asan_allocator2.cc revision a3ab1a7da70a5ef111257ba8887920c1fdcd7be5
1//===-- asan_allocator2.cc ------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12// Implementation of ASan's memory allocator, 2-nd version.
13// This variant uses the allocator from sanitizer_common, i.e. the one shared
14// with ThreadSanitizer and MemorySanitizer.
15//
16// Status: under development, not enabled by default yet.
17//===----------------------------------------------------------------------===//
18#include "asan_allocator.h"
19#if ASAN_ALLOCATOR_VERSION == 2
20
21#include "asan_mapping.h"
22#include "asan_report.h"
23#include "asan_thread.h"
24#include "asan_thread_registry.h"
25#include "sanitizer/asan_interface.h"
26#include "sanitizer_common/sanitizer_allocator.h"
27#include "sanitizer_common/sanitizer_internal_defs.h"
28#include "sanitizer_common/sanitizer_list.h"
29#include "sanitizer_common/sanitizer_stackdepot.h"
30#include "sanitizer_common/sanitizer_quarantine.h"
31
32namespace __asan {
33
34struct AsanMapUnmapCallback {
35  void OnMap(uptr p, uptr size) const {
36    PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
37    // Statistics.
38    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
39    thread_stats.mmaps++;
40    thread_stats.mmaped += size;
41  }
42  void OnUnmap(uptr p, uptr size) const {
43    PoisonShadow(p, size, 0);
44    // We are about to unmap a chunk of user memory.
45    // Mark the corresponding shadow memory as not needed.
46    // Since asan's mapping is compacting, the shadow chunk may be
47    // not page-aligned, so we only flush the page-aligned portion.
48    uptr page_size = GetPageSizeCached();
49    uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size);
50    uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size);
51    FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
52    // Statistics.
53    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
54    thread_stats.munmaps++;
55    thread_stats.munmaped += size;
56  }
57};
58
59#if SANITIZER_WORDSIZE == 64
60#if defined(__powerpc64__)
61const uptr kAllocatorSpace =  0xa0000000000ULL;
62#else
63const uptr kAllocatorSpace = 0x600000000000ULL;
64#endif
65const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T.
66typedef DefaultSizeClassMap SizeClassMap;
67typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
68    SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
69#elif SANITIZER_WORDSIZE == 32
70static const u64 kAddressSpaceSize = 1ULL << 32;
71typedef CompactSizeClassMap SizeClassMap;
72typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
73  SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
74#endif
75
76typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
77typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
78typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
79    SecondaryAllocator> Allocator;
80
81// We can not use THREADLOCAL because it is not supported on some of the
82// platforms we care about (OSX 10.6, Android).
83// static THREADLOCAL AllocatorCache cache;
84AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
85  CHECK(ms);
86  CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
87  return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
88}
89
90static Allocator allocator;
91
92static const uptr kMaxAllowedMallocSize =
93  FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
94
95static const uptr kMaxThreadLocalQuarantine =
96  FIRST_32_SECOND_64(1 << 18, 1 << 20);
97
98static const uptr kReturnOnZeroMalloc = 2048;  // Zero page is protected.
99
100// Every chunk of memory allocated by this allocator can be in one of 3 states:
101// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
102// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
103// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
104enum {
105  CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
106  CHUNK_ALLOCATED  = 2,
107  CHUNK_QUARANTINE = 3
108};
109
110// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
111// We use adaptive redzones: for larger allocation larger redzones are used.
112static u32 RZLog2Size(u32 rz_log) {
113  CHECK_LT(rz_log, 8);
114  return 16 << rz_log;
115}
116
117static u32 RZSize2Log(u32 rz_size) {
118  CHECK_GE(rz_size, 16);
119  CHECK_LE(rz_size, 2048);
120  CHECK(IsPowerOfTwo(rz_size));
121  u32 res = __builtin_ctz(rz_size) - 4;
122  CHECK_EQ(rz_size, RZLog2Size(res));
123  return res;
124}
125
126static uptr ComputeRZLog(uptr user_requested_size) {
127  u32 rz_log =
128    user_requested_size <= 64        - 16   ? 0 :
129    user_requested_size <= 128       - 32   ? 1 :
130    user_requested_size <= 512       - 64   ? 2 :
131    user_requested_size <= 4096      - 128  ? 3 :
132    user_requested_size <= (1 << 14) - 256  ? 4 :
133    user_requested_size <= (1 << 15) - 512  ? 5 :
134    user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
135  return Max(rz_log, RZSize2Log(flags()->redzone));
136}
137
138// The memory chunk allocated from the underlying allocator looks like this:
139// L L L L L L H H U U U U U U R R
140//   L -- left redzone words (0 or more bytes)
141//   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
142//   U -- user memory.
