asan_allocator2.cc revision 7f80655d8283dbdf77bfee4a849eed4d59e95c7a
1//===-- asan_allocator2.cc ------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12// Implementation of ASan's memory allocator, 2-nd version.
13// This variant uses the allocator from sanitizer_common, i.e. the one shared
14// with ThreadSanitizer and MemorySanitizer.
15//
16//===----------------------------------------------------------------------===//
17#include "asan_allocator.h"
18
19#include "asan_mapping.h"
20#include "asan_poisoning.h"
21#include "asan_report.h"
22#include "asan_thread.h"
23#include "sanitizer_common/sanitizer_allocator.h"
24#include "sanitizer_common/sanitizer_flags.h"
25#include "sanitizer_common/sanitizer_internal_defs.h"
26#include "sanitizer_common/sanitizer_list.h"
27#include "sanitizer_common/sanitizer_stackdepot.h"
28#include "sanitizer_common/sanitizer_quarantine.h"
29#include "lsan/lsan_common.h"
30
31namespace __asan {
32
33struct AsanMapUnmapCallback {
34  void OnMap(uptr p, uptr size) const {
35    PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
36    // Statistics.
37    AsanStats &thread_stats = GetCurrentThreadStats();
38    thread_stats.mmaps++;
39    thread_stats.mmaped += size;
40  }
41  void OnUnmap(uptr p, uptr size) const {
42    PoisonShadow(p, size, 0);
43    // We are about to unmap a chunk of user memory.
44    // Mark the corresponding shadow memory as not needed.
45    // Since asan's mapping is compacting, the shadow chunk may be
46    // not page-aligned, so we only flush the page-aligned portion.
47    uptr page_size = GetPageSizeCached();
48    uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size);
49    uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size);
50    FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
51    // Statistics.
52    AsanStats &thread_stats = GetCurrentThreadStats();
53    thread_stats.munmaps++;
54    thread_stats.munmaped += size;
55  }
56};
57
58#if SANITIZER_WORDSIZE == 64
59#if defined(__powerpc64__)
60const uptr kAllocatorSpace =  0xa0000000000ULL;
61const uptr kAllocatorSize  =  0x20000000000ULL;  // 2T.
62#else
63const uptr kAllocatorSpace = 0x600000000000ULL;
64const uptr kAllocatorSize  =  0x40000000000ULL;  // 4T.
65#endif
66typedef DefaultSizeClassMap SizeClassMap;
67typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
68    SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
69#elif SANITIZER_WORDSIZE == 32
70static const u64 kAddressSpaceSize = 1ULL << 32;
71typedef CompactSizeClassMap SizeClassMap;
72static const uptr kRegionSizeLog = 20;
73static const uptr kFlatByteMapSize = kAddressSpaceSize >> kRegionSizeLog;
74typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
75  SizeClassMap, kRegionSizeLog,
76  FlatByteMap<kFlatByteMapSize>,
77  AsanMapUnmapCallback> PrimaryAllocator;
78#endif
79
80typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
81typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
82typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
83    SecondaryAllocator> Allocator;
84
85// We can not use THREADLOCAL because it is not supported on some of the
86// platforms we care about (OSX 10.6, Android).
87// static THREADLOCAL AllocatorCache cache;
88AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
89  CHECK(ms);
90  CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
91  return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
92}
93
94static Allocator allocator;
95
96static const uptr kMaxAllowedMallocSize =
97  FIRST_32_SECOND_64(3UL << 30, 64UL << 30);
98
99static const uptr kMaxThreadLocalQuarantine =
100  FIRST_32_SECOND_64(1 << 18, 1 << 20);
101
102// Every chunk of memory allocated by this allocator can be in one of 3 states:
103// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
104// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
105// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
106enum {
107  CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
108  CHUNK_ALLOCATED  = 2,
109  CHUNK_QUARANTINE = 3
110};
111
112// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
113// We use adaptive redzones: for larger allocation larger redzones are used.
