asan_allocator2.cc revision 709a33e1cf20eb7f00653fe32dc07714b3f2c633
1//===-- asan_allocator2.cc ------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12// Implementation of ASan's memory allocator, 2-nd version.
13// This variant uses the allocator from sanitizer_common, i.e. the one shared
14// with ThreadSanitizer and MemorySanitizer.
15//
16// Status: under development, not enabled by default yet.
17//===----------------------------------------------------------------------===//
18#include "asan_allocator.h"
19#if ASAN_ALLOCATOR_VERSION == 2
20
21#include "asan_mapping.h"
22#include "asan_report.h"
23#include "asan_thread.h"
24#include "asan_thread_registry.h"
25#include "sanitizer/asan_interface.h"
26#include "sanitizer_common/sanitizer_allocator.h"
27#include "sanitizer_common/sanitizer_internal_defs.h"
28#include "sanitizer_common/sanitizer_list.h"
29#include "sanitizer_common/sanitizer_stackdepot.h"
30
31namespace __asan {
32
33struct AsanMapUnmapCallback {
34  void OnMap(uptr p, uptr size) const {
35    PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
36    // Statistics.
37    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
38    thread_stats.mmaps++;
39    thread_stats.mmaped += size;
40    // thread_stats.mmaped_by_size[size_class] += n_chunks;
41  }
42  void OnUnmap(uptr p, uptr size) const {
43    PoisonShadow(p, size, 0);
44    // Statistics.
45    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
46    thread_stats.munmaps++;
47    thread_stats.munmaped += size;
48  }
49};
50
51#if SANITIZER_WORDSIZE == 64
52const uptr kAllocatorSpace = 0x600000000000ULL;
53const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T.
54typedef DefaultSizeClassMap SizeClassMap;
55typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
56    SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
57#elif SANITIZER_WORDSIZE == 32
58static const u64 kAddressSpaceSize = 1ULL << 32;
59typedef CompactSizeClassMap SizeClassMap;
60typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
61  SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
62#endif
63
64typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
65typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
66typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
67    SecondaryAllocator> Allocator;
68
69// We can not use THREADLOCAL because it is not supported on some of the
70// platforms we care about (OSX 10.6, Android).
71// static THREADLOCAL AllocatorCache cache;
72AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
73  CHECK(ms);
74  CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
75  return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
76}
77
78static Allocator allocator;
79
80static const uptr kMaxAllowedMallocSize =
81  FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
82
83static const uptr kMaxThreadLocalQuarantine =
84  FIRST_32_SECOND_64(1 << 18, 1 << 20);
85
86static const uptr kReturnOnZeroMalloc = 2048;  // Zero page is protected.
87
88static int inited = 0;
89
90static void Init() {
91  if (inited) return;
92  __asan_init();
93  inited = true;  // this must happen before any threads are created.
94  allocator.Init();
95}
96
97// Every chunk of memory allocated by this allocator can be in one of 3 states:
98// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
99// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
100// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
101enum {
102  CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
103  CHUNK_ALLOCATED  = 2,
104  CHUNK_QUARANTINE = 3
105};
106
107// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
108// We use adaptive redzones: for larger allocation larger redzones are used.
109static u32 RZLog2Size(u32 rz_log) {
110  CHECK_LT(rz_log, 8);
111  return 16 << rz_log;
112}
113
114static u32 RZSize2Log(u32 rz_size) {
115  CHECK_GE(rz_size, 16);
116  CHECK_LE(rz_size, 2048);
117  CHECK(IsPowerOfTwo(rz_size));
118  u32 res = __builtin_ctz(rz_size) - 4;
119  CHECK_EQ(rz_size, RZLog2Size(res));
120  return res;
121}
122
123static uptr ComputeRZLog(uptr user_requested_size) {
124  u32 rz_log =
125    user_requested_size <= 64        - 16   ? 0 :
126    user_requested_size <= 128       - 32   ? 1 :
127    user_requested_size <= 512       - 64   ? 2 :
128    user_requested_size <= 4096      - 128  ? 3 :
129    user_requested_size <= (1 << 14) - 256  ? 4 :
130    user_requested_size <= (1 << 15) - 512  ? 5 :
131    user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
132  return Max(rz_log, RZSize2Log(flags()->redzone));
133}
134
135// The memory chunk allocated from the underlying allocator looks like this:
136// L L L L L L H H U U U U U U R R
137//   L -- left redzone words (0 or more bytes)
138//   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
139//   U -- user memory.
