asan_allocator2.cc revision 73bad81febb2a872627c03e579beea1da4b49294
1//===-- asan_allocator2.cc ------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12// Implementation of ASan's memory allocator, 2-nd version.
13// This variant uses the allocator from sanitizer_common, i.e. the one shared
14// with ThreadSanitizer and MemorySanitizer.
15//
16// Status: under development, not enabled by default yet.
17//===----------------------------------------------------------------------===//
18#include "asan_allocator.h"
19#if ASAN_ALLOCATOR_VERSION == 2
20
21#include "asan_mapping.h"
22#include "asan_report.h"
23#include "asan_thread.h"
24#include "asan_thread_registry.h"
25#include "sanitizer/asan_interface.h"
26#include "sanitizer_common/sanitizer_allocator.h"
27#include "sanitizer_common/sanitizer_internal_defs.h"
28#include "sanitizer_common/sanitizer_list.h"
29
30namespace __asan {
31
32struct AsanMapUnmapCallback {
33  void OnMap(uptr p, uptr size) const {
34    PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
35    // Statistics.
36    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
37    thread_stats.mmaps++;
38    thread_stats.mmaped += size;
39    // thread_stats.mmaped_by_size[size_class] += n_chunks;
40  }
41  void OnUnmap(uptr p, uptr size) const {
42    PoisonShadow(p, size, 0);
43    // Statistics.
44    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
45    thread_stats.munmaps++;
46    thread_stats.munmaped += size;
47  }
48};
49
50#if SANITIZER_WORDSIZE == 64
51const uptr kAllocatorSpace = 0x600000000000ULL;
52const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T.
53typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
54    DefaultSizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
55#elif SANITIZER_WORDSIZE == 32
56static const u64 kAddressSpaceSize = 1ULL << 32;
57typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
58  CompactSizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
59#endif
60
61typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
62typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
63typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
64    SecondaryAllocator> Allocator;
65
66// We can not use THREADLOCAL because it is not supported on some of the
67// platforms we care about (OSX 10.6, Android).
68// static THREADLOCAL AllocatorCache cache;
69AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
70  CHECK(ms);
71  CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
72  return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
73}
74
75static Allocator allocator;
76
77static const uptr kMaxAllowedMallocSize =
78  FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
79
80static const uptr kMaxThreadLocalQuarantine =
81  FIRST_32_SECOND_64(1 << 18, 1 << 20);
82
83static const uptr kReturnOnZeroMalloc = 0x0123;  // Zero page is protected.
84
85static int inited = 0;
86
87static void Init() {
88  if (inited) return;
89  __asan_init();
90  inited = true;  // this must happen before any threads are created.
91  allocator.Init();
92}
93
94// Every chunk of memory allocated by this allocator can be in one of 3 states:
95// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
96// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
97// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
98enum {
99  CHUNK_AVAILABLE  = 1,
100  CHUNK_ALLOCATED  = 2,
101  CHUNK_QUARANTINE = 3
102};
103
104// The memory chunk allocated from the underlying allocator looks like this:
105// L L L L L L H H U U U U U U R R
106//   L -- left redzone words (0 or more bytes)
107//   H -- ChunkHeader (16 bytes on 64-bit arch, 8 bytes on 32-bit arch).
108//     ChunkHeader is also a part of the left redzone.
109//   U -- user memory.
110//   R -- right redzone (0 or more bytes)
111// ChunkBase consists of ChunkHeader and other bytes that overlap with user
112// memory.
113
114#if SANITIZER_WORDSIZE == 64
115struct ChunkBase {
116  // 1-st 8 bytes.
117  uptr chunk_state       : 8;  // Must be first.
118  uptr alloc_tid         : 24;
119  uptr free_tid          : 24;
120  uptr from_memalign     : 1;
121  // 2-nd 8 bytes
122  uptr user_requested_size;
123  // Header2 (intersects with user memory).
124  // 3-rd 8 bytes. These overlap with the user memory.