114static u32 RZLog2Size(u32 rz_log) {
115  CHECK_LT(rz_log, 8);
116  return 16 << rz_log;
117}
118
119static u32 RZSize2Log(u32 rz_size) {
120  CHECK_GE(rz_size, 16);
121  CHECK_LE(rz_size, 2048);
122  CHECK(IsPowerOfTwo(rz_size));
123  u32 res = Log2(rz_size) - 4;
124  CHECK_EQ(rz_size, RZLog2Size(res));
125  return res;
126}
127
128static uptr ComputeRZLog(uptr user_requested_size) {
129  u32 rz_log =
130    user_requested_size <= 64        - 16   ? 0 :
131    user_requested_size <= 128       - 32   ? 1 :
132    user_requested_size <= 512       - 64   ? 2 :
133    user_requested_size <= 4096      - 128  ? 3 :
134    user_requested_size <= (1 << 14) - 256  ? 4 :
135    user_requested_size <= (1 << 15) - 512  ? 5 :
136    user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
137  return Max(rz_log, RZSize2Log(flags()->redzone));
138}
139
140// The memory chunk allocated from the underlying allocator looks like this:
141// L L L L L L H H U U U U U U R R
142//   L -- left redzone words (0 or more bytes)
143//   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
144//   U -- user memory.
145//   R -- right redzone (0 or more bytes)
146// ChunkBase consists of ChunkHeader and other bytes that overlap with user
147// memory.
148
149// If the left redzone is greater than the ChunkHeader size we store a magic
150// value in the first uptr word of the memory block and store the address of
151// ChunkBase in the next uptr.
152// M B L L L L L L L L L  H H U U U U U U
153//   |                    ^
154//   ---------------------|
155//   M -- magic value kAllocBegMagic
156//   B -- address of ChunkHeader pointing to the first 'H'
157static const uptr kAllocBegMagic = 0xCC6E96B9;
158
159struct ChunkHeader {
160  // 1-st 8 bytes.
161  u32 chunk_state       : 8;  // Must be first.
162  u32 alloc_tid         : 24;
163
164  u32 free_tid          : 24;
165  u32 from_memalign     : 1;
166  u32 alloc_type        : 2;
167  u32 rz_log            : 3;
168  u32 lsan_tag          : 2;
169  // 2-nd 8 bytes
170  // This field is used for small sizes. For large sizes it is equal to
171  // SizeClassMap::kMaxSize and the actual size is stored in the
172  // SecondaryAllocator's metadata.
173  u32 user_requested_size;
174  u32 alloc_context_id;
175};
176
177struct ChunkBase : ChunkHeader {
178  // Header2, intersects with user memory.
179  u32 free_context_id;
180};
181
182static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
183static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
184COMPILER_CHECK(kChunkHeaderSize == 16);
185COMPILER_CHECK(kChunkHeader2Size <= 16);
186
187struct AsanChunk: ChunkBase {
188  uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
189  uptr UsedSize(bool locked_version = false) {
190    if (user_requested_size != SizeClassMap::kMaxSize)
191      return user_requested_size;
192    return *reinterpret_cast<uptr *>(
193                allocator.GetMetaData(AllocBeg(locked_version)));
194  }
195  void *AllocBeg(bool locked_version = false) {
196    if (from_memalign) {
197      if (locked_version)
198        return allocator.GetBlockBeginFastLocked(
199            reinterpret_cast<void *>(this));
200      return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
201    }
202    return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
203  }
204  // If we don't use stack depot, we store the alloc/free stack traces
205  // in the chunk itself.