140//   R -- right redzone (0 or more bytes)
141// ChunkBase consists of ChunkHeader and other bytes that overlap with user
142// memory.
143
144// If a memory chunk is allocated by memalign and we had to increase the
145// allocation size to achieve the proper alignment, then we store this magic
146// value in the first uptr word of the memory block and store the address of
147// ChunkBase in the next uptr.
148// M B ? ? ? L L L L L L  H H U U U U U U
149//   M -- magic value kMemalignMagic
150//   B -- address of ChunkHeader pointing to the first 'H'
151static const uptr kMemalignMagic = 0xCC6E96B9;
152
153struct ChunkHeader {
154  // 1-st 8 bytes.
155  u32 chunk_state       : 8;  // Must be first.
156  u32 alloc_tid         : 24;
157
158  u32 free_tid          : 24;
159  u32 from_memalign     : 1;
160  u32 alloc_type        : 2;
161  u32 rz_log            : 3;
162  // 2-nd 8 bytes
163  // This field is used for small sizes. For large sizes it is equal to
164  // SizeClassMap::kMaxSize and the actual size is stored in the
165  // SecondaryAllocator's metadata.
166  u32 user_requested_size;
167  u32 alloc_context_id;
168};
169
170struct ChunkBase : ChunkHeader {
171  // Header2, intersects with user memory.
172  AsanChunk *next;
173  u32 free_context_id;
174};
175
176static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
177static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
178COMPILER_CHECK(kChunkHeaderSize == 16);
179COMPILER_CHECK(kChunkHeader2Size <= 16);
180
181struct AsanChunk: ChunkBase {
182  uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
183  uptr UsedSize() {
184    if (user_requested_size != SizeClassMap::kMaxSize)
185      return user_requested_size;
186    return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg()));
187  }
188  void *AllocBeg() {
189    if (from_memalign)
190      return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
191    return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
192  }
193  // We store the alloc/free stack traces in the chunk itself.
194  u32 *AllocStackBeg() {
195    return (u32*)(Beg() - RZLog2Size(rz_log));
196  }
197  uptr AllocStackSize() {
198    CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
199    return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
200  }
201  u32 *FreeStackBeg() {
202    return (u32*)(Beg() + kChunkHeader2Size);
203  }
204  uptr FreeStackSize() {
205    if (user_requested_size < kChunkHeader2Size) return 0;
206    uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
207    return (available - kChunkHeader2Size) / sizeof(u32);
208  }
209};
210
211uptr AsanChunkView::Beg() { return chunk_->Beg(); }
212uptr AsanChunkView::End() { return Beg() + UsedSize(); }
213uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
214uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
215uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
216
217static void GetStackTraceFromId(u32 id, StackTrace *stack) {
218  CHECK(id);
219  uptr size = 0;
220  const uptr *trace = StackDepotGet(id, &size);
221  CHECK_LT(size, kStackTraceMax);
222  internal_memcpy(stack->trace, trace, sizeof(uptr) * size);
223  stack->size = size;
224}
225
226void AsanChunkView::GetAllocStack(StackTrace *stack) {
227  if (flags()->use_stack_depot)
228    GetStackTraceFromId(chunk_->alloc_context_id, stack);
229  else
230    StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
231                                chunk_->AllocStackSize());
232}
233
234void AsanChunkView::GetFreeStack(StackTrace *stack) {
235  if (flags()->use_stack_depot)
