asan_allocator2.cc revision d9def29fe0dc8fc70ef270dcc1a266ad9257ec1f
1//===-- asan_allocator2.cc ------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12// Implementation of ASan's memory allocator, 2-nd version.
13// This variant uses the allocator from sanitizer_common, i.e. the one shared
14// with ThreadSanitizer and MemorySanitizer.
15//
16//===----------------------------------------------------------------------===//
17#include "asan_allocator.h"
18
19#include "asan_mapping.h"
20#include "asan_poisoning.h"
21#include "asan_report.h"
22#include "asan_thread.h"
23#include "sanitizer_common/sanitizer_allocator.h"
24#include "sanitizer_common/sanitizer_flags.h"
25#include "sanitizer_common/sanitizer_internal_defs.h"
26#include "sanitizer_common/sanitizer_list.h"
27#include "sanitizer_common/sanitizer_stackdepot.h"
28#include "sanitizer_common/sanitizer_quarantine.h"
29#include "lsan/lsan_common.h"
30
31namespace __asan {
32
33struct AsanMapUnmapCallback {
34  void OnMap(uptr p, uptr size) const {
35    PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
36    // Statistics.
37    AsanStats &thread_stats = GetCurrentThreadStats();
38    thread_stats.mmaps++;
39    thread_stats.mmaped += size;
40  }
41  void OnUnmap(uptr p, uptr size) const {
42    PoisonShadow(p, size, 0);
43    // We are about to unmap a chunk of user memory.
44    // Mark the corresponding shadow memory as not needed.
45    // Since asan's mapping is compacting, the shadow chunk may be
46    // not page-aligned, so we only flush the page-aligned portion.
47    uptr page_size = GetPageSizeCached();
48    uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size);
49    uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size);
50    FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
51    // Statistics.
52    AsanStats &thread_stats = GetCurrentThreadStats();
53    thread_stats.munmaps++;
54    thread_stats.munmaped += size;
55  }
56};
57
58#if SANITIZER_WORDSIZE == 64
59#if defined(__powerpc64__)
60const uptr kAllocatorSpace =  0xa0000000000ULL;
61const uptr kAllocatorSize  =  0x20000000000ULL;  // 2T.
62#else
63const uptr kAllocatorSpace = 0x600000000000ULL;
64const uptr kAllocatorSize  =  0x40000000000ULL;  // 4T.
65#endif
66typedef DefaultSizeClassMap SizeClassMap;
67typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
68    SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
69#elif SANITIZER_WORDSIZE == 32
70static const u64 kAddressSpaceSize = 1ULL << 32;
71typedef CompactSizeClassMap SizeClassMap;
72static const uptr kRegionSizeLog = 20;
73static const uptr kFlatByteMapSize = kAddressSpaceSize >> kRegionSizeLog;
74typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
75  SizeClassMap, kRegionSizeLog,
76  FlatByteMap<kFlatByteMapSize>,
77  AsanMapUnmapCallback> PrimaryAllocator;
78#endif
79
80typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
81typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
82typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
83    SecondaryAllocator> Allocator;
84
85// We can not use THREADLOCAL because it is not supported on some of the
86// platforms we care about (OSX 10.6, Android).
87// static THREADLOCAL AllocatorCache cache;
88AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
89  CHECK(ms);
90  CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
91  return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
92}
93
94static Allocator allocator;
95
96static const uptr kMaxAllowedMallocSize =
97  FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
98
99static const uptr kMaxThreadLocalQuarantine =
100  FIRST_32_SECOND_64(1 << 18, 1 << 20);
101
102// Every chunk of memory allocated by this allocator can be in one of 3 states:
103// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
104// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
105// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
106enum {
107  CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
108  CHUNK_ALLOCATED  = 2,
109  CHUNK_QUARANTINE = 3
110};
111
112// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
113// We use adaptive redzones: for larger allocation larger redzones are used.