125  AsanChunk *next;
126};
127
128static const uptr kChunkHeaderSize = 16;
129static const uptr kChunkHeader2Size = 8;
130
131#elif SANITIZER_WORDSIZE == 32
132struct ChunkBase {
133  // 1-st 8 bytes.
134  uptr chunk_state       : 8;  // Must be first.
135  uptr alloc_tid         : 24;
136  uptr from_memalign     : 1;
137  uptr free_tid          : 24;
138  // 2-nd 8 bytes
139  uptr user_requested_size;
140  AsanChunk *next;
141  // Header2 empty.
142};
143
144static const uptr kChunkHeaderSize = 16;
145static const uptr kChunkHeader2Size = 0;
146#endif
147COMPILER_CHECK(sizeof(ChunkBase) == kChunkHeaderSize + kChunkHeader2Size);
148
149static uptr ComputeRZSize(uptr user_requested_size) {
150  // FIXME: implement adaptive redzones.
151  return flags()->redzone;
152}
153
154struct AsanChunk: ChunkBase {
155  uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
156  uptr UsedSize() { return user_requested_size; }
157  // We store the alloc/free stack traces in the chunk itself.
158  u32 *AllocStackBeg() {
159    return (u32*)(Beg() - ComputeRZSize(UsedSize()));
160  }
161  uptr AllocStackSize() {
162    return (ComputeRZSize(UsedSize()) - kChunkHeaderSize) / sizeof(u32);
163  }
164  u32 *FreeStackBeg() {
165    return (u32*)(Beg() + kChunkHeader2Size);
166  }
167  uptr FreeStackSize() {
168    uptr available = Max(RoundUpTo(UsedSize(), SHADOW_GRANULARITY),
169                         ComputeRZSize(UsedSize()));
170    return (available - kChunkHeader2Size) / sizeof(u32);
171  }
172};
173
174uptr AsanChunkView::Beg() { return chunk_->Beg(); }
175uptr AsanChunkView::End() { return Beg() + UsedSize(); }
176uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
177uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
178uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
179
180void AsanChunkView::GetAllocStack(StackTrace *stack) {
181  StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
182                              chunk_->AllocStackSize());
183}
184
185void AsanChunkView::GetFreeStack(StackTrace *stack) {
186  StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
187                              chunk_->FreeStackSize());
188}
189
190class Quarantine: public AsanChunkFifoList {
191 public:
192  void SwallowThreadLocalQuarantine(AsanThreadLocalMallocStorage *ms) {
193    AsanChunkFifoList *q = &ms->quarantine_;
194    if (!q->size()) return;
195    SpinMutexLock l(&mutex_);
196    PushList(q);
197    PopAndDeallocateLoop(ms);
198  }
199
200  void BypassThreadLocalQuarantine(AsanChunk *m) {
201    SpinMutexLock l(&mutex_);
202    Push(m);
203  }
204
205 private:
206  void PopAndDeallocateLoop(AsanThreadLocalMallocStorage *ms) {
207    while (size() > (uptr)flags()->quarantine_size) {
208      PopAndDeallocate(ms);
209    }
210  }
211  void PopAndDeallocate(AsanThreadLocalMallocStorage *ms) {
212    CHECK_GT(size(), 0);
213    AsanChunk *m = Pop();
214    CHECK(m);
215    CHECK(m->chunk_state == CHUNK_QUARANTINE);
216    m->chunk_state = CHUNK_AVAILABLE;
217    CHECK_NE(m->alloc_tid, kInvalidTid);
218    CHECK_NE(m->free_tid, kInvalidTid);
219    PoisonShadow(m->Beg(),
220                 RoundUpTo(m->user_requested_size, SHADOW_GRANULARITY),
221                 kAsanHeapLeftRedzoneMagic);
222    uptr alloc_beg = m->Beg() - ComputeRZSize(m->user_requested_size);
223    void *p = reinterpret_cast<void *>(alloc_beg);
224    if (m->from_memalign)
225      p = allocator.GetBlockBegin(p);
226
227    // Statistics.