236    GetStackTraceFromId(chunk_->free_context_id, stack);
237  else
238    StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
239                                chunk_->FreeStackSize());
240}
241
242class Quarantine: public AsanChunkFifoList {
243 public:
244  void SwallowThreadLocalQuarantine(AsanThreadLocalMallocStorage *ms) {
245    AsanChunkFifoList *q = &ms->quarantine_;
246    if (!q->size()) return;
247    SpinMutexLock l(&mutex_);
248    PushList(q);
249    PopAndDeallocateLoop(ms);
250  }
251
252  void BypassThreadLocalQuarantine(AsanChunk *m) {
253    SpinMutexLock l(&mutex_);
254    Push(m);
255  }
256
257 private:
258  void PopAndDeallocateLoop(AsanThreadLocalMallocStorage *ms) {
259    while (size() > (uptr)flags()->quarantine_size) {
260      PopAndDeallocate(ms);
261    }
262  }
263  void PopAndDeallocate(AsanThreadLocalMallocStorage *ms) {
264    CHECK_GT(size(), 0);
265    AsanChunk *m = Pop();
266    CHECK(m);
267    CHECK(m->chunk_state == CHUNK_QUARANTINE);
268    m->chunk_state = CHUNK_AVAILABLE;
269    CHECK_NE(m->alloc_tid, kInvalidTid);
270    CHECK_NE(m->free_tid, kInvalidTid);
271    PoisonShadow(m->Beg(),
272                 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
273                 kAsanHeapLeftRedzoneMagic);
274    void *p = reinterpret_cast<void *>(m->AllocBeg());
275    if (m->from_memalign) {
276      uptr *memalign_magic = reinterpret_cast<uptr *>(p);
277      CHECK_EQ(memalign_magic[0], kMemalignMagic);
278      CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m));
279    }
280
281    // Statistics.
282    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
283    thread_stats.real_frees++;
284    thread_stats.really_freed += m->UsedSize();
285
286    allocator.Deallocate(GetAllocatorCache(ms), p);
287  }
288  SpinMutex mutex_;
289};
290
291static Quarantine quarantine;
292
293void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
294  CHECK(q->size() > 0);
295  size_ += q->size();
296  append_back(q);
297  q->clear();
298}
299
300void AsanChunkFifoList::Push(AsanChunk *n) {
301  push_back(n);
302  size_ += n->UsedSize();
303}
304
305// Interesting performance observation: this function takes up to 15% of overal
306// allocator time. That's because *first_ has been evicted from cache long time
307// ago. Not sure if we can or want to do anything with this.
308AsanChunk *AsanChunkFifoList::Pop() {
309  CHECK(first_);
310  AsanChunk *res = front();
311  size_ -= res->UsedSize();
312  pop_front();
313  return res;
314}
315
316static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
317                      AllocType alloc_type) {
318  Init();
319  CHECK(stack);
320  const uptr min_alignment = SHADOW_GRANULARITY;
321  if (alignment < min_alignment)
322    alignment = min_alignment;
323  if (size == 0) {
324    if (alignment <= kReturnOnZeroMalloc)
325      return reinterpret_cast<void *>(kReturnOnZeroMalloc);
326    else
327      return 0;  // 0 bytes with large alignment requested. Just return 0.
328  }
329  CHECK(IsPowerOfTwo(alignment));
330  uptr rz_log = ComputeRZLog(size);
331  uptr rz_size = RZLog2Size(rz_log);
332  uptr rounded_size = RoundUpTo(size, alignment);
333  if (rounded_size < kChunkHeader2Size)
334    rounded_size = kChunkHeader2Size;
335  uptr needed_size = rounded_size + rz_size;
336  if (alignment > min_alignment)
337    needed_size += alignment;
338  bool using_primary_allocator = true;
339  // If we are allocating from the secondary allocator, there will be no
340  // automatic right redzone, so add the right redzone manually.
