 128> Defs;
2172  for (auto *R : RV)
2173    createIntrinsic(R, Defs);
2174
2175  // Generate shared BuiltinsXXX.def
2176  genBuiltinsDef(OS, Defs);
2177
2178  // Generate ARM overloaded type checking code for SemaChecking.cpp
2179  genOverloadTypeCheckCode(OS, Defs);
2180
2181  // Generate ARM range checking code for shift/lane immediates.
2182  genIntrinsicRangeCheckCode(OS, Defs);
2183}
2184
2185/// run - Read the records in arm_neon.td and output arm_neon.h.  arm_neon.h
2186/// is comprised of type definitions and function declarations.
2187void NeonEmitter::run(raw_ostream &OS) {
2188  OS << "/*===---- arm_neon.h - ARM Neon intrinsics "
2189        "------------------------------"
2190        "---===\n"
2191        " *\n"
2192        " * Permission is hereby granted, free of charge, to any person "
2193        "obtaining "
2194        "a copy\n"
2195        " * of this software and associated documentation files (the "
2196        "\"Software\"),"
2197        " to deal\n"
2198        " * in the Software without restriction, including without limitation "
2199        "the "
2200        "rights\n"
2201        " * to use, copy, modify, merge, publish, distribute, sublicense, "
2202        "and/or sell\n"
2203        " * copies of the Software, and to permit persons to whom the Software "
2204        "is\n"
2205        " * furnished to do so, subject to the following conditions:\n"
2206        " *\n"
2207        " * The above copyright notice and this permission notice shall be "
2208        "included in\n"
2209        " * all copies or substantial portions of the Software.\n"
2210        " *\n"
2211        " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, "
2212        "EXPRESS OR\n"
2213        " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF "
2214        "MERCHANTABILITY,\n"
2215        " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT "
2216        "SHALL THE\n"
2217        " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR "
2218        "OTHER\n"
2219        " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, "
2220        "ARISING FROM,\n"
2221        " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER "
2222        "DEALINGS IN\n"
2223        " * THE SOFTWARE.\n"
2224        " *\n"
2225        " *===-----------------------------------------------------------------"
2226        "---"
2227        "---===\n"
2228        " */\n\n";
2229
2230  OS << "#ifndef __ARM_NEON_H\n";
2231  OS << "#define __ARM_NEON_H\n\n";
2232
2233  OS << "#if !defined(__ARM_NEON)\n";
2234  OS << "#error \"NEON support not enabled\"\n";
2235  OS << "#endif\n\n";
2236
2237  OS << "#include <stdint.h>\n\n";
2238
2239  // Emit NEON-specific scalar typedefs.
2240  OS << "typedef float float32_t;\n";
2241  OS << "typedef __fp16 float16_t;\n";
2242
2243  OS << "#ifdef __aarch64__\n";
2244  OS << "typedef double float64_t;\n";
2245  OS << "#endif\n\n";
2246
2247  // For now, signedness of polynomial types depends on target
2248  OS << "#ifdef __aarch64__\n";
2249  OS << "typedef uint8_t poly8_t;\n";
2250  OS << "typedef uint16_t poly16_t;\n";
2251  OS << "typedef uint64_t poly64_t;\n";
2252  OS << "typedef __uint128_t poly128_t;\n";
2253  OS << "#else\n";
2254  OS << "typedef int8_t poly8_t;\n";
2255  OS << "typedef int16_t poly16_t;\n";
2256  OS << "#endif\n";
2257
2258  // Emit Neon vector typedefs.
2259  std::string TypedefTypes(
2260      "cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfdQdPcQPcPsQPsPlQPl");
2261  std::vector<TypeSpec> TDTypeVec = TypeSpec::fromTypeSpecs(TypedefTypes);
2262
2263  // Emit vector typedefs.
2264  bool InIfdef = false;
2265  for (auto &TS : TDTypeVec) {
2266    bool IsA64 = false;
2267    Type T(TS, 'd');
2268    if (T.isDouble() || (T.isPoly() && T.isLong()))
2269      IsA64 = true;
2270
2271    if (InIfdef && !IsA64) {
2272      OS << "#endif\n";
2273      InIfdef = false;
2274    }
2275    if (!InIfdef && IsA64) {
2276      OS << "#ifdef __aarch64__\n";
2277      InIfdef = true;
2278    }
2279
2280    if (T.isPoly())
2281      OS << "typedef __attribute__((neon_polyvector_type(";
2282    else
2283      OS << "typedef __attribute__((neon_vector_type(";
2284
2285    Type T2 = T;
2286    T2.makeScalar();
2287    OS << utostr(T.getNumElements()) << "))) ";
2288    OS << T2.str();
2289    OS << " " << T.str() << ";\n";
2290  }
2291  if (InIfdef)
2292    OS << "#endif\n";
2293  OS << "\n";
2294
2295  // Emit struct typedefs.