114static u32 RZLog2Size(u32 rz_log) {
115  CHECK_LT(rz_log, 8);
116  return 16 << rz_log;
117}
118
119static u32 RZSize2Log(u32 rz_size) {
120  CHECK_GE(rz_size, 16);
121  CHECK_LE(rz_size, 2048);
122  CHECK(IsPowerOfTwo(rz_size));
123  u32 res = Log2(rz_size) - 4;
124  CHECK_EQ(rz_size, RZLog2Size(res));
125  return res;
126}
127
128static uptr ComputeRZLog(uptr user_requested_size) {
129  u32 rz_log =
130    user_requested_size <= 64        - 16   ? 0 :
131    user_requested_size <= 128       - 32   ? 1 :
132    user_requested_size <= 512       - 64   ? 2 :
133    user_requested_size <= 4096      - 128  ? 3 :
134    user_requested_size <= (1 << 14) - 256  ? 4 :
135    user_requested_size <= (1 << 15) - 512  ? 5 :
136    user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
137  return Max(rz_log, RZSize2Log(flags()->redzone));
138}
139
140// The memory chunk allocated from the underlying allocator looks like this:
141// L L L L L L H H U U U U U U R R
142//   L -- left redzone words (0 or more bytes)
143//   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
144//   U -- user memory.
145//   R -- right redzone (0 or more bytes)
146// ChunkBase consists of ChunkHeader and other bytes that overlap with user
147// memory.
148
149// If the left redzone is greater than the ChunkHeader size we store a magic
150// value in the first uptr word of the memory block and store the address of
151// ChunkBase in the next uptr.
152// M B L L L L L L L L L  H H U U U U U U
153//   |                    ^
154//   ---------------------|
155//   M -- magic value kAllocBegMagic
156//   B -- address of ChunkHeader pointing to the first 'H'
157static const uptr kAllocBegMagic = 0xCC6E96B9;
158
159struct ChunkHeader {
160  // 1-st 8 bytes.
161  u32 chunk_state       : 8;  // Must be first.
162  u32 alloc_tid         : 24;
163
164  u32 free_tid          : 24;
165  u32 from_memalign     : 1;
166  u32 alloc_type        : 2;
167  u32 rz_log            : 3;
168  u32 lsan_tag          : 2;
169  // 2-nd 8 bytes
170  // This field is used for small sizes. For large sizes it is equal to
171  // SizeClassMap::kMaxSize and the actual size is stored in the
172  // SecondaryAllocator's metadata.
173  u32 user_requested_size;
174  u32 alloc_context_id;
175};
176
177struct ChunkBase : ChunkHeader {
178  // Header2, intersects with user memory.
179  u32 free_context_id;
180};
181
182static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
183static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
184COMPILER_CHECK(kChunkHeaderSize == 16);
185COMPILER_CHECK(kChunkHeader2Size <= 16);
186
187struct AsanChunk: ChunkBase {
188  uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
189  uptr UsedSize() {
190    if (user_requested_size != SizeClassMap::kMaxSize)
191      return user_requested_size;
192    return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg()));
193  }
194  void *AllocBeg() {
195    if (from_memalign)
196      return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
197    return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
198  }
199  // If we don't use stack depot, we store the alloc/free stack traces
200  // in the chunk itself.