341  if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
342    needed_size += rz_size;
343    using_primary_allocator = false;
344  }
345  CHECK(IsAligned(needed_size, min_alignment));
346  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
347    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
348           (void*)size);
349    return 0;
350  }
351
352  AsanThread *t = asanThreadRegistry().GetCurrent();
353  AllocatorCache *cache = t ? GetAllocatorCache(&t->malloc_storage()) : 0;
354  void *allocated = allocator.Allocate(cache, needed_size, 8, false);
355  uptr alloc_beg = reinterpret_cast<uptr>(allocated);
356  uptr alloc_end = alloc_beg + needed_size;
357  uptr beg_plus_redzone = alloc_beg + rz_size;
358  uptr user_beg = beg_plus_redzone;
359  if (!IsAligned(user_beg, alignment))
360    user_beg = RoundUpTo(user_beg, alignment);
361  uptr user_end = user_beg + size;
362  CHECK_LE(user_end, alloc_end);
363  uptr chunk_beg = user_beg - kChunkHeaderSize;
364  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
365  m->chunk_state = CHUNK_ALLOCATED;
366  m->alloc_type = alloc_type;
367  m->rz_log = rz_log;
368  u32 alloc_tid = t ? t->tid() : 0;
369  m->alloc_tid = alloc_tid;
370  CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
371  m->free_tid = kInvalidTid;
372  m->from_memalign = user_beg != beg_plus_redzone;
373  if (m->from_memalign) {
374    CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg);
375    uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
376    memalign_magic[0] = kMemalignMagic;
377    memalign_magic[1] = chunk_beg;
378  }
379  if (using_primary_allocator) {
380    CHECK(size);
381    m->user_requested_size = size;
382    CHECK(allocator.FromPrimary(allocated));
383  } else {
384    CHECK(!allocator.FromPrimary(allocated));
385    m->user_requested_size = SizeClassMap::kMaxSize;
386    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
387    meta[0] = size;
388    meta[1] = chunk_beg;
389  }
390
391  if (flags()->use_stack_depot) {
392    m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
393  } else {
394    m->alloc_context_id = 0;
395    StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
396  }
397
398  uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
399  // Unpoison the bulk of the memory region.
400  if (size_rounded_down_to_granularity)
401    PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
402  // Deal with the end of the region if size is not aligned to granularity.
403  if (size != size_rounded_down_to_granularity && flags()->poison_heap) {
404    u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
405    *shadow = size & (SHADOW_GRANULARITY - 1);
406  }
407
408  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
409  thread_stats.mallocs++;
410  thread_stats.malloced += size;
411  thread_stats.malloced_redzones += needed_size - size;
412  uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
413  thread_stats.malloced_by_size[class_id]++;
414  if (needed_size > SizeClassMap::kMaxSize)
415    thread_stats.malloc_large++;
416
417  void *res = reinterpret_cast<void *>(user_beg);
418  ASAN_MALLOC_HOOK(res, size);
419  return res;
420}
421
422static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
423  uptr p = reinterpret_cast<uptr>(ptr);
424  if (p == 0 || p == kReturnOnZeroMalloc) return;
425  uptr chunk_beg = p - kChunkHeaderSize;
426  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
427
428  // Flip the chunk_state atomically to avoid race on double-free.
429  u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
430                                       memory_order_acq_rel);
431
432  if (old_chunk_state == CHUNK_QUARANTINE)
433    ReportDoubleFree((uptr)ptr, stack);
434  else if (old_chunk_state != CHUNK_ALLOCATED)
435    ReportFreeNotMalloced((uptr)ptr, stack);
436  CHECK(old_chunk_state == CHUNK_ALLOCATED);
437  if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
438    ReportAllocTypeMismatch((uptr)ptr, stack,
439                            (AllocType)m->alloc_type, (AllocType)alloc_type);
440
441  CHECK_GE(m->alloc_tid, 0);
442  if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
443    CHECK_EQ(m->free_tid, kInvalidTid);
444  AsanThread *t = asanThreadRegistry().GetCurrent();
445  m->free_tid = t ? t->tid() : 0;
446  if (flags()->use_stack_depot) {
447    m->free_context_id = StackDepotPut(stack->trace, stack->size);
448  } else {
449    m->free_context_id = 0;
450    StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
451  }
452  CHECK(m->chunk_state == CHUNK_QUARANTINE);
453  // Poison the region.
454  PoisonShadow(m->Beg(),
455               RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
456               kAsanHeapFreeMagic);
457
458  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
459  thread_stats.frees++;
460  thread_stats.freed += m->UsedSize();
461
462  // Push into quarantine.
