annotations.html revision 5303644db49c7f20d269c6d0da314cab1c887b3c
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2          "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>Source Annotations</title>
6  <link type="text/css" rel="stylesheet" href="menu.css" />
7  <link type="text/css" rel="stylesheet" href="content.css" />
8</head>
9<body>
10
11<!--#include virtual="menu.html.incl"-->
12
13<div id="content">
14
15<h1>Source Annotations</h1>
16
17<p>The Clang frontend supports several source-level annotations in the form of
18<a href="http://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html">GCC-style
19attributes</a> and pragmas that can help make using the Clang Static Analyzer
20more useful. These annotations can both help suppress false positives as well as
21enhance the analyzer's ability to find bugs.</p>
22
23<p>This page gives a practical overview of such annotations. For more technical
24specifics regarding Clang-specific annotations please see the Clang's list of <a
25href="http://clang.llvm.org/docs/LanguageExtensions.html">language
26extensions</a>. Details of &quot;standard&quot; GCC attributes (that Clang also
27supports) can be found in the <a href="http://gcc.gnu.org/onlinedocs/gcc/">GCC
28manual</a>, with the majority of the relevant attributes being in the section on
29<a href="http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html">function
30attributes</a>.</p>
31
32<p>Note that attributes that are labeled <b>Clang-specific</b> are not
33recognized by GCC. Their use can be conditioned using preprocessor macros
34(examples included on this page).</p>
35
36<ul>
37<li><a href="#generic">Annotations to Enhance Generic Checks</a></li>
38  <ul>
39    <li><a href="#null_checking">Null Pointer Checking</a></li>
40    <ul>
41      <li><a href="#attr_nonnull">Attribute 'nonnull'</a></li>
42    </ul>
43  </ul>
44<li><a href="#macosx">Mac OS X API Annotations</a></li>
45  <ul>
46    <li><a href="#cocoa_mem">Cocoa &amp; Core Foundation Memory Management
47      Annotations</a></li>
48    <ul>
49    <li><a href="#attr_ns_returns_retained">Attribute
50    'ns_returns_retained'</a></li>
51    <li><a href="#attr_cf_returns_retained">Attribute
52    'cf_returns_retained'</a></li>
53  </ul>
54  </ul>
55<li><a href="#custom_assertions">Custom Assertion Handlers</a></li>
56  <ul>
57    <li><a href="#attr_noreturn">Attribute 'noreturn'</a></li>
58    <li><a href="#attr_analyzer_noreturn">Attribute 'analyzer_noreturn'</a></li>
59  </ul>
60</ul>
61
62<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
63<h2 id="generic">Annotations to Enhance Generic Checks</h2>
64<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
65
66<h3 id="null_checking">Null Pointer Checking</h3>
67
68<h4 id="attr_nonnull">Attribute 'nonnull'</h4>
69
70<p>The analyzer recognizes the GCC attribute 'nonnull', which indicates that a
71function expects that a given function parameter is not a null pointer. Specific
72details of the syntax of using the 'nonnull' attribute can be found in <a
73href="http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html#index-g_t_0040code_007bnonnull_007d-function-attribute-2263">GCC's
74documentation</a>.</p>
75
76<p>Both the Clang compiler and GCC will flag warnings for simple cases where a
77null pointer is directly being passed to a function with a 'nonnull' parameter
78(e.g., as a constant). The analyzer extends this checking by using its deeper
79symbolic analysis to track what pointer values are potentially null and then
80flag warnings when they are passed in a function call via a 'nonnull'
81parameter.</p>
82
83<p><b>Example</b></p>
84
85<pre class="code_example">
86<span class="command">$ cat test.m</span>
87int bar(int*p, int q, int *r) __attribute__((nonnull(1,3)));
88
89int foo(int *p, int *q) {
90   return !p ? bar(q, 2, p) 
91             : bar(p, 2, q);
92}
93</pre>
94
95<p>Running <tt>scan-build</tt> over this source produces the following