206  u32 *AllocStackBeg() {
207    return (u32*)(Beg() - RZLog2Size(rz_log));
208  }
209  uptr AllocStackSize() {
210    CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
211    return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
212  }
213  u32 *FreeStackBeg() {
214    return (u32*)(Beg() + kChunkHeader2Size);
215  }
216  uptr FreeStackSize() {
217    if (user_requested_size < kChunkHeader2Size) return 0;
218    uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
219    return (available - kChunkHeader2Size) / sizeof(u32);
220  }
221  bool AddrIsInside(uptr addr, bool locked_version = false) {
222    return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version));
223  }
224};
225
226bool AsanChunkView::IsValid() {
227  return chunk_ != 0 && chunk_->chunk_state != CHUNK_AVAILABLE;
228}
229uptr AsanChunkView::Beg() { return chunk_->Beg(); }
230uptr AsanChunkView::End() { return Beg() + UsedSize(); }
231uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
232uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
233uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
234
235static void GetStackTraceFromId(u32 id, StackTrace *stack) {
236  CHECK(id);
237  uptr size = 0;
238  const uptr *trace = StackDepotGet(id, &size);
239  CHECK(trace);
240  stack->CopyFrom(trace, size);
241}
242
243void AsanChunkView::GetAllocStack(StackTrace *stack) {
244  GetStackTraceFromId(chunk_->alloc_context_id, stack);
245}
246
247void AsanChunkView::GetFreeStack(StackTrace *stack) {
248  GetStackTraceFromId(chunk_->free_context_id, stack);
249}
250
251struct QuarantineCallback;
252typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
253typedef AsanQuarantine::Cache QuarantineCache;
254static AsanQuarantine quarantine(LINKER_INITIALIZED);
255static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
256static AllocatorCache fallback_allocator_cache;
257static SpinMutex fallback_mutex;
258
259QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
260  CHECK(ms);
261  CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
262  return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
263}
264
265struct QuarantineCallback {
266  explicit QuarantineCallback(AllocatorCache *cache)
267      : cache_(cache) {
268  }
269
270  void Recycle(AsanChunk *m) {
271    CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
272    atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed);
273    CHECK_NE(m->alloc_tid, kInvalidTid);
274    CHECK_NE(m->free_tid, kInvalidTid);
275    PoisonShadow(m->Beg(),
276                 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
277                 kAsanHeapLeftRedzoneMagic);
278    void *p = reinterpret_cast<void *>(m->AllocBeg());
279    if (p != m) {
280      uptr *alloc_magic = reinterpret_cast<uptr *>(p);
281      CHECK_EQ(alloc_magic[0], kAllocBegMagic);
282      // Clear the magic value, as allocator internals may overwrite the
283      // contents of deallocated chunk, confusing GetAsanChunk lookup.
284      alloc_magic[0] = 0;
285      CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m));
286    }
287
288    // Statistics.
289    AsanStats &thread_stats = GetCurrentThreadStats();
290    thread_stats.real_frees++;
291    thread_stats.really_freed += m->UsedSize();
292
293    allocator.Deallocate(cache_, p);
294  }
295
296  void *Allocate(uptr size) {
297    return allocator.Allocate(cache_, size, 1, false);
298  }
299
300  void Deallocate(void *p) {
301    allocator.Deallocate(cache_, p);
302  }
303
304  AllocatorCache *cache_;
305};
306
307void InitializeAllocator() {
308  allocator.Init();
309  quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
310}
311
312static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
313                      AllocType alloc_type, bool can_fill) {
314  if (!asan_inited)
315    __asan_init();
316  Flags &fl = *flags();
317  CHECK(stack);
318  const uptr min_alignment = SHADOW_GRANULARITY;
319  if (alignment < min_alignment)
320    alignment = min_alignment;
321  if (size == 0) {
322    // We'd be happy to avoid allocating memory for zero-size requests, but
323    // some programs/tests depend on this behavior and assume that malloc would
324    // not return NULL even for zero-size allocations. Moreover, it looks like
325    // operator new should never return NULL, and results of consecutive "new"
326    // calls must be different even if the allocated size is zero.
327    size = 1;
328  }
329  CHECK(IsPowerOfTwo(alignment));
330  uptr rz_log = ComputeRZLog(size);
331  uptr rz_size = RZLog2Size(rz_log);
332  uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
333  uptr needed_size = rounded_size + rz_size;
334  if (alignment > min_alignment)
335    needed_size += alignment;
336  bool using_primary_allocator = true;
337  // If we are allocating from the secondary allocator, there will be no
338  // automatic right redzone, so add the right redzone manually.