201  u32 *AllocStackBeg() {
202    return (u32*)(Beg() - RZLog2Size(rz_log));
203  }
204  uptr AllocStackSize() {
205    CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
206    return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
207  }
208  u32 *FreeStackBeg() {
209    return (u32*)(Beg() + kChunkHeader2Size);
210  }
211  uptr FreeStackSize() {
212    if (user_requested_size < kChunkHeader2Size) return 0;
213    uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
214    return (available - kChunkHeader2Size) / sizeof(u32);
215  }
216  bool AddrIsInside(uptr addr) {
217    return (addr >= Beg()) && (addr < Beg() + UsedSize());
218  }
219};
220
221bool AsanChunkView::IsValid() {
222  return chunk_ != 0 && chunk_->chunk_state != CHUNK_AVAILABLE;
223}
224uptr AsanChunkView::Beg() { return chunk_->Beg(); }
225uptr AsanChunkView::End() { return Beg() + UsedSize(); }
226uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
227uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
228uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
229
230static void GetStackTraceFromId(u32 id, StackTrace *stack) {
231  CHECK(id);
232  uptr size = 0;
233  const uptr *trace = StackDepotGet(id, &size);
234  CHECK(trace);
235  stack->CopyFrom(trace, size);
236}
237
238void AsanChunkView::GetAllocStack(StackTrace *stack) {
239  if (flags()->use_stack_depot)
240    GetStackTraceFromId(chunk_->alloc_context_id, stack);
241  else
242    StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
243                                chunk_->AllocStackSize());
244}
245
246void AsanChunkView::GetFreeStack(StackTrace *stack) {
247  if (flags()->use_stack_depot)
248    GetStackTraceFromId(chunk_->free_context_id, stack);
249  else
250    StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
251                                chunk_->FreeStackSize());
252}
253
254struct QuarantineCallback;
255typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
256typedef AsanQuarantine::Cache QuarantineCache;
257static AsanQuarantine quarantine(LINKER_INITIALIZED);
258static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
259static AllocatorCache fallback_allocator_cache;
260static SpinMutex fallback_mutex;
261
262QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
263  CHECK(ms);
264  CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
265  return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
266}
267
268struct QuarantineCallback {
269  explicit QuarantineCallback(AllocatorCache *cache)
270      : cache_(cache) {
271  }
272
273  void Recycle(AsanChunk *m) {
274    CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
275    atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed);
276    CHECK_NE(m->alloc_tid, kInvalidTid);
277    CHECK_NE(m->free_tid, kInvalidTid);
278    PoisonShadow(m->Beg(),
279                 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
280                 kAsanHeapLeftRedzoneMagic);
281    void *p = reinterpret_cast<void *>(m->AllocBeg());
282    if (p != m) {
283      uptr *alloc_magic = reinterpret_cast<uptr *>(p);
284      CHECK_EQ(alloc_magic[0], kAllocBegMagic);
285      // Clear the magic value, as allocator internals may overwrite the
286      // contents of deallocated chunk, confusing GetAsanChunk lookup.
287      alloc_magic[0] = 0;
288      CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m));
289    }
290
291    // Statistics.
292    AsanStats &thread_stats = GetCurrentThreadStats();
293    thread_stats.real_frees++;
294    thread_stats.really_freed += m->UsedSize();
295
296    allocator.Deallocate(cache_, p);
297  }
298
299  void *Allocate(uptr size) {
300    return allocator.Allocate(cache_, size, 1, false);
301  }
302
303  void Deallocate(void *p) {
304    allocator.Deallocate(cache_, p);
305  }
306
307  AllocatorCache *cache_;
308};
309
310void InitializeAllocator() {
311  allocator.Init();
312  quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
313}
314
315static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
316                      AllocType alloc_type, bool can_fill) {
317  if (!asan_inited)
318    __asan_init();
319  Flags &fl = *flags();
320  CHECK(stack);
321  const uptr min_alignment = SHADOW_GRANULARITY;
322  if (alignment < min_alignment)
323    alignment = min_alignment;
324  if (size == 0) {
325    // We'd be happy to avoid allocating memory for zero-size requests, but
326    // some programs/tests depend on this behavior and assume that malloc would
327    // not return NULL even for zero-size allocations. Moreover, it looks like
328    // operator new should never return NULL, and results of consecutive "new"
329    // calls must be different even if the allocated size is zero.
330    size = 1;
331  }
332  CHECK(IsPowerOfTwo(alignment));
333  uptr rz_log = ComputeRZLog(size);
334  uptr rz_size = RZLog2Size(rz_log);
335  uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
336  uptr needed_size = rounded_size + rz_size;
337  if (alignment > min_alignment)
338    needed_size += alignment;
339  bool using_primary_allocator = true;
340  // If we are allocating from the secondary allocator, there will be no
341  // automatic right redzone, so add the right redzone manually.