463  if (t) {
464    AsanChunkFifoList &q = t->malloc_storage().quarantine_;
465    q.Push(m);
466
467    if (q.size() > kMaxThreadLocalQuarantine)
468      quarantine.SwallowThreadLocalQuarantine(&t->malloc_storage());
469  } else {
470    quarantine.BypassThreadLocalQuarantine(m);
471  }
472
473  ASAN_FREE_HOOK(ptr);
474}
475
476static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
477  CHECK(old_ptr && new_size);
478  uptr p = reinterpret_cast<uptr>(old_ptr);
479  uptr chunk_beg = p - kChunkHeaderSize;
480  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
481
482  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
483  thread_stats.reallocs++;
484  thread_stats.realloced += new_size;
485
486  CHECK(m->chunk_state == CHUNK_ALLOCATED);
487  uptr old_size = m->UsedSize();
488  uptr memcpy_size = Min(new_size, old_size);
489  void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
490  if (new_ptr) {
491    CHECK(REAL(memcpy) != 0);
492    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
493    Deallocate(old_ptr, stack, FROM_MALLOC);
494  }
495  return new_ptr;
496}
497
498static AsanChunk *GetAsanChunkByAddr(uptr p) {
499  void *ptr = reinterpret_cast<void *>(p);
500  uptr alloc_beg = reinterpret_cast<uptr>(allocator.GetBlockBegin(ptr));
501  if (!alloc_beg) return 0;
502  uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
503  if (memalign_magic[0] == kMemalignMagic) {
504    AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]);
505    CHECK(m->from_memalign);
506    return m;
507  }
508  if (!allocator.FromPrimary(ptr)) {
509    uptr *meta = reinterpret_cast<uptr *>(
510        allocator.GetMetaData(reinterpret_cast<void *>(alloc_beg)));
511    AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
512    return m;
513  }
514  uptr actual_size = allocator.GetActuallyAllocatedSize(ptr);
515  CHECK_LE(actual_size, SizeClassMap::kMaxSize);
516  // We know the actually allocted size, but we don't know the redzone size.
517  // Just try all possible redzone sizes.
518  for (u32 rz_log = 0; rz_log < 8; rz_log++) {
519    u32 rz_size = RZLog2Size(rz_log);
520    uptr max_possible_size = actual_size - rz_size;
521    if (ComputeRZLog(max_possible_size) != rz_log)
522      continue;
523    return reinterpret_cast<AsanChunk *>(
524        alloc_beg + rz_size - kChunkHeaderSize);
525  }
526  return 0;
527}
528
529static uptr AllocationSize(uptr p) {
530  AsanChunk *m = GetAsanChunkByAddr(p);
531  if (!m) return 0;
532  if (m->chunk_state != CHUNK_ALLOCATED) return 0;
533  if (m->Beg() != p) return 0;
534  return m->UsedSize();
535}
536
537// We have an address between two chunks, and we want to report just one.
538AsanChunk *ChooseChunk(uptr addr,
539                       AsanChunk *left_chunk, AsanChunk *right_chunk) {
540  // Prefer an allocated chunk over freed chunk and freed chunk
541  // over available chunk.
542  if (left_chunk->chunk_state != right_chunk->chunk_state) {
543    if (left_chunk->chunk_state == CHUNK_ALLOCATED)
544      return left_chunk;
545    if (right_chunk->chunk_state == CHUNK_ALLOCATED)
546      return right_chunk;
547    if (left_chunk->chunk_state == CHUNK_QUARANTINE)
548      return left_chunk;
549    if (right_chunk->chunk_state == CHUNK_QUARANTINE)
550      return right_chunk;
551  }
552  // Same chunk_state: choose based on offset.
553  uptr l_offset = 0, r_offset = 0;
554  CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
555  CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
556  if (l_offset < r_offset)
557    return left_chunk;
558  return right_chunk;
559}
560
561AsanChunkView FindHeapChunkByAddress(uptr addr) {
562  AsanChunk *m1 = GetAsanChunkByAddr(addr);
563  if (!m1) return AsanChunkView(m1);
564  uptr offset = 0;
565  if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
566    // The address is in the chunk's left redzone, so maybe it is actually
567    // a right buffer overflow from the other chunk to the left.
568    // Search a bit to the left to see if there is another chunk.
569    AsanChunk *m2 = 0;
570    for (uptr l = 1; l < GetPageSizeCached(); l++) {
571      m2 = GetAsanChunkByAddr(addr - l);
572      if (m2 == m1) continue;  // Still the same chunk.
