asan_allocator2.cc revision e5ab9688b623a5a0150c7eae1ec1caaf06d44758
1//===-- asan_allocator2.cc ------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12// Implementation of ASan's memory allocator, 2-nd version.
13// This variant uses the allocator from sanitizer_common, i.e. the one shared
14// with ThreadSanitizer and MemorySanitizer.
15//
16// Status: under development, not enabled by default yet.
17//===----------------------------------------------------------------------===//
18#include "asan_allocator.h"
19#if ASAN_ALLOCATOR_VERSION == 2
20
21#include "asan_mapping.h"
22#include "asan_report.h"
23#include "asan_thread.h"
24#include "asan_thread_registry.h"
25#include "sanitizer/asan_interface.h"
26#include "sanitizer_common/sanitizer_allocator.h"
27#include "sanitizer_common/sanitizer_internal_defs.h"
28#include "sanitizer_common/sanitizer_list.h"
29#include "sanitizer_common/sanitizer_stackdepot.h"
30#include "sanitizer_common/sanitizer_quarantine.h"
31
32namespace __asan {
33
34struct AsanMapUnmapCallback {
35  void OnMap(uptr p, uptr size) const {
36    PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
37    // Statistics.
38    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
39    thread_stats.mmaps++;
40    thread_stats.mmaped += size;
41  }
42  void OnUnmap(uptr p, uptr size) const {
43    PoisonShadow(p, size, 0);
44    // We are about to unmap a chunk of user memory.
45    // Mark the corresponding shadow memory as not needed.
46    // Since asan's mapping is compacting, the shadow chunk may be
47    // not page-aligned, so we only flush the page-aligned portion.
48    uptr page_size = GetPageSizeCached();
49    uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size);
50    uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size);
51    FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
52    // Statistics.
53    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
54    thread_stats.munmaps++;
55    thread_stats.munmaped += size;
56  }
57};
58
59#if SANITIZER_WORDSIZE == 64
60#if defined(__powerpc64__)
61const uptr kAllocatorSpace =  0xa0000000000ULL;
62#else
63const uptr kAllocatorSpace = 0x600000000000ULL;
64#endif
65const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T.
66typedef DefaultSizeClassMap SizeClassMap;
67typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
68    SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
69#elif SANITIZER_WORDSIZE == 32
70static const u64 kAddressSpaceSize = 1ULL << 32;
71typedef CompactSizeClassMap SizeClassMap;
72typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
73  SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
74#endif
75
76typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
77typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
78typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
79    SecondaryAllocator> Allocator;
80
81// We can not use THREADLOCAL because it is not supported on some of the
82// platforms we care about (OSX 10.6, Android).
83// static THREADLOCAL AllocatorCache cache;
84AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
85  CHECK(ms);
86  CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
87  return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
88}
89
90static Allocator allocator;
91
92static const uptr kMaxAllowedMallocSize =
93  FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
94
95static const uptr kMaxThreadLocalQuarantine =
96  FIRST_32_SECOND_64(1 << 18, 1 << 20);
97
98static const uptr kReturnOnZeroMalloc = 2048;  // Zero page is protected.
99
100// Every chunk of memory allocated by this allocator can be in one of 3 states:
101// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
102// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
103// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
104enum {
105  CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
106  CHUNK_ALLOCATED  = 2,
107  CHUNK_QUARANTINE = 3
108};
109
110// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
111// We use adaptive redzones: for larger allocation larger redzones are used.