342  if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
343    needed_size += rz_size;
344    using_primary_allocator = false;
345  }
346  CHECK(IsAligned(needed_size, min_alignment));
347  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
348    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
349           (void*)size);
350    return AllocatorReturnNull();
351  }
352
353  AsanThread *t = GetCurrentThread();
354  void *allocated;
355  if (t) {
356    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
357    allocated = allocator.Allocate(cache, needed_size, 8, false);
358  } else {
359    SpinMutexLock l(&fallback_mutex);
360    AllocatorCache *cache = &fallback_allocator_cache;
361    allocated = allocator.Allocate(cache, needed_size, 8, false);
362  }
363  uptr alloc_beg = reinterpret_cast<uptr>(allocated);
364  uptr alloc_end = alloc_beg + needed_size;
365  uptr beg_plus_redzone = alloc_beg + rz_size;
366  uptr user_beg = beg_plus_redzone;
367  if (!IsAligned(user_beg, alignment))
368    user_beg = RoundUpTo(user_beg, alignment);
369  uptr user_end = user_beg + size;
370  CHECK_LE(user_end, alloc_end);
371  uptr chunk_beg = user_beg - kChunkHeaderSize;
372  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
373  m->alloc_type = alloc_type;
374  m->rz_log = rz_log;
375  u32 alloc_tid = t ? t->tid() : 0;
376  m->alloc_tid = alloc_tid;
377  CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
378  m->free_tid = kInvalidTid;
379  m->from_memalign = user_beg != beg_plus_redzone;
380  if (alloc_beg != chunk_beg) {
381    CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
382    reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
383    reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
384  }
385  if (using_primary_allocator) {
386    CHECK(size);
387    m->user_requested_size = size;
388    CHECK(allocator.FromPrimary(allocated));
389  } else {
390    CHECK(!allocator.FromPrimary(allocated));
391    m->user_requested_size = SizeClassMap::kMaxSize;
392    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
393    meta[0] = size;
394    meta[1] = chunk_beg;
395  }
396
397  if (fl.use_stack_depot) {
398    m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
399  } else {
400    m->alloc_context_id = 0;
401    StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
402  }
403
404  uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
405  // Unpoison the bulk of the memory region.
406  if (size_rounded_down_to_granularity)
407    PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
408  // Deal with the end of the region if size is not aligned to granularity.
409  if (size != size_rounded_down_to_granularity && fl.poison_heap) {
410    u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
411    *shadow = size & (SHADOW_GRANULARITY - 1);
412  }
413
414  AsanStats &thread_stats = GetCurrentThreadStats();
415  thread_stats.mallocs++;
416  thread_stats.malloced += size;
417  thread_stats.malloced_redzones += needed_size - size;
418  uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
419  thread_stats.malloced_by_size[class_id]++;
420  if (needed_size > SizeClassMap::kMaxSize)
421    thread_stats.malloc_large++;
422
423  void *res = reinterpret_cast<void *>(user_beg);
424  if (can_fill && fl.max_malloc_fill_size) {
425    uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
426    REAL(memset)(res, fl.malloc_fill_byte, fill_size);
427  }
428#if CAN_SANITIZE_LEAKS
429  m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
430                                               : __lsan::kDirectlyLeaked;
431#endif
432  // Must be the last mutation of metadata in this function.
433  atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
434  ASAN_MALLOC_HOOK(res, size);
435  return res;
436}
437
438static void ReportInvalidFree(void *ptr, u8 chunk_state, StackTrace *stack) {
439  if (chunk_state == CHUNK_QUARANTINE)
440    ReportDoubleFree((uptr)ptr, stack);
441  else
442    ReportFreeNotMalloced((uptr)ptr, stack);
443}
444
445static void AtomicallySetQuarantineFlag(AsanChunk *m,
446                                        void *ptr, StackTrace *stack) {
447  u8 old_chunk_state = CHUNK_ALLOCATED;
448  // Flip the chunk_state atomically to avoid race on double-free.
449  if (!atomic_compare_exchange_strong((atomic_uint8_t*)m, &old_chunk_state,
450                                      CHUNK_QUARANTINE, memory_order_acquire))
451    ReportInvalidFree(ptr, old_chunk_state, stack);
452  CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
453}
454
455// Expects the chunk to already be marked as quarantined by using
456// AtomicallySetQuarantineFlag.