573      break;
574    }
575    if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
576      m1 = ChooseChunk(addr, m2, m1);
577  }
578  return AsanChunkView(m1);
579}
580
581void AsanThreadLocalMallocStorage::CommitBack() {
582  quarantine.SwallowThreadLocalQuarantine(this);
583  allocator.SwallowCache(GetAllocatorCache(this));
584}
585
586SANITIZER_INTERFACE_ATTRIBUTE
587void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
588                    AllocType alloc_type) {
589  return Allocate(size, alignment, stack, alloc_type);
590}
591
592SANITIZER_INTERFACE_ATTRIBUTE
593void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
594  Deallocate(ptr, stack, alloc_type);
595}
596
597SANITIZER_INTERFACE_ATTRIBUTE
598void *asan_malloc(uptr size, StackTrace *stack) {
599  return Allocate(size, 8, stack, FROM_MALLOC);
600}
601
602void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
603  void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
604  if (ptr)
605    REAL(memset)(ptr, 0, nmemb * size);
606  return ptr;
607}
608
609void *asan_realloc(void *p, uptr size, StackTrace *stack) {
610  if (p == 0)
611    return Allocate(size, 8, stack, FROM_MALLOC);
612  if (size == 0) {
613    Deallocate(p, stack, FROM_MALLOC);
614    return 0;
615  }
616  return Reallocate(p, size, stack);
617}
618
619void *asan_valloc(uptr size, StackTrace *stack) {
620  return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC);
621}
622
623void *asan_pvalloc(uptr size, StackTrace *stack) {
624  uptr PageSize = GetPageSizeCached();
625  size = RoundUpTo(size, PageSize);
626  if (size == 0) {
627    // pvalloc(0) should allocate one page.
628    size = PageSize;
629  }
630  return Allocate(size, PageSize, stack, FROM_MALLOC);
631}
632
633int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
634                        StackTrace *stack) {
635  void *ptr = Allocate(size, alignment, stack, FROM_MALLOC);
636  CHECK(IsAligned((uptr)ptr, alignment));
637  *memptr = ptr;
638  return 0;
639}
640
641uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
642  CHECK(stack);
643  if (ptr == 0) return 0;
644  uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
645  if (flags()->check_malloc_usable_size && (usable_size == 0))
646    ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
647  return usable_size;
648}
649
650uptr asan_mz_size(const void *ptr) {
651  UNIMPLEMENTED();
652  return 0;
653}
654
655void asan_mz_force_lock() {
656  UNIMPLEMENTED();
657}
658
659void asan_mz_force_unlock() {
660  UNIMPLEMENTED();
661}
662
663}  // namespace __asan
664
665// ---------------------- Interface ---------------- {{{1
666using namespace __asan;  // NOLINT
667
668// ASan allocator doesn't reserve extra bytes, so normally we would
669// just return "size". We don't want to expose our redzone sizes, etc here.
670uptr __asan_get_estimated_allocated_size(uptr size) {
671  return size;
672}
673
674bool __asan_get_ownership(const void *p) {
675  return AllocationSize(reinterpret_cast<uptr>(p)) > 0;
676}
677
678uptr __asan_get_allocated_size(const void *p) {
679  if (p == 0) return 0;
680  uptr allocated_size = AllocationSize(reinterpret_cast<uptr>(p));
681  // Die if p is not malloced or if it is already freed.
682  if (allocated_size == 0) {
683    GET_STACK_TRACE_FATAL_HERE;
684    ReportAsanGetAllocatedSizeNotOwned(reinterpret_cast<uptr>(p), &stack);
685  }
686  return allocated_size;
687}
688
689#if !SANITIZER_SUPPORTS_WEAK_HOOKS
690// Provide default (no-op) implementation of malloc hooks.
691extern "C" {
692SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
693void __asan_malloc_hook(void *ptr, uptr size) {
694  (void)ptr;
695  (void)size;
696}
697SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
698void __asan_free_hook(void *ptr) {
699  (void)ptr;
700}
701}  // extern "C"
702#endif
703
704
705#endif  // ASAN_ALLOCATOR_VERSION
706