2296  InIfdef = false;
2297  for (unsigned NumMembers = 2; NumMembers <= 4; ++NumMembers) {
2298    for (auto &TS : TDTypeVec) {
2299      bool IsA64 = false;
2300      Type T(TS, 'd');
2301      if (T.isDouble() || (T.isPoly() && T.isLong()))
2302        IsA64 = true;
2303
2304      if (InIfdef && !IsA64) {
2305        OS << "#endif\n";
2306        InIfdef = false;
2307      }
2308      if (!InIfdef && IsA64) {
2309        OS << "#ifdef __aarch64__\n";
2310        InIfdef = true;
2311      }
2312
2313      char M = '2' + (NumMembers - 2);
2314      Type VT(TS, M);
2315      OS << "typedef struct " << VT.str() << " {\n";
2316      OS << "  " << T.str() << " val";
2317      OS << "[" << utostr(NumMembers) << "]";
2318      OS << ";\n} ";
2319      OS << VT.str() << ";\n";
2320      OS << "\n";
2321    }
2322  }
2323  if (InIfdef)
2324    OS << "#endif\n";
2325  OS << "\n";
2326
2327  OS << "#define __ai static inline __attribute__((__always_inline__, "
2328        "__nodebug__))\n\n";
2329
2330  SmallVector<Intrinsic *, 128> Defs;
2331  std::vector<Record *> RV = Records.getAllDerivedDefinitions("Inst");
2332  for (auto *R : RV)
2333    createIntrinsic(R, Defs);
2334
2335  for (auto *I : Defs)
2336    I->indexBody();
2337
2338  std::stable_sort(
2339      Defs.begin(), Defs.end(),
2340      [](const Intrinsic *A, const Intrinsic *B) { return *A < *B; });
2341
2342  // Only emit a def when its requirements have been met.
2343  // FIXME: This loop could be made faster, but it's fast enough for now.
2344  bool MadeProgress = true;
2345  std::string InGuard = "";
2346  while (!Defs.empty() && MadeProgress) {
2347    MadeProgress = false;
2348
2349    for (SmallVector<Intrinsic *, 128>::iterator I = Defs.begin();
2350         I != Defs.end(); /*No step*/) {
2351      bool DependenciesSatisfied = true;
2352      for (auto *II : (*I)->getDependencies()) {
2353        if (std::find(Defs.begin(), Defs.end(), II) != Defs.end())
2354          DependenciesSatisfied = false;
2355      }
2356      if (!DependenciesSatisfied) {
2357        // Try the next one.
2358        ++I;
2359        continue;
2360      }
2361
2362      // Emit #endif/#if pair if needed.
2363      if ((*I)->getGuard() != InGuard) {
2364        if (!InGuard.empty())
2365          OS << "#endif\n";
2366        InGuard = (*I)->getGuard();
2367        if (!InGuard.empty())
2368          OS << "#if " << InGuard << "\n";
2369      }
2370
2371      // Actually generate the intrinsic code.
2372      OS << (*I)->generate();
2373
2374      MadeProgress = true;
2375      I = Defs.erase(I);
2376    }
2377  }
2378  assert(Defs.empty() && "Some requirements were not satisfied!");
2379  if (!InGuard.empty())
2380    OS << "#endif\n";
2381
2382  OS << "\n";
2383  OS << "#undef __ai\n\n";
2384  OS << "#endif /* __ARM_NEON_H */\n";
2385}
2386
2387namespace clang {
2388void EmitNeon(RecordKeeper &Records, raw_ostream &OS) {
2389  NeonEmitter(Records).run(OS);
2390}
2391void EmitNeonSema(RecordKeeper &Records, raw_ostream &OS) {
2392  NeonEmitter(Records).runHeader(OS);
2393}
2394void EmitNeonTest(RecordKeeper &Records, raw_ostream &OS) {
2395  llvm_unreachable("Neon test generation no longer implemented!");
2396}
2397} // End namespace clang
2398