457static void QuarantineChunk(AsanChunk *m, void *ptr,
458                            StackTrace *stack, AllocType alloc_type) {
459  CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
460
461  if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
462    ReportAllocTypeMismatch((uptr)ptr, stack,
463                            (AllocType)m->alloc_type, (AllocType)alloc_type);
464
465  CHECK_GE(m->alloc_tid, 0);
466  if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
467    CHECK_EQ(m->free_tid, kInvalidTid);
468  AsanThread *t = GetCurrentThread();
469  m->free_tid = t ? t->tid() : 0;
470  if (flags()->use_stack_depot) {
471    m->free_context_id = StackDepotPut(stack->trace, stack->size);
472  } else {
473    m->free_context_id = 0;
474    StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
475  }
476  // Poison the region.
477  PoisonShadow(m->Beg(),
478               RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
479               kAsanHeapFreeMagic);
480
481  AsanStats &thread_stats = GetCurrentThreadStats();
482  thread_stats.frees++;
483  thread_stats.freed += m->UsedSize();
484
485  // Push into quarantine.
486  if (t) {
487    AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
488    AllocatorCache *ac = GetAllocatorCache(ms);
489    quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
490                   m, m->UsedSize());
491  } else {
492    SpinMutexLock l(&fallback_mutex);
493    AllocatorCache *ac = &fallback_allocator_cache;
494    quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
495                   m, m->UsedSize());
496  }
497}
498
499static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
500  uptr p = reinterpret_cast<uptr>(ptr);
501  if (p == 0) return;
502
503  uptr chunk_beg = p - kChunkHeaderSize;
504  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
505  ASAN_FREE_HOOK(ptr);
506  // Must mark the chunk as quarantined before any changes to its metadata.
507  AtomicallySetQuarantineFlag(m, ptr, stack);
508  QuarantineChunk(m, ptr, stack, alloc_type);
509}
510
511static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
512  CHECK(old_ptr && new_size);
513  uptr p = reinterpret_cast<uptr>(old_ptr);
514  uptr chunk_beg = p - kChunkHeaderSize;
515  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
516
517  AsanStats &thread_stats = GetCurrentThreadStats();
518  thread_stats.reallocs++;
519  thread_stats.realloced += new_size;
520
521  void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
522  if (new_ptr) {
523    u8 chunk_state = m->chunk_state;
524    if (chunk_state != CHUNK_ALLOCATED)
525      ReportInvalidFree(old_ptr, chunk_state, stack);
526    CHECK_NE(REAL(memcpy), (void*)0);
527    uptr memcpy_size = Min(new_size, m->UsedSize());
528    // If realloc() races with free(), we may start copying freed memory.
529    // However, we will report racy double-free later anyway.
530    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
531    Deallocate(old_ptr, stack, FROM_MALLOC);
532  }
533  return new_ptr;
534}
535
536// Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
537static AsanChunk *GetAsanChunk(void *alloc_beg) {
538  if (!alloc_beg) return 0;
539  if (!allocator.FromPrimary(alloc_beg)) {
540    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
541    AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
542    return m;
543  }
544  uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
545  if (alloc_magic[0] == kAllocBegMagic)
546    return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
547  return reinterpret_cast<AsanChunk *>(alloc_beg);
548}
549
550static AsanChunk *GetAsanChunkByAddr(uptr p) {
551  void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
552  return GetAsanChunk(alloc_beg);
553}
554
555// Allocator must be locked when this function is called.
556static AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
557  void *alloc_beg =
558      allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
559  return GetAsanChunk(alloc_beg);
560}
561
562static uptr AllocationSize(uptr p) {
563  AsanChunk *m = GetAsanChunkByAddr(p);
564  if (!m) return 0;
565  if (m->chunk_state != CHUNK_ALLOCATED) return 0;
566  if (m->Beg() != p) return 0;
567  return m->UsedSize();
568}
569
570// We have an address between two chunks, and we want to report just one.
571AsanChunk *ChooseChunk(uptr addr,
572                       AsanChunk *left_chunk, AsanChunk *right_chunk) {
573  // Prefer an allocated chunk over freed chunk and freed chunk
574  // over available chunk.