143//   R -- right redzone (0 or more bytes)
144// ChunkBase consists of ChunkHeader and other bytes that overlap with user
145// memory.
146
147// If a memory chunk is allocated by memalign and we had to increase the
148// allocation size to achieve the proper alignment, then we store this magic
149// value in the first uptr word of the memory block and store the address of
150// ChunkBase in the next uptr.
151// M B ? ? ? L L L L L L  H H U U U U U U
152//   M -- magic value kMemalignMagic
153//   B -- address of ChunkHeader pointing to the first 'H'
154static const uptr kMemalignMagic = 0xCC6E96B9;
155
156struct ChunkHeader {
157  // 1-st 8 bytes.
158  u32 chunk_state       : 8;  // Must be first.
159  u32 alloc_tid         : 24;
160
161  u32 free_tid          : 24;
162  u32 from_memalign     : 1;
163  u32 alloc_type        : 2;
164  u32 rz_log            : 3;
165  // 2-nd 8 bytes
166  // This field is used for small sizes. For large sizes it is equal to
167  // SizeClassMap::kMaxSize and the actual size is stored in the
168  // SecondaryAllocator's metadata.
169  u32 user_requested_size;
170  u32 alloc_context_id;
171};
172
173struct ChunkBase : ChunkHeader {
174  // Header2, intersects with user memory.
175  AsanChunk *next;
176  u32 free_context_id;
177};
178
179static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
180static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
181COMPILER_CHECK(kChunkHeaderSize == 16);
182COMPILER_CHECK(kChunkHeader2Size <= 16);
183
184struct AsanChunk: ChunkBase {
185  uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
186  uptr UsedSize() {
187    if (user_requested_size != SizeClassMap::kMaxSize)
188      return user_requested_size;
189    return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg()));
190  }
191  void *AllocBeg() {
192    if (from_memalign)
193      return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
194    return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
195  }
196  // We store the alloc/free stack traces in the chunk itself.
197  u32 *AllocStackBeg() {
198    return (u32*)(Beg() - RZLog2Size(rz_log));
199  }
200  uptr AllocStackSize() {
201    CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
202    return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
203  }
204  u32 *FreeStackBeg() {
205    return (u32*)(Beg() + kChunkHeader2Size);
206  }
207  uptr FreeStackSize() {
208    if (user_requested_size < kChunkHeader2Size) return 0;
209    uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
210    return (available - kChunkHeader2Size) / sizeof(u32);
211  }
212};
213
214uptr AsanChunkView::Beg() { return chunk_->Beg(); }
215uptr AsanChunkView::End() { return Beg() + UsedSize(); }
216uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
217uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
218uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
219
220static void GetStackTraceFromId(u32 id, StackTrace *stack) {
221  CHECK(id);
222  uptr size = 0;
223  const uptr *trace = StackDepotGet(id, &size);
224  CHECK_LT(size, kStackTraceMax);
225  internal_memcpy(stack->trace, trace, sizeof(uptr) * size);
226  stack->size = size;
227}
228
229void AsanChunkView::GetAllocStack(StackTrace *stack) {
230  if (flags()->use_stack_depot)
231    GetStackTraceFromId(chunk_->alloc_context_id, stack);
232  else
233    StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
234                                chunk_->AllocStackSize());
235}
236
237void AsanChunkView::GetFreeStack(StackTrace *stack) {
238  if (flags()->use_stack_depot)
239    GetStackTraceFromId(chunk_->free_context_id, stack);
240  else
241    StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
242                                chunk_->FreeStackSize());
243}
244
245struct QuarantineCallback;
246typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
247typedef AsanQuarantine::Cache QuarantineCache;
248static AsanQuarantine quarantine(LINKER_INITIALIZED);
249static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
250static AllocatorCache fallback_allocator_cache;
251static SpinMutex fallback_mutex;
252
253QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
254  CHECK(ms);
255  CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
256  return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
257}
258
259struct QuarantineCallback {
260  explicit QuarantineCallback(AllocatorCache *cache)
261      : cache_(cache) {
262  }
263
264  void Recycle(AsanChunk *m) {
265    CHECK(m->chunk_state == CHUNK_QUARANTINE);
266    m->chunk_state = CHUNK_AVAILABLE;
267    CHECK_NE(m->alloc_tid, kInvalidTid);
268    CHECK_NE(m->free_tid, kInvalidTid);
269    PoisonShadow(m->Beg(),
270                 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
271                 kAsanHeapLeftRedzoneMagic);
272    void *p = reinterpret_cast<void *>(m->AllocBeg());
273    if (m->from_memalign) {
274      uptr *memalign_magic = reinterpret_cast<uptr *>(p);
275      CHECK_EQ(memalign_magic[0], kMemalignMagic);
276      CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m));
277    }
278
279    // Statistics.