96output:</p>
97
98<img src="images/xample_attribute_nonnull.png">
99
100<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
101<h2 id="macosx">Mac OS X API Annotations</h2>
102<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
103
104<h3 id="cocoa_mem">Cocoa &amp; Core Foundation Memory Management
105Annotations</h3>
106
107<!--
108<p>As described in <a href="/available_checks.html#retain_release">Available
109Checks</a>,
110-->
111<p>The analyzer supports the proper management of retain counts for
112both Cocoa and Core Foundation objects. This checking is largely based on
113enforcing Cocoa and Core Foundation naming conventions for Objective-C methods
114(Cocoa) and C functions (Core Foundation). Not strictly following these
115conventions can cause the analyzer to miss bugs or flag false positives.</p>
116
117<p>One can educate the analyzer (and others who read your code) about methods or
118functions that deviate from the Cocoa and Core Foundation conventions using the
119attributes described here.</p>
120
121<h4 id="attr_ns_returns_retained">Attribute 'ns_returns_retained'
122(Clang-specific)</h4>
123
124<p>The GCC-style (Clang-specific) attribute 'ns_returns_retained' allows one to
125annotate an Objective-C method or C function as returning a retained Cocoa
126object that the caller is responsible for releasing (via sending a
127<tt>release</tt> message to the object).</p>
128
129<p><b>Placing on Objective-C methods</b>: For Objective-C methods, this
130annotation essentially tells the analyzer to treat the method as if its name
131begins with &quot;alloc&quot; or &quot;new&quot; or contais the word
132&quot;copy&quot;.</p>
133
134<p><b>Placing on C functions</b>: For C functions returning Cocoa objects, the
135analyzer typically does not make any assumptions about whether or not the object
136is returned retained. Explicitly adding the 'ns_returns_retained' attribute to C
137functions allows the analyzer to perform extra checking.</p>
138
139<p><b>Important note when using Garbage Collection</b>: Note that the analyzer
140interprets this attribute slightly differently when using Objective-C garbage
141collection (available on Mac OS 10.5+). When analyzing Cocoa code that uses
142garbage collection, &quot;alloc&quot; methods are assumed to return an object
143that is managed by the garbage collector (and thus doesn't have a retain count
144the caller must balance). These same assumptions are applied to methods or
145functions annotated with 'ns_returns_retained'. If you are returning a Core
146Foundation object (which may not be managed by the garbage collector) you should
147use 'cf_returns_retained'.</p>
148
149<p><b>Example</b></p>
150
151<pre class="code_example">
152<span class="command">$ cat test.m</span>
153#import &lt;Foundation/Foundation.h&gt;
154
155#ifndef NS_RETURNS_RETAINED
156#if __clang__
157<span class="code_highlight">#define NS_RETURNS_RETAINED __attribute__((ns_returns_retained))</span>
158#else
159#define NS_RETURNS_RETAINED
160#endif
161#endif
162
163@interface MyClass : NSObject {}
164- (NSString*) returnsRetained <span class="code_highlight">NS_RETURNS_RETAINED</span>;
165- (NSString*) alsoReturnsRetained;
166@end
167
168@implementation MyClass
169- (NSString*) returnsRetained {
170  return [[NSString alloc] initWithCString:"no leak here"];
171}
172- (NSString*) alsoReturnsRetained {
173  return [[NSString alloc] initWithCString:"flag a leak"];
174}
175@end
176</pre>
177
178<p>Running <tt>scan-build</tt> on this source file produces the following output:</p>
179
180<img src="images/example_ns_returns_retained.png">
181
182<h4 id="attr_cf_returns_retained">Attribute 'cf_returns_retained'
183(Clang-specific)</h4>
184
185<p>The GCC-style (Clang-specific) attribute 'cf_returns_retained' allows one to
186annotate an Objective-C method or C function as returning a retained Core
187Foundation object that the caller is responsible for releasing. 