339  if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
340    needed_size += rz_size;
341    using_primary_allocator = false;
342  }
343  CHECK(IsAligned(needed_size, min_alignment));
344  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
345    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
346           (void*)size);
347    return AllocatorReturnNull();
348  }
349
350  AsanThread *t = GetCurrentThread();
351  void *allocated;
352  if (t) {
353    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
354    allocated = allocator.Allocate(cache, needed_size, 8, false);
355  } else {
356    SpinMutexLock l(&fallback_mutex);
357    AllocatorCache *cache = &fallback_allocator_cache;
358    allocated = allocator.Allocate(cache, needed_size, 8, false);
359  }
360  uptr alloc_beg = reinterpret_cast<uptr>(allocated);
361  uptr alloc_end = alloc_beg + needed_size;
362  uptr beg_plus_redzone = alloc_beg + rz_size;
363  uptr user_beg = beg_plus_redzone;
364  if (!IsAligned(user_beg, alignment))
365    user_beg = RoundUpTo(user_beg, alignment);
366  uptr user_end = user_beg + size;
367  CHECK_LE(user_end, alloc_end);
368  uptr chunk_beg = user_beg - kChunkHeaderSize;
369  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
370  m->alloc_type = alloc_type;
371  m->rz_log = rz_log;
372  u32 alloc_tid = t ? t->tid() : 0;
373  m->alloc_tid = alloc_tid;
374  CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
375  m->free_tid = kInvalidTid;
376  m->from_memalign = user_beg != beg_plus_redzone;
377  if (alloc_beg != chunk_beg) {
378    CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
379    reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
380    reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
381  }
382  if (using_primary_allocator) {
383    CHECK(size);
384    m->user_requested_size = size;
385    CHECK(allocator.FromPrimary(allocated));
386  } else {
387    CHECK(!allocator.FromPrimary(allocated));
388    m->user_requested_size = SizeClassMap::kMaxSize;
389    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
390    meta[0] = size;
391    meta[1] = chunk_beg;
392  }
393
394  m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
395
396  uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
397  // Unpoison the bulk of the memory region.
398  if (size_rounded_down_to_granularity)
399    PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
400  // Deal with the end of the region if size is not aligned to granularity.
401  if (size != size_rounded_down_to_granularity && fl.poison_heap) {
402    u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
403    *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
404  }
405
406  AsanStats &thread_stats = GetCurrentThreadStats();
407  thread_stats.mallocs++;
408  thread_stats.malloced += size;
409  thread_stats.malloced_redzones += needed_size - size;
410  uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
411  thread_stats.malloced_by_size[class_id]++;
412  if (needed_size > SizeClassMap::kMaxSize)
413    thread_stats.malloc_large++;
414
415  void *res = reinterpret_cast<void *>(user_beg);
416  if (can_fill && fl.max_malloc_fill_size) {
417    uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
418    REAL(memset)(res, fl.malloc_fill_byte, fill_size);
419  }
420#if CAN_SANITIZE_LEAKS
421  m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
422                                               : __lsan::kDirectlyLeaked;
423#endif
424  // Must be the last mutation of metadata in this function.
425  atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
426  ASAN_MALLOC_HOOK(res, size);
427  return res;
428}
429
430static void ReportInvalidFree(void *ptr, u8 chunk_state, StackTrace *stack) {
431  if (chunk_state == CHUNK_QUARANTINE)
432    ReportDoubleFree((uptr)ptr, stack);
433  else
434    ReportFreeNotMalloced((uptr)ptr, stack);
435}
436
437static void AtomicallySetQuarantineFlag(AsanChunk *m,
438                                        void *ptr, StackTrace *stack) {
439  u8 old_chunk_state = CHUNK_ALLOCATED;
440  // Flip the chunk_state atomically to avoid race on double-free.
441  if (!atomic_compare_exchange_strong((atomic_uint8_t*)m, &old_chunk_state,
442                                      CHUNK_QUARANTINE, memory_order_acquire))
443    ReportInvalidFree(ptr, old_chunk_state, stack);
444  CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
445}
446
447// Expects the chunk to already be marked as quarantined by using
448// AtomicallySetQuarantineFlag.