575  if (left_chunk->chunk_state != right_chunk->chunk_state) {
576    if (left_chunk->chunk_state == CHUNK_ALLOCATED)
577      return left_chunk;
578    if (right_chunk->chunk_state == CHUNK_ALLOCATED)
579      return right_chunk;
580    if (left_chunk->chunk_state == CHUNK_QUARANTINE)
581      return left_chunk;
582    if (right_chunk->chunk_state == CHUNK_QUARANTINE)
583      return right_chunk;
584  }
585  // Same chunk_state: choose based on offset.
586  sptr l_offset = 0, r_offset = 0;
587  CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
588  CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
589  if (l_offset < r_offset)
590    return left_chunk;
591  return right_chunk;
592}
593
594AsanChunkView FindHeapChunkByAddress(uptr addr) {
595  AsanChunk *m1 = GetAsanChunkByAddr(addr);
596  if (!m1) return AsanChunkView(m1);
597  sptr offset = 0;
598  if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
599    // The address is in the chunk's left redzone, so maybe it is actually
600    // a right buffer overflow from the other chunk to the left.
601    // Search a bit to the left to see if there is another chunk.
602    AsanChunk *m2 = 0;
603    for (uptr l = 1; l < GetPageSizeCached(); l++) {
604      m2 = GetAsanChunkByAddr(addr - l);
605      if (m2 == m1) continue;  // Still the same chunk.
606      break;
607    }
608    if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
609      m1 = ChooseChunk(addr, m2, m1);
610  }
611  return AsanChunkView(m1);
612}
613
614void AsanThreadLocalMallocStorage::CommitBack() {
615  AllocatorCache *ac = GetAllocatorCache(this);
616  quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
617  allocator.SwallowCache(GetAllocatorCache(this));
618}
619
620void PrintInternalAllocatorStats() {
621  allocator.PrintStats();
622}
623
624void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
625                    AllocType alloc_type) {
626  return Allocate(size, alignment, stack, alloc_type, true);
627}
628
629void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
630  Deallocate(ptr, stack, alloc_type);
631}
632
633void *asan_malloc(uptr size, StackTrace *stack) {
634  return Allocate(size, 8, stack, FROM_MALLOC, true);
635}
636
637void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
638  if (CallocShouldReturnNullDueToOverflow(size, nmemb))
639    return AllocatorReturnNull();
640  void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
641  // If the memory comes from the secondary allocator no need to clear it
642  // as it comes directly from mmap.
643  if (ptr && allocator.FromPrimary(ptr))
644    REAL(memset)(ptr, 0, nmemb * size);
645  return ptr;
646}
647
648void *asan_realloc(void *p, uptr size, StackTrace *stack) {
649  if (p == 0)
650    return Allocate(size, 8, stack, FROM_MALLOC, true);
651  if (size == 0) {
652    Deallocate(p, stack, FROM_MALLOC);
653    return 0;
654  }
655  return Reallocate(p, size, stack);
656}
657
658void *asan_valloc(uptr size, StackTrace *stack) {
659  return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true);
660}
661
662void *asan_pvalloc(uptr size, StackTrace *stack) {
663  uptr PageSize = GetPageSizeCached();
664  size = RoundUpTo(size, PageSize);
665  if (size == 0) {
666    // pvalloc(0) should allocate one page.