188
189<p><b>Placing on Objective-C methods</b>: With respect to Objective-C methods.,
190this attribute is identical in its behavior and usage to 'ns_returns_retained'
191except for the distinction of returning a Core Foundation object instead of a
192Cocoa object. This distinction is important for two reasons:</p>
193
194<ul>
195  <li>Core Foundation objects are not automatically managed by the Objective-C
196  garbage collector.</li>
197  <li>Because Core Foundation is a C API, the analyzer cannot always tell that a
198  pointer return value refers to a Core Foundation object. In contrast, it is
199  trivial for the analyzer to recognize if a pointer refers to a Cocoa object
200  (given the Objective-C type system).</p>
201</ul>
202
203<p><b>Placing on C functions</b>: When placing the attribute
204'cf_returns_retained' on the declarations of C functions, the analyzer
205interprets the function as:</p>
206
207<ol>
208  <li>Returning a Core Foundation Object</li>
209  <li>Treating the function as if it its name
210contained the keywords &quot;create&quot; or &quot;copy&quot;. This means the
211returned object as a +1 retain count that must be released by the caller, either
212by sending a <tt>release</tt> message (via toll-free bridging to an Objective-C
213object pointer), calling <tt>CFRelease</tt> (or similar function), or using
214<tt>CFMakeCollectable</tt> to register the object with the Objective-C garbage
215collector.</li>
216</ol>
217
218<p><b>Example</b></p>
219
220<p>In this example, observe the difference in output when the code is compiled
221to not use garbage collection versus when it is compiled to only use garbage
222collection (<tt>-fobjc-gc-only</tt>).</p>
223
224<pre class="code_example">
225<span class="command">$ cat test.m</span>
226$ cat test.m
227#import &lt;Cocoa/Cocoa.h&gt;
228
229#ifndef CF_RETURNS_RETAINED
230#if __clang__
231<span class="code_highlight">#define CF_RETURNS_RETAINED __attribute__((cf_returns_retained))</span>
232#else
233#define CF_RETURNS_RETAINED
234#endif
235#endif
236
237@interface MyClass : NSObject {}
238- (NSDate*) returnsCFRetained <span class="code_highlight">CF_RETURNS_RETAINED</span>;
239- (NSDate*) alsoReturnsRetained;
240- (NSDate*) returnsNSRetained <span class="code_highlight">NS_RETURNS_RETAINED</span>;
241@end
242
243<span class="code_highlight">CF_RETURNS_RETAINED</span>
244CFDateRef returnsRetainedCFDate()  {
245  return CFDateCreate(0, CFAbsoluteTimeGetCurrent());
246}
247
248@implementation MyClass
249- (NSDate*) returnsCFRetained {
250  return (NSDate*) returnsRetainedCFDate(); // No leak.
251}
252
253- (NSDate*) alsoReturnsRetained {
254  return (NSDate*) returnsRetainedCFDate(); // Always report a leak.
255}
256
257- (NSDate*) returnsNSRetained {
258  return (NSDate*) returnsRetainedCFDate(); // Report a leak when using GC.  
259}
260@end
261</pre>
262
263<p>Running <tt>scan-build</tt> on this example produces the following output:</p>
264
265<img src="images/example_cf_returns_retained.png">
266
267</p>When the above code is compiled using Objective-C garbage collection (i.e.,
268code is compiled with the flag <tt>-fobjc-gc</tt> or <tt>-fobjc-gc-only</tt>),
269<tt>scan-build</tt> produces both the above error (with slightly different text
270to indicate the code uses garbage collection) as well as the following warning,
271which indicates a leak that occurs <em>only</em> when using garbage
272collection:</p>
273
274<img src="images/example_cf_returns_retained_gc.png">
275
276<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
277<h2 id="custom_assertions">Custom Assertion Handlers</h2>
278<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
279
280<p>The analyzer exploits code assertions by pruning off paths where the
281assertion condition is false. The idea is capture any program invariants
282specified in the assertion that the developer may know but is not immediately
283apparent in the code itself. In this way assertions make implicit assumptions
284explicit in the code, which not only makes the analyzer more accurate when
285finding bugs, but can help others better able to understand your code as well.