280    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
281    thread_stats.real_frees++;
282    thread_stats.really_freed += m->UsedSize();
283
284    allocator.Deallocate(cache_, p);
285  }
286
287  void *Allocate(uptr size) {
288    return allocator.Allocate(cache_, size, 1, false);
289  }
290
291  void Deallocate(void *p) {
292    allocator.Deallocate(cache_, p);
293  }
294
295  AllocatorCache *cache_;
296};
297
298void InitializeAllocator() {
299  allocator.Init();
300  quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
301}
302
303static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
304                      AllocType alloc_type) {
305  if (!asan_inited)
306    __asan_init();
307  CHECK(stack);
308  const uptr min_alignment = SHADOW_GRANULARITY;
309  if (alignment < min_alignment)
310    alignment = min_alignment;
311  if (size == 0) {
312    if (alignment <= kReturnOnZeroMalloc)
313      return reinterpret_cast<void *>(kReturnOnZeroMalloc);
314    else
315      return 0;  // 0 bytes with large alignment requested. Just return 0.
316  }
317  CHECK(IsPowerOfTwo(alignment));
318  uptr rz_log = ComputeRZLog(size);
319  uptr rz_size = RZLog2Size(rz_log);
320  uptr rounded_size = RoundUpTo(size, alignment);
321  if (rounded_size < kChunkHeader2Size)
322    rounded_size = kChunkHeader2Size;
323  uptr needed_size = rounded_size + rz_size;
324  if (alignment > min_alignment)
325    needed_size += alignment;
326  bool using_primary_allocator = true;
327  // If we are allocating from the secondary allocator, there will be no
328  // automatic right redzone, so add the right redzone manually.
329  if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
330    needed_size += rz_size;
331    using_primary_allocator = false;
332  }
333  CHECK(IsAligned(needed_size, min_alignment));
334  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
335    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
336           (void*)size);
337    return 0;
338  }
339
340  AsanThread *t = asanThreadRegistry().GetCurrent();
341  void *allocated;
342  if (t) {
343    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
344    allocated = allocator.Allocate(cache, needed_size, 8, false);
345  } else {
346    SpinMutexLock l(&fallback_mutex);
347    AllocatorCache *cache = &fallback_allocator_cache;
348    allocated = allocator.Allocate(cache, needed_size, 8, false);
349  }
350  uptr alloc_beg = reinterpret_cast<uptr>(allocated);
351  // Clear the first allocated word (an old kMemalignMagic may still be there).