449static void QuarantineChunk(AsanChunk *m, void *ptr,
450                            StackTrace *stack, AllocType alloc_type) {
451  CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
452
453  if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
454    ReportAllocTypeMismatch((uptr)ptr, stack,
455                            (AllocType)m->alloc_type, (AllocType)alloc_type);
456
457  CHECK_GE(m->alloc_tid, 0);
458  if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
459    CHECK_EQ(m->free_tid, kInvalidTid);
460  AsanThread *t = GetCurrentThread();
461  m->free_tid = t ? t->tid() : 0;
462  m->free_context_id = StackDepotPut(stack->trace, stack->size);
463  // Poison the region.
464  PoisonShadow(m->Beg(),
465               RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
466               kAsanHeapFreeMagic);
467
468  AsanStats &thread_stats = GetCurrentThreadStats();
469  thread_stats.frees++;
470  thread_stats.freed += m->UsedSize();
471
472  // Push into quarantine.
473  if (t) {
474    AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
475    AllocatorCache *ac = GetAllocatorCache(ms);
476    quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
477                   m, m->UsedSize());
478  } else {
479    SpinMutexLock l(&fallback_mutex);
480    AllocatorCache *ac = &fallback_allocator_cache;
481    quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
482                   m, m->UsedSize());
483  }
484}
485
486static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
487  uptr p = reinterpret_cast<uptr>(ptr);
488  if (p == 0) return;
489
490  uptr chunk_beg = p - kChunkHeaderSize;
491  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
492  ASAN_FREE_HOOK(ptr);
493  // Must mark the chunk as quarantined before any changes to its metadata.
494  AtomicallySetQuarantineFlag(m, ptr, stack);
495  QuarantineChunk(m, ptr, stack, alloc_type);
496}
497
498static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
499  CHECK(old_ptr && new_size);
500  uptr p = reinterpret_cast<uptr>(old_ptr);
501  uptr chunk_beg = p - kChunkHeaderSize;
502  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
503
504  AsanStats &thread_stats = GetCurrentThreadStats();
505  thread_stats.reallocs++;
506  thread_stats.realloced += new_size;
507
508  void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
509  if (new_ptr) {
510    u8 chunk_state = m->chunk_state;
511    if (chunk_state != CHUNK_ALLOCATED)
512      ReportInvalidFree(old_ptr, chunk_state, stack);
513    CHECK_NE(REAL(memcpy), (void*)0);
514    uptr memcpy_size = Min(new_size, m->UsedSize());
515    // If realloc() races with free(), we may start copying freed memory.
516    // However, we will report racy double-free later anyway.
517    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
518    Deallocate(old_ptr, stack, FROM_MALLOC);
519  }
520  return new_ptr;
521}
522
523// Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
524static AsanChunk *GetAsanChunk(void *alloc_beg) {
525  if (!alloc_beg) return 0;
526  if (!allocator.FromPrimary(alloc_beg)) {
527    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
528    AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
529    return m;
530  }
531  uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
532  if (alloc_magic[0] == kAllocBegMagic)
533    return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
534  return reinterpret_cast<AsanChunk *>(alloc_beg);
535}
536
537static AsanChunk *GetAsanChunkByAddr(uptr p) {
538  void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
539  return GetAsanChunk(alloc_beg);
540}
541
542// Allocator must be locked when this function is called.
543static AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
544  void *alloc_beg =
545      allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
546  return GetAsanChunk(alloc_beg);
547}
548
549static uptr AllocationSize(uptr p) {
550  AsanChunk *m = GetAsanChunkByAddr(p);
551  if (!m) return 0;
552  if (m->chunk_state != CHUNK_ALLOCATED) return 0;
553  if (m->Beg() != p) return 0;
554  return m->UsedSize();
555}
556
557// We have an address between two chunks, and we want to report just one.
558AsanChunk *ChooseChunk(uptr addr,
559                       AsanChunk *left_chunk, AsanChunk *right_chunk) {
560  // Prefer an allocated chunk over freed chunk and freed chunk
561  // over available chunk.