228    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
229    thread_stats.real_frees++;
230    thread_stats.really_freed += m->UsedSize();
231
232    allocator.Deallocate(GetAllocatorCache(ms), p);
233  }
234  SpinMutex mutex_;
235};
236
237static Quarantine quarantine;
238
239void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
240  CHECK(q->size() > 0);
241  size_ += q->size();
242  append_back(q);
243  q->clear();
244}
245
246void AsanChunkFifoList::Push(AsanChunk *n) {
247  push_back(n);
248  size_ += n->UsedSize();
249}
250
251// Interesting performance observation: this function takes up to 15% of overal
252// allocator time. That's because *first_ has been evicted from cache long time
253// ago. Not sure if we can or want to do anything with this.
254AsanChunk *AsanChunkFifoList::Pop() {
255  CHECK(first_);
256  AsanChunk *res = front();
257  size_ -= res->UsedSize();
258  pop_front();
259  return res;
260}
261
262static void *Allocate(uptr size, uptr alignment, StackTrace *stack) {
263  Init();
264  CHECK(stack);
265  if (alignment < 8) alignment = 8;
266  if (size == 0)
267    return reinterpret_cast<void *>(kReturnOnZeroMalloc);
268  CHECK(IsPowerOfTwo(alignment));
269  uptr rz_size = ComputeRZSize(size);
270  uptr rounded_size = RoundUpTo(size, rz_size);
271  uptr needed_size = rounded_size + rz_size;
272  if (alignment > rz_size)
273    needed_size += alignment;
274  CHECK(IsAligned(needed_size, rz_size));
275  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
276    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
277           (void*)size);
278    return 0;
279  }
280
281  AsanThread *t = asanThreadRegistry().GetCurrent();
282  // Printf("t = %p\n", t);
283  CHECK(t);  // FIXME
284  void *allocated = allocator.Allocate(
285      GetAllocatorCache(&t->malloc_storage()), needed_size, 8, false);
286  uptr alloc_beg = reinterpret_cast<uptr>(allocated);
287  uptr alloc_end = alloc_beg + needed_size;
288  uptr beg_plus_redzone = alloc_beg + rz_size;
289  uptr user_beg = beg_plus_redzone;
290  if (!IsAligned(user_beg, alignment))
291    user_beg = RoundUpTo(user_beg, alignment);
292  uptr user_end = user_beg + size;
293  CHECK_LE(user_end, alloc_end);
294  uptr chunk_beg = user_beg - kChunkHeaderSize;
295  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
296  m->chunk_state = CHUNK_ALLOCATED;
297  u32 alloc_tid = t ? t->tid() : 0;
298  m->alloc_tid = alloc_tid;
299  CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
300  m->free_tid = kInvalidTid;
301  m->from_memalign = user_beg != beg_plus_redzone;
302  m->user_requested_size = size;
303  StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
304
305  uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
306  // Unpoison the bulk of the memory region.
307  if (size_rounded_down_to_granularity)
308    PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
309  // Deal with the end of the region if size is not aligned to granularity.
310  if (size != size_rounded_down_to_granularity && flags()->poison_heap) {
311    u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
312    *shadow = size & (SHADOW_GRANULARITY - 1);
313  }
314
315  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
316  thread_stats.mallocs++;
317  thread_stats.malloced += size;
318
319  void *res = reinterpret_cast<void *>(user_beg);
320  ASAN_MALLOC_HOOK(res, size);
321  return res;
322}
323
324static void Deallocate(void *ptr, StackTrace *stack) {
325  uptr p = reinterpret_cast<uptr>(ptr);
326  if (p == 0 || p == kReturnOnZeroMalloc) return;
327  uptr chunk_beg = p - kChunkHeaderSize;
328  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
329
330  // Flip the chunk_state atomically to avoid race on double-free.
331  u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
332                                       memory_order_acq_rel);
333
334  if (old_chunk_state == CHUNK_QUARANTINE)
335    ReportDoubleFree((uptr)ptr, stack);
336  else if (old_chunk_state != CHUNK_ALLOCATED)
337    ReportFreeNotMalloced((uptr)ptr, stack);
338  CHECK(old_chunk_state == CHUNK_ALLOCATED);
339
340  CHECK_GE(m->alloc_tid, 0);
341  if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
342    CHECK_EQ(m->free_tid, kInvalidTid);
343  AsanThread *t = asanThreadRegistry().GetCurrent();
344  m->free_tid = t ? t->tid() : 0;
345  StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
346  CHECK(m->chunk_state == CHUNK_QUARANTINE);
347  // Poison the region.