112static u32 RZLog2Size(u32 rz_log) {
113  CHECK_LT(rz_log, 8);
114  return 16 << rz_log;
115}
116
117static u32 RZSize2Log(u32 rz_size) {
118  CHECK_GE(rz_size, 16);
119  CHECK_LE(rz_size, 2048);
120  CHECK(IsPowerOfTwo(rz_size));
121  u32 res = __builtin_ctz(rz_size) - 4;
122  CHECK_EQ(rz_size, RZLog2Size(res));
123  return res;
124}
125
126static uptr ComputeRZLog(uptr user_requested_size) {
127  u32 rz_log =
128    user_requested_size <= 64        - 16   ? 0 :
129    user_requested_size <= 128       - 32   ? 1 :
130    user_requested_size <= 512       - 64   ? 2 :
131    user_requested_size <= 4096      - 128  ? 3 :
132    user_requested_size <= (1 << 14) - 256  ? 4 :
133    user_requested_size <= (1 << 15) - 512  ? 5 :
134    user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
135  return Max(rz_log, RZSize2Log(flags()->redzone));
136}
137
138// The memory chunk allocated from the underlying allocator looks like this:
139// L L L L L L H H U U U U U U R R
140//   L -- left redzone words (0 or more bytes)
141//   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
142//   U -- user memory.
143//   R -- right redzone (0 or more bytes)
144// ChunkBase consists of ChunkHeader and other bytes that overlap with user
145// memory.
146
147// If a memory chunk is allocated by memalign and we had to increase the
148// allocation size to achieve the proper alignment, then we store this magic
149// value in the first uptr word of the memory block and store the address of
150// ChunkBase in the next uptr.
151// M B ? ? ? L L L L L L  H H U U U U U U
152//   M -- magic value kMemalignMagic
153//   B -- address of ChunkHeader pointing to the first 'H'
154static const uptr kMemalignMagic = 0xCC6E96B9;
155
156struct ChunkHeader {
157  // 1-st 8 bytes.
158  u32 chunk_state       : 8;  // Must be first.
159  u32 alloc_tid         : 24;
160
161  u32 free_tid          : 24;
162  u32 from_memalign     : 1;
163  u32 alloc_type        : 2;
164  u32 rz_log            : 3;
165  // 2-nd 8 bytes
166  // This field is used for small sizes. For large sizes it is equal to
167  // SizeClassMap::kMaxSize and the actual size is stored in the
168  // SecondaryAllocator's metadata.
169  u32 user_requested_size;
170  u32 alloc_context_id;
171};
172
173struct ChunkBase : ChunkHeader {
174  // Header2, intersects with user memory.
175  AsanChunk *next;
176  u32 free_context_id;
177};
178
179static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
180static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
181COMPILER_CHECK(kChunkHeaderSize == 16);
182COMPILER_CHECK(kChunkHeader2Size <= 16);
183
184struct AsanChunk: ChunkBase {
185  uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
186  uptr UsedSize() {
187    if (user_requested_size != SizeClassMap::kMaxSize)
188      return user_requested_size;
189    return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg()));
190  }
191  void *AllocBeg() {
192    if (from_memalign)
193      return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
194    return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
195  }
196  // We store the alloc/free stack traces in the chunk itself.
197  u32 *AllocStackBeg() {
198    return (u32*)(Beg() - RZLog2Size(rz_log));
199  }
200  uptr AllocStackSize() {
201    CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
202    return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
203  }
204  u32 *FreeStackBeg() {
205    return (u32*)(Beg() + kChunkHeader2Size);
206  }
207  uptr FreeStackSize() {
208    if (user_requested_size < kChunkHeader2Size) return 0;
209    uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
210    return (available - kChunkHeader2Size) / sizeof(u32);
211  }
212};
213
214uptr AsanChunkView::Beg() { return chunk_->Beg(); }
215uptr AsanChunkView::End() { return Beg() + UsedSize(); }
216uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
217uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
218uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
219
220static void GetStackTraceFromId(u32 id, StackTrace *stack) {
221  CHECK(id);
222  uptr size = 0;
223  const uptr *trace = StackDepotGet(id, &size);
224  CHECK_LT(size, kStackTraceMax);
225  internal_memcpy(stack->trace, trace, sizeof(uptr) * size);
226  stack->size = size;
227}
228
229void AsanChunkView::GetAllocStack(StackTrace *stack) {
230  if (flags()->use_stack_depot)
231    GetStackTraceFromId(chunk_->alloc_context_id, stack);