352  reinterpret_cast<uptr *>(alloc_beg)[0] = 0;
353  uptr alloc_end = alloc_beg + needed_size;
354  uptr beg_plus_redzone = alloc_beg + rz_size;
355  uptr user_beg = beg_plus_redzone;
356  if (!IsAligned(user_beg, alignment))
357    user_beg = RoundUpTo(user_beg, alignment);
358  uptr user_end = user_beg + size;
359  CHECK_LE(user_end, alloc_end);
360  uptr chunk_beg = user_beg - kChunkHeaderSize;
361  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
362  m->chunk_state = CHUNK_ALLOCATED;
363  m->alloc_type = alloc_type;
364  m->rz_log = rz_log;
365  u32 alloc_tid = t ? t->tid() : 0;
366  m->alloc_tid = alloc_tid;
367  CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
368  m->free_tid = kInvalidTid;
369  m->from_memalign = user_beg != beg_plus_redzone;
370  if (m->from_memalign) {
371    CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg);
372    uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
373    memalign_magic[0] = kMemalignMagic;
374    memalign_magic[1] = chunk_beg;
375  }
376  if (using_primary_allocator) {
377    CHECK(size);
378    m->user_requested_size = size;
379    CHECK(allocator.FromPrimary(allocated));
380  } else {
381    CHECK(!allocator.FromPrimary(allocated));
382    m->user_requested_size = SizeClassMap::kMaxSize;
383    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
384    meta[0] = size;
385    meta[1] = chunk_beg;
386  }
387
388  if (flags()->use_stack_depot) {
389    m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
390  } else {
391    m->alloc_context_id = 0;
392    StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
393  }
394
395  uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
396  // Unpoison the bulk of the memory region.
397  if (size_rounded_down_to_granularity)
398    PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
399  // Deal with the end of the region if size is not aligned to granularity.
400  if (size != size_rounded_down_to_granularity && flags()->poison_heap) {
401    u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
402    *shadow = size & (SHADOW_GRANULARITY - 1);
403  }
404
405  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
406  thread_stats.mallocs++;
407  thread_stats.malloced += size;
408  thread_stats.malloced_redzones += needed_size - size;
409  uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
410  thread_stats.malloced_by_size[class_id]++;
411  if (needed_size > SizeClassMap::kMaxSize)
412    thread_stats.malloc_large++;
413
414  void *res = reinterpret_cast<void *>(user_beg);
415  ASAN_MALLOC_HOOK(res, size);
416  return res;
417}
418
419static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
420  uptr p = reinterpret_cast<uptr>(ptr);
421  if (p == 0 || p == kReturnOnZeroMalloc) return;
422  uptr chunk_beg = p - kChunkHeaderSize;
423  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
424
425  // Flip the chunk_state atomically to avoid race on double-free.
426  u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
427                                       memory_order_relaxed);
428
429  if (old_chunk_state == CHUNK_QUARANTINE)
430    ReportDoubleFree((uptr)ptr, stack);
431  else if (old_chunk_state != CHUNK_ALLOCATED)
432    ReportFreeNotMalloced((uptr)ptr, stack);
433  CHECK(old_chunk_state == CHUNK_ALLOCATED);
434  if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
435    ReportAllocTypeMismatch((uptr)ptr, stack,
436                            (AllocType)m->alloc_type, (AllocType)alloc_type);
437
438  CHECK_GE(m->alloc_tid, 0);
439  if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
440    CHECK_EQ(m->free_tid, kInvalidTid);
441  AsanThread *t = asanThreadRegistry().GetCurrent();
442  m->free_tid = t ? t->tid() : 0;
443  if (flags()->use_stack_depot) {
444    m->free_context_id = StackDepotPut(stack->trace, stack->size);
445  } else {
446    m->free_context_id = 0;
447    StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
448  }
449  CHECK(m->chunk_state == CHUNK_QUARANTINE);
450  // Poison the region.
451  PoisonShadow(m->Beg(),
452               RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
453               kAsanHeapFreeMagic);
454
455  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
456  thread_stats.frees++;
457  thread_stats.freed += m->UsedSize();
458
459  // Push into quarantine.