348  PoisonShadow(m->Beg(),
349               RoundUpTo(m->user_requested_size, SHADOW_GRANULARITY),
350               kAsanHeapFreeMagic);
351
352  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
353  thread_stats.frees++;
354  thread_stats.freed += m->UsedSize();
355
356  // Push into quarantine.
357  if (t) {
358    AsanChunkFifoList &q = t->malloc_storage().quarantine_;
359    q.Push(m);
360
361    if (q.size() > kMaxThreadLocalQuarantine)
362      quarantine.SwallowThreadLocalQuarantine(&t->malloc_storage());
363  } else {
364    quarantine.BypassThreadLocalQuarantine(m);
365  }
366
367  ASAN_FREE_HOOK(ptr);
368}
369
370static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
371  CHECK(old_ptr && new_size);
372  uptr p = reinterpret_cast<uptr>(old_ptr);
373  uptr chunk_beg = p - kChunkHeaderSize;
374  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
375
376  CHECK(m->chunk_state == CHUNK_ALLOCATED);
377  uptr old_size = m->UsedSize();
378  uptr memcpy_size = Min(new_size, old_size);
379  void *new_ptr = Allocate(new_size, 8, stack);
380  if (new_ptr) {
381    CHECK(REAL(memcpy) != 0);
382    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
383    Deallocate(old_ptr, stack);
384  }
385  return new_ptr;
386}
387
388static AsanChunk *GetAsanChunkByAddr(uptr p) {
389  uptr alloc_beg = reinterpret_cast<uptr>(
390      allocator.GetBlockBegin(reinterpret_cast<void *>(p)));
391  if (!alloc_beg) return 0;
392  // FIXME: this does not take into account memalign.
393  uptr chunk_beg = alloc_beg + ComputeRZSize(0) - kChunkHeaderSize;
394  return reinterpret_cast<AsanChunk *>(chunk_beg);
395}
396
397static uptr AllocationSize(uptr p) {
398  AsanChunk *m = GetAsanChunkByAddr(p);
399  if (!m) return 0;
400  if (m->chunk_state != CHUNK_ALLOCATED) return 0;
401  if (m->Beg() != p) return 0;
402  return m->UsedSize();
403}
404
405// We have an address between two chunks, and we want to report just one.
406AsanChunk *ChooseChunk(uptr addr,
407                       AsanChunk *left_chunk, AsanChunk *right_chunk) {
408  // Prefer an allocated chunk or a chunk from quarantine.
409  if (left_chunk->chunk_state == CHUNK_AVAILABLE &&
410      right_chunk->chunk_state != CHUNK_AVAILABLE)
411    return right_chunk;
412  if (right_chunk->chunk_state == CHUNK_AVAILABLE &&
413      left_chunk->chunk_state != CHUNK_AVAILABLE)
414    return left_chunk;
415  // Choose based on offset.
416  uptr l_offset = 0, r_offset = 0;
417  CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
418  CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
419  if (l_offset < r_offset)
420    return left_chunk;
421  return right_chunk;
422}
423
424AsanChunkView FindHeapChunkByAddress(uptr addr) {
425  AsanChunk *m1 = GetAsanChunkByAddr(addr);
426  if (!m1) return AsanChunkView(m1);
427  uptr offset = 0;
428  if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
429    // The address is in the chunk's left redzone, so maybe it is actually
430    // a right buffer overflow from the other chunk to the left.
431    // Search a bit to the left to see if there is another chunk.
432    AsanChunk *m2 = 0;
433    for (uptr l = 1; l < GetPageSizeCached(); l++) {
434      m2 = GetAsanChunkByAddr(addr - l);
435      if (m2 == m1) continue;  // Still the same chunk.