286It can also help remove certain kinds of analyzer false positives by pruning off
287false paths.</p>
288
289<p>In order to exploit assertions, however, the analyzer must understand when it
290encounters an &quot;assertion handler.&quot; Typically assertions are
291implemented with a macro, with the macro performing a check for the assertion
292condition and, when the check fails, calling an assertion handler.  For example, consider the following code
293fragment:</p>
294
295<pre class="code_example">
296void foo(int *p) {
297  assert(p != NULL);
298}
299</pre>
300
301<p>When this code is preprocessed on Mac OS X it expands to the following:</p>
302
303<pre class="code_example">
304void foo(int *p) {
305  (__builtin_expect(!(p != NULL), 0) ? __assert_rtn(__func__, "t.c", 4, "p != NULL") : (void)0);
306}
307</pre>
308
309<p>In this example, the assertion handler is <tt>__assert_rtn</tt>. When called,
310most assertion handlers typically print an error and terminate the program. The
311analyzer can exploit such semantics by ending the analysis of a path once it
312hits a call to an assertion handler.</p>
313
314<p>The trick, however, is that the analyzer needs to know that a called function
315is an assertion handler; otherwise the analyzer might assume the function call
316returns and it will continue analyzing the path where the assertion condition
317failed. This can lead to false positives, as the assertion condition usually
318implies a safety condition (e.g., a pointer is not null) prior to performing
319some action that depends on that condition (e.g., dereferencing a pointer).</p>
320
321<p>The analyzer knows about several well-known assertion handlers, but can
322automatically infer if a function should be treated as an assertion handler if
323it is annotated with the 'noreturn' attribute or the (Clang-specific)
324'analyzer_noreturn' attribute.</p>
325
326<h4 id="attr_noreturn">Attribute 'noreturn'</h4>
327
328<p>The 'noreturn' attribute is a GCC-attribute that can be placed on the
329declarations of functions. It means exactly what its name implies: a function
330with a 'noreturn' attribute should never return.</p>
331
332<p>Specific details of the syntax of using the 'noreturn' attribute can be found
333in <a
334href="http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html#index-g_t_0040code_007bnoreturn_007d-function-attribute-2264">GCC's
335documentation</a>.</p>
336
337<p>Not only does the analyzer exploit this information when pruning false paths,
338but the compiler also takes it seriously and will generate different code (and
339possibly better optimized) under the assumption that the function does not
340return.</p>
341
342<p><b>Example</b></p>
343
344<p>On Mac OS X, the function prototype for <tt>__assert_rtn</tt> (declared in
345<tt>assert.h</tt>) is specifically annotated with the 'noreturn' attribute:</p>
346
347<pre class="code_example">
348void __assert_rtn(const char *, const char *, int, const char *) <span class="code_highlight">__attribute__((__noreturn__))</span>;
349</pre>
350
351<h4 id="attr_analyzer_noreturn">Attribute 'analyzer_noreturn' (Clang-specific)</h4>
352
353<p>The Clang-specific 'analyzer_noreturn' attribute is almost identical to
354'noreturn' except that it is ignored by the compiler for the purposes of code
355generation.</p>
356
357<p>This attribute is useful for annotating assertion handlers that actually
358<em>can</em> return, but for the purpose of using the analyzer we want to
359pretend that such functions do not return.</p>
360
361<p>Because this attribute is Clang-specific, its use should be conditioned with
362the use of preprocessor macros.</p>
363
364<p><b>Example</b>
365
366<pre class="code_example">
367#ifndef CLANG_ANALYZER_NORETURN
368#if __clang__
369<span class="code_highlight">#define CLANG_ANALYZER_NORETURN __attribute__((analyzer_noreturn))</span>
370#else
371#define CLANG_ANALYZER_NORETURN
372#endif
373
374void my_assert_rtn(const char *, const char *, int, const char *) <span class="code_highlight">CLANG_ANALYZER_NORETURN</span>;
375</pre>
376
377</div>
378</body>
379</html>
380
381