562  if (left_chunk->chunk_state != right_chunk->chunk_state) {
563    if (left_chunk->chunk_state == CHUNK_ALLOCATED)
564      return left_chunk;
565    if (right_chunk->chunk_state == CHUNK_ALLOCATED)
566      return right_chunk;
567    if (left_chunk->chunk_state == CHUNK_QUARANTINE)
568      return left_chunk;
569    if (right_chunk->chunk_state == CHUNK_QUARANTINE)
570      return right_chunk;
571  }
572  // Same chunk_state: choose based on offset.
573  sptr l_offset = 0, r_offset = 0;
574  CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
575  CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
576  if (l_offset < r_offset)
577    return left_chunk;
578  return right_chunk;
579}
580
581AsanChunkView FindHeapChunkByAddress(uptr addr) {
582  AsanChunk *m1 = GetAsanChunkByAddr(addr);
583  if (!m1) return AsanChunkView(m1);
584  sptr offset = 0;
585  if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
586    // The address is in the chunk's left redzone, so maybe it is actually
587    // a right buffer overflow from the other chunk to the left.
588    // Search a bit to the left to see if there is another chunk.
589    AsanChunk *m2 = 0;
590    for (uptr l = 1; l < GetPageSizeCached(); l++) {
591      m2 = GetAsanChunkByAddr(addr - l);
592      if (m2 == m1) continue;  // Still the same chunk.
593      break;
594    }
595    if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
596      m1 = ChooseChunk(addr, m2, m1);
597  }
598  return AsanChunkView(m1);
599}
600
601void AsanThreadLocalMallocStorage::CommitBack() {
602  AllocatorCache *ac = GetAllocatorCache(this);
603  quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
604  allocator.SwallowCache(GetAllocatorCache(this));
605}
606
607void PrintInternalAllocatorStats() {
608  allocator.PrintStats();
609}
610
611void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
612                    AllocType alloc_type) {
613  return Allocate(size, alignment, stack, alloc_type, true);
614}
615
616void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
617  Deallocate(ptr, stack, alloc_type);
618}
619
620void *asan_malloc(uptr size, StackTrace *stack) {
621  return Allocate(size, 8, stack, FROM_MALLOC, true);
622}
623
624void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
625  if (CallocShouldReturnNullDueToOverflow(size, nmemb))
626    return AllocatorReturnNull();
627  void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
628  // If the memory comes from the secondary allocator no need to clear it
629  // as it comes directly from mmap.
630  if (ptr && allocator.FromPrimary(ptr))
631    REAL(memset)(ptr, 0, nmemb * size);
632  return ptr;
633}
634
635void *asan_realloc(void *p, uptr size, StackTrace *stack) {
636  if (p == 0)
637    return Allocate(size, 8, stack, FROM_MALLOC, true);
638  if (size == 0) {
639    Deallocate(p, stack, FROM_MALLOC);
640    return 0;
641  }
642  return Reallocate(p, size, stack);
643}
644
645void *asan_valloc(uptr size, StackTrace *stack) {
646  return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true);
647}
648
649void *asan_pvalloc(uptr size, StackTrace *stack) {
650  uptr PageSize = GetPageSizeCached();
651  size = RoundUpTo(size, PageSize);
652  if (size == 0) {
653    // pvalloc(0) should allocate one page.