436      Printf("m1 %p m2 %p l %zd\n", m1, m2, l);
437      break;
438    }
439    if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
440      m1 = ChooseChunk(addr, m2, m1);
441  }
442  return AsanChunkView(m1);
443}
444
445void AsanThreadLocalMallocStorage::CommitBack() {
446  quarantine.SwallowThreadLocalQuarantine(this);
447  allocator.SwallowCache(GetAllocatorCache(this));
448}
449
450SANITIZER_INTERFACE_ATTRIBUTE
451void *asan_memalign(uptr alignment, uptr size, StackTrace *stack) {
452  return Allocate(size, alignment, stack);
453}
454
455SANITIZER_INTERFACE_ATTRIBUTE
456void asan_free(void *ptr, StackTrace *stack) {
457  Deallocate(ptr, stack);
458}
459
460SANITIZER_INTERFACE_ATTRIBUTE
461void *asan_malloc(uptr size, StackTrace *stack) {
462  return Allocate(size, 8, stack);
463}
464
465void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
466  void *ptr = Allocate(nmemb * size, 8, stack);
467  if (ptr)
468    REAL(memset)(ptr, 0, nmemb * size);
469  return ptr;
470}
471
472void *asan_realloc(void *p, uptr size, StackTrace *stack) {
473  if (p == 0)
474    return Allocate(size, 8, stack);
475  if (size == 0) {
476    Deallocate(p, stack);
477    return 0;
478  }
479  return Reallocate(p, size, stack);
480}
481
482void *asan_valloc(uptr size, StackTrace *stack) {
483  return Allocate(size, GetPageSizeCached(), stack);
484}
485
486void *asan_pvalloc(uptr size, StackTrace *stack) {
487  uptr PageSize = GetPageSizeCached();
488  size = RoundUpTo(size, PageSize);
489  if (size == 0) {
490    // pvalloc(0) should allocate one page.
491    size = PageSize;
492  }
493  return Allocate(size, PageSize, stack);
494}
495
496int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
497                        StackTrace *stack) {
498  void *ptr = Allocate(size, alignment, stack);
499  CHECK(IsAligned((uptr)ptr, alignment));
500  *memptr = ptr;
501  return 0;
502}
503
504uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
505  CHECK(stack);
506  if (ptr == 0) return 0;
507  uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
508  if (flags()->check_malloc_usable_size && (usable_size == 0))
509    ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
510  return usable_size;
511}
512
513uptr asan_mz_size(const void *ptr) {
514  UNIMPLEMENTED();
515  return 0;
516}
517
518void asan_mz_force_lock() {
519  UNIMPLEMENTED();
520}
521
522void asan_mz_force_unlock() {
523  UNIMPLEMENTED();
524}
525
526}  // namespace __asan
527
528// ---------------------- Interface ---------------- {{{1
529using namespace __asan;  // NOLINT
530
531// ASan allocator doesn't reserve extra bytes, so normally we would
532// just return "size". We don't want to expose our redzone sizes, etc here.
533uptr __asan_get_estimated_allocated_size(uptr size) {
534  return size;
535}
536
537bool __asan_get_ownership(const void *p) {
538  return AllocationSize(reinterpret_cast<uptr>(p)) > 0;
539}
540
541uptr __asan_get_allocated_size(const void *p) {
542  if (p == 0) return 0;
543  uptr allocated_size = AllocationSize(reinterpret_cast<uptr>(p));
544  // Die if p is not malloced or if it is already freed.
545  if (allocated_size == 0) {
546    GET_STACK_TRACE_FATAL_HERE;
547    ReportAsanGetAllocatedSizeNotOwned(reinterpret_cast<uptr>(p), &stack);
548  }
549  return allocated_size;
550}
551
552#if !SANITIZER_SUPPORTS_WEAK_HOOKS
553// Provide default (no-op) implementation of malloc hooks.
554extern "C" {
555SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
556void __asan_malloc_hook(void *ptr, uptr size) {
557  (void)ptr;
558  (void)size;
559}
560SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
561void __asan_free_hook(void *ptr) {
562  (void)ptr;
563}
564}  // extern "C"
565#endif
566
567
568#endif  // ASAN_ALLOCATOR_VERSION
569