460  if (t) {
461    AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
462    AllocatorCache *ac = GetAllocatorCache(ms);
463    quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
464                   m, m->UsedSize());
465  } else {
466    SpinMutexLock l(&fallback_mutex);
467    AllocatorCache *ac = &fallback_allocator_cache;
468    quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
469                   m, m->UsedSize());
470  }
471
472  ASAN_FREE_HOOK(ptr);
473}
474
475static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
476  CHECK(old_ptr && new_size);
477  uptr p = reinterpret_cast<uptr>(old_ptr);
478  uptr chunk_beg = p - kChunkHeaderSize;
479  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
480
481  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
482  thread_stats.reallocs++;
483  thread_stats.realloced += new_size;
484
485  CHECK(m->chunk_state == CHUNK_ALLOCATED);
486  uptr old_size = m->UsedSize();
487  uptr memcpy_size = Min(new_size, old_size);
488  void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
489  if (new_ptr) {
490    CHECK(REAL(memcpy) != 0);
491    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
492    Deallocate(old_ptr, stack, FROM_MALLOC);
493  }
494  return new_ptr;
495}
496
497static AsanChunk *GetAsanChunkByAddr(uptr p) {
498  void *ptr = reinterpret_cast<void *>(p);
499  uptr alloc_beg = reinterpret_cast<uptr>(allocator.GetBlockBegin(ptr));
500  if (!alloc_beg) return 0;
501  uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
502  if (memalign_magic[0] == kMemalignMagic) {
503    AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]);
504    CHECK(m->from_memalign);
505    return m;
506  }
507  if (!allocator.FromPrimary(ptr)) {
508    uptr *meta = reinterpret_cast<uptr *>(
509        allocator.GetMetaData(reinterpret_cast<void *>(alloc_beg)));
510    AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
511    return m;
512  }
513  uptr actual_size = allocator.GetActuallyAllocatedSize(ptr);
514  CHECK_LE(actual_size, SizeClassMap::kMaxSize);
515  // We know the actually allocted size, but we don't know the redzone size.
516  // Just try all possible redzone sizes.
517  for (u32 rz_log = 0; rz_log < 8; rz_log++) {
518    u32 rz_size = RZLog2Size(rz_log);
519    uptr max_possible_size = actual_size - rz_size;
520    if (ComputeRZLog(max_possible_size) != rz_log)
521      continue;
522    return reinterpret_cast<AsanChunk *>(
523        alloc_beg + rz_size - kChunkHeaderSize);
524  }
525  return 0;
526}
527
528static uptr AllocationSize(uptr p) {
529  AsanChunk *m = GetAsanChunkByAddr(p);
530  if (!m) return 0;
531  if (m->chunk_state != CHUNK_ALLOCATED) return 0;
532  if (m->Beg() != p) return 0;
533  return m->UsedSize();
534}
535
536// We have an address between two chunks, and we want to report just one.
537AsanChunk *ChooseChunk(uptr addr,
538                       AsanChunk *left_chunk, AsanChunk *right_chunk) {
539  // Prefer an allocated chunk over freed chunk and freed chunk
540  // over available chunk.
541  if (left_chunk->chunk_state != right_chunk->chunk_state) {
542    if (left_chunk->chunk_state == CHUNK_ALLOCATED)
543      return left_chunk;
544    if (right_chunk->chunk_state == CHUNK_ALLOCATED)
545      return right_chunk;
546    if (left_chunk->chunk_state == CHUNK_QUARANTINE)
547      return left_chunk;
548    if (right_chunk->chunk_state == CHUNK_QUARANTINE)
549      return right_chunk;
550  }
551  // Same chunk_state: choose based on offset.
552  uptr l_offset = 0, r_offset = 0;
553  CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
554  CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
555  if (l_offset < r_offset)
556    return left_chunk;
557  return right_chunk;
558}
559
560AsanChunkView FindHeapChunkByAddress(uptr addr) {
561  AsanChunk *m1 = GetAsanChunkByAddr(addr);
562  if (!m1) return AsanChunkView(m1);
563  uptr offset = 0;
564  if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
565    // The address is in the chunk's left redzone, so maybe it is actually
566    // a right buffer overflow from the other chunk to the left.
567    // Search a bit to the left to see if there is another chunk.
568    AsanChunk *m2 = 0;
569    for (uptr l = 1; l < GetPageSizeCached(); l++) {
570      m2 = GetAsanChunkByAddr(addr - l);
571      if (m2 == m1) continue;  // Still the same chunk.