654    size = PageSize;
655  }
656  return Allocate(size, PageSize, stack, FROM_MALLOC, true);
657}
658
659int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
660                        StackTrace *stack) {
661  void *ptr = Allocate(size, alignment, stack, FROM_MALLOC, true);
662  CHECK(IsAligned((uptr)ptr, alignment));
663  *memptr = ptr;
664  return 0;
665}
666
667uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
668  CHECK(stack);
669  if (ptr == 0) return 0;
670  uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
671  if (flags()->check_malloc_usable_size && (usable_size == 0))
672    ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
673  return usable_size;
674}
675
676uptr asan_mz_size(const void *ptr) {
677  return AllocationSize(reinterpret_cast<uptr>(ptr));
678}
679
680void asan_mz_force_lock() {
681  allocator.ForceLock();
682  fallback_mutex.Lock();
683}
684
685void asan_mz_force_unlock() {
686  fallback_mutex.Unlock();
687  allocator.ForceUnlock();
688}
689
690}  // namespace __asan
691
692// --- Implementation of LSan-specific functions --- {{{1
693namespace __lsan {
694void LockAllocator() {
695  __asan::allocator.ForceLock();
696}
697
698void UnlockAllocator() {
699  __asan::allocator.ForceUnlock();
700}
701
702void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
703  *begin = (uptr)&__asan::allocator;
704  *end = *begin + sizeof(__asan::allocator);
705}
706
707uptr PointsIntoChunk(void* p) {
708  uptr addr = reinterpret_cast<uptr>(p);
709  __asan::AsanChunk *m = __asan::GetAsanChunkByAddrFastLocked(addr);
710  if (!m) return 0;
711  uptr chunk = m->Beg();
712  if ((m->chunk_state == __asan::CHUNK_ALLOCATED) &&
713      m->AddrIsInside(addr, /*locked_version=*/true))
714    return chunk;
715  return 0;
716}
717
718uptr GetUserBegin(uptr chunk) {
719  __asan::AsanChunk *m =
720      __asan::GetAsanChunkByAddrFastLocked(chunk);
721  CHECK(m);
722  return m->Beg();
723}
724
725LsanMetadata::LsanMetadata(uptr chunk) {
726  metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
727}
728
729bool LsanMetadata::allocated() const {
730  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
731  return m->chunk_state == __asan::CHUNK_ALLOCATED;
732}
733
734ChunkTag LsanMetadata::tag() const {
735  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
736  return static_cast<ChunkTag>(m->lsan_tag);
737}
738
739void LsanMetadata::set_tag(ChunkTag value) {
740  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
741  m->lsan_tag = value;
742}
743
744uptr LsanMetadata::requested_size() const {
745  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
746  return m->UsedSize(/*locked_version=*/true);
747}
748
749u32 LsanMetadata::stack_trace_id() const {
750  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
751  return m->alloc_context_id;
752}
753
754void ForEachChunk(ForEachChunkCallback callback, void *arg) {
755  __asan::allocator.ForEachChunk(callback, arg);
756}
757
758IgnoreObjectResult IgnoreObjectLocked(const void *p) {
759  uptr addr = reinterpret_cast<uptr>(p);
760  __asan::AsanChunk *m = __asan::GetAsanChunkByAddr(addr);
761  if (!m) return kIgnoreObjectInvalid;
762  if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
763    if (m->lsan_tag == kIgnored)
764      return kIgnoreObjectAlreadyIgnored;
765    m->lsan_tag = __lsan::kIgnored;
766    return kIgnoreObjectSuccess;
767  } else {
768    return kIgnoreObjectInvalid;
769  }
770}
771}  // namespace __lsan
772
773// ---------------------- Interface ---------------- {{{1
774using namespace __asan;  // NOLINT
775
776// ASan allocator doesn't reserve extra bytes, so normally we would
777// just return "size". We don't want to expose our redzone sizes, etc here.
778uptr __asan_get_estimated_allocated_size(uptr size) {
779  return size;
780}
781
782bool __asan_get_ownership(const void *p) {
783  uptr ptr = reinterpret_cast<uptr>(p);
784  return (AllocationSize(ptr) > 0);
785}
786
787uptr __asan_get_allocated_size(const void *p) {
788  if (p == 0) return 0;
789  uptr ptr = reinterpret_cast<uptr>(p);
790  uptr allocated_size = AllocationSize(ptr);
791  // Die if p is not malloced or if it is already freed.
792  if (allocated_size == 0) {
793    GET_STACK_TRACE_FATAL_HERE;
794    ReportAsanGetAllocatedSizeNotOwned(ptr, &stack);
795  }
796  return allocated_size;
797}
798
799#if !SANITIZER_SUPPORTS_WEAK_HOOKS
800// Provide default (no-op) implementation of malloc hooks.
801extern "C" {
802SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
803void __asan_malloc_hook(void *ptr, uptr size) {
804  (void)ptr;
805  (void)size;
806}
807SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
808void __asan_free_hook(void *ptr) {
809  (void)ptr;
810}
811}  // extern "C"
812#endif
813