667    size = PageSize;
668  }
669  return Allocate(size, PageSize, stack, FROM_MALLOC, true);
670}
671
672int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
673                        StackTrace *stack) {
674  void *ptr = Allocate(size, alignment, stack, FROM_MALLOC, true);
675  CHECK(IsAligned((uptr)ptr, alignment));
676  *memptr = ptr;
677  return 0;
678}
679
680uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
681  CHECK(stack);
682  if (ptr == 0) return 0;
683  uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
684  if (flags()->check_malloc_usable_size && (usable_size == 0))
685    ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
686  return usable_size;
687}
688
689uptr asan_mz_size(const void *ptr) {
690  return AllocationSize(reinterpret_cast<uptr>(ptr));
691}
692
693void asan_mz_force_lock() {
694  allocator.ForceLock();
695  fallback_mutex.Lock();
696}
697
698void asan_mz_force_unlock() {
699  fallback_mutex.Unlock();
700  allocator.ForceUnlock();
701}
702
703}  // namespace __asan
704
705// --- Implementation of LSan-specific functions --- {{{1
706namespace __lsan {
707void LockAllocator() {
708  __asan::allocator.ForceLock();
709}
710
711void UnlockAllocator() {
712  __asan::allocator.ForceUnlock();
713}
714
715void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
716  *begin = (uptr)&__asan::allocator;
717  *end = *begin + sizeof(__asan::allocator);
718}
719
720uptr PointsIntoChunk(void* p) {
721  uptr addr = reinterpret_cast<uptr>(p);
722  __asan::AsanChunk *m = __asan::GetAsanChunkByAddrFastLocked(addr);
723  if (!m) return 0;
724  uptr chunk = m->Beg();
725  if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr))
726    return chunk;
727  return 0;
728}
729
730uptr GetUserBegin(uptr chunk) {
731  __asan::AsanChunk *m =
732      __asan::GetAsanChunkByAddrFastLocked(chunk);
733  CHECK(m);
734  return m->Beg();
735}
736
737LsanMetadata::LsanMetadata(uptr chunk) {
738  metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
739}
740
741bool LsanMetadata::allocated() const {
742  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
743  return m->chunk_state == __asan::CHUNK_ALLOCATED;
744}
745
746ChunkTag LsanMetadata::tag() const {
747  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
748  return static_cast<ChunkTag>(m->lsan_tag);
749}
750
751void LsanMetadata::set_tag(ChunkTag value) {
752  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
753  m->lsan_tag = value;
754}
755
756uptr LsanMetadata::requested_size() const {
757  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
758  return m->UsedSize();
759}
760
761u32 LsanMetadata::stack_trace_id() const {
762  __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
763  return m->alloc_context_id;
764}
765
766void ForEachChunk(ForEachChunkCallback callback, void *arg) {
767  __asan::allocator.ForEachChunk(callback, arg);
768}
769
770IgnoreObjectResult IgnoreObjectLocked(const void *p) {
771  uptr addr = reinterpret_cast<uptr>(p);
772  __asan::AsanChunk *m = __asan::GetAsanChunkByAddr(addr);
773  if (!m) return kIgnoreObjectInvalid;
774  if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
775    if (m->lsan_tag == kIgnored)
776      return kIgnoreObjectAlreadyIgnored;
777    m->lsan_tag = __lsan::kIgnored;
778    return kIgnoreObjectSuccess;
779  } else {
780    return kIgnoreObjectInvalid;
781  }
782}
783}  // namespace __lsan
784
785// ---------------------- Interface ---------------- {{{1
786using namespace __asan;  // NOLINT
787
788// ASan allocator doesn't reserve extra bytes, so normally we would
789// just return "size". We don't want to expose our redzone sizes, etc here.
790uptr __asan_get_estimated_allocated_size(uptr size) {
791  return size;
792}
793
794bool __asan_get_ownership(const void *p) {
795  uptr ptr = reinterpret_cast<uptr>(p);
796  return (AllocationSize(ptr) > 0);
797}
798
799uptr __asan_get_allocated_size(const void *p) {
800  if (p == 0) return 0;
801  uptr ptr = reinterpret_cast<uptr>(p);
802  uptr allocated_size = AllocationSize(ptr);
803  // Die if p is not malloced or if it is already freed.
804  if (allocated_size == 0) {
805    GET_STACK_TRACE_FATAL_HERE;
806    ReportAsanGetAllocatedSizeNotOwned(ptr, &stack);
807  }
808  return allocated_size;
809}
810
811#if !SANITIZER_SUPPORTS_WEAK_HOOKS
812// Provide default (no-op) implementation of malloc hooks.
813extern "C" {
814SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
815void __asan_malloc_hook(void *ptr, uptr size) {
816  (void)ptr;
817  (void)size;
818}
819SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
820void __asan_free_hook(void *ptr) {
821  (void)ptr;
822}
823}  // extern "C"
824#endif
825