572      break;
573    }
574    if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
575      m1 = ChooseChunk(addr, m2, m1);
576  }
577  return AsanChunkView(m1);
578}
579
580void AsanThreadLocalMallocStorage::CommitBack() {
581  AllocatorCache *ac = GetAllocatorCache(this);
582  quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
583  allocator.SwallowCache(GetAllocatorCache(this));
584}
585
586void PrintInternalAllocatorStats() {
587  allocator.PrintStats();
588}
589
590SANITIZER_INTERFACE_ATTRIBUTE
591void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
592                    AllocType alloc_type) {
593  return Allocate(size, alignment, stack, alloc_type);
594}
595
596SANITIZER_INTERFACE_ATTRIBUTE
597void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
598  Deallocate(ptr, stack, alloc_type);
599}
600
601SANITIZER_INTERFACE_ATTRIBUTE
602void *asan_malloc(uptr size, StackTrace *stack) {
603  return Allocate(size, 8, stack, FROM_MALLOC);
604}
605
606void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
607  if (CallocShouldReturnNullDueToOverflow(size, nmemb)) return 0;
608  void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
609  if (ptr)
610    REAL(memset)(ptr, 0, nmemb * size);
611  return ptr;
612}
613
614void *asan_realloc(void *p, uptr size, StackTrace *stack) {
615  if (p == 0 || reinterpret_cast<uptr>(p) == kReturnOnZeroMalloc)
616    return Allocate(size, 8, stack, FROM_MALLOC);
617  if (size == 0) {
618    Deallocate(p, stack, FROM_MALLOC);
619    return 0;
620  }
621  return Reallocate(p, size, stack);
622}
623
624void *asan_valloc(uptr size, StackTrace *stack) {
625  return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC);
626}
627
628void *asan_pvalloc(uptr size, StackTrace *stack) {
629  uptr PageSize = GetPageSizeCached();
630  size = RoundUpTo(size, PageSize);
631  if (size == 0) {
632    // pvalloc(0) should allocate one page.
633    size = PageSize;
634  }
635  return Allocate(size, PageSize, stack, FROM_MALLOC);
636}
637
638int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
639                        StackTrace *stack) {
640  void *ptr = Allocate(size, alignment, stack, FROM_MALLOC);
641  CHECK(IsAligned((uptr)ptr, alignment));
642  *memptr = ptr;
643  return 0;
644}
645
646uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
647  CHECK(stack);
648  if (ptr == 0) return 0;
649  uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
650  if (flags()->check_malloc_usable_size && (usable_size == 0))
651    ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
652  return usable_size;
653}
654
655uptr asan_mz_size(const void *ptr) {
656  UNIMPLEMENTED();
657  return 0;
658}
659
660void asan_mz_force_lock() {
661  UNIMPLEMENTED();
662}
663
664void asan_mz_force_unlock() {
665  UNIMPLEMENTED();
666}
667
668}  // namespace __asan
669
670// ---------------------- Interface ---------------- {{{1
671using namespace __asan;  // NOLINT
672
673// ASan allocator doesn't reserve extra bytes, so normally we would
674// just return "size". We don't want to expose our redzone sizes, etc here.
675uptr __asan_get_estimated_allocated_size(uptr size) {
676  return size;
677}
678
679bool __asan_get_ownership(const void *p) {
680  uptr ptr = reinterpret_cast<uptr>(p);
681  return (ptr == kReturnOnZeroMalloc) || (AllocationSize(ptr) > 0);
682}
683
684uptr __asan_get_allocated_size(const void *p) {
685  if (p == 0) return 0;
686  uptr ptr = reinterpret_cast<uptr>(p);
687  uptr allocated_size = AllocationSize(ptr);
688  // Die if p is not malloced or if it is already freed.
689  if (allocated_size == 0 && ptr != kReturnOnZeroMalloc) {
690    GET_STACK_TRACE_FATAL_HERE;
691    ReportAsanGetAllocatedSizeNotOwned(ptr, &stack);
692  }
693  return allocated_size;
694}
695
696#if !SANITIZER_SUPPORTS_WEAK_HOOKS
697// Provide default (no-op) implementation of malloc hooks.
698extern "C" {
699SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
700void __asan_malloc_hook(void *ptr, uptr size) {
701  (void)ptr;
702  (void)size;
703}
704SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
705void __asan_free_hook(void *ptr) {
706  (void)ptr;
707}
708}  // extern "C"
709#endif
710
711
712#endif  // ASAN_ALLOCATOR_VERSION
713