232  else
233    StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
234                                chunk_->AllocStackSize());
235}
236
237void AsanChunkView::GetFreeStack(StackTrace *stack) {
238  if (flags()->use_stack_depot)
239    GetStackTraceFromId(chunk_->free_context_id, stack);
240  else
241    StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
242                                chunk_->FreeStackSize());
243}
244
245struct QuarantineCallback;
246typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
247typedef AsanQuarantine::Cache QuarantineCache;
248static AsanQuarantine quarantine(LINKER_INITIALIZED);
249static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
250static AllocatorCache fallback_allocator_cache;
251static SpinMutex fallback_mutex;
252
253QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
254  CHECK(ms);
255  CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
256  return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
257}
258
259struct QuarantineCallback {
260  explicit QuarantineCallback(AllocatorCache *cache)
261      : cache_(cache) {
262  }
263
264  void Recycle(AsanChunk *m) {
265    CHECK(m->chunk_state == CHUNK_QUARANTINE);
266    m->chunk_state = CHUNK_AVAILABLE;
267    CHECK_NE(m->alloc_tid, kInvalidTid);
268    CHECK_NE(m->free_tid, kInvalidTid);
269    PoisonShadow(m->Beg(),
270                 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
271                 kAsanHeapLeftRedzoneMagic);
272    void *p = reinterpret_cast<void *>(m->AllocBeg());
273    if (m->from_memalign) {
274      uptr *memalign_magic = reinterpret_cast<uptr *>(p);
275      CHECK_EQ(memalign_magic[0], kMemalignMagic);
276      CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m));
277    }
278
279    // Statistics.
280    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
281    thread_stats.real_frees++;
282    thread_stats.really_freed += m->UsedSize();
283
284    allocator.Deallocate(cache_, p);
285  }
286
287  void *Allocate(uptr size) {
288    return allocator.Allocate(cache_, size, 1, false);
289  }
290
291  void Deallocate(void *p) {
292    allocator.Deallocate(cache_, p);
293  }
294
295  AllocatorCache *cache_;
296};
297
298static void Init() {
299  static int inited = 0;
300  if (inited) return;
301  __asan_init();
302  inited = true;  // this must happen before any threads are created.
303  allocator.Init();
304  quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
305}
306
307static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
308                      AllocType alloc_type) {
309  Init();
310  CHECK(stack);
311  const uptr min_alignment = SHADOW_GRANULARITY;
312  if (alignment < min_alignment)
313    alignment = min_alignment;
314  if (size == 0) {
315    if (alignment <= kReturnOnZeroMalloc)
316      return reinterpret_cast<void *>(kReturnOnZeroMalloc);
317    else
318      return 0;  // 0 bytes with large alignment requested. Just return 0.
319  }
320  CHECK(IsPowerOfTwo(alignment));
321  uptr rz_log = ComputeRZLog(size);
322  uptr rz_size = RZLog2Size(rz_log);
323  uptr rounded_size = RoundUpTo(size, alignment);
324  if (rounded_size < kChunkHeader2Size)
325    rounded_size = kChunkHeader2Size;
326  uptr needed_size = rounded_size + rz_size;
327  if (alignment > min_alignment)
328    needed_size += alignment;
329  bool using_primary_allocator = true;
330  // If we are allocating from the secondary allocator, there will be no
331  // automatic right redzone, so add the right redzone manually.
332  if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
333    needed_size += rz_size;
334    using_primary_allocator = false;
335  }
336  CHECK(IsAligned(needed_size, min_alignment));
337  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
338    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
339           (void*)size);
340    return 0;
341  }
342
343  AsanThread *t = asanThreadRegistry().GetCurrent();
344  void *allocated;
345  if (t) {
346    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
347    allocated = allocator.Allocate(cache, needed_size, 8, false);
348  } else {
349    SpinMutexLock l(&fallback_mutex);
350    AllocatorCache *cache = &fallback_allocator_cache;
351    allocated = allocator.Allocate(cache, needed_size, 8, false);
352  }
353  uptr alloc_beg = reinterpret_cast<uptr>(allocated);
354  // Clear the first allocated word (an old kMemalignMagic may still be there).
355  reinterpret_cast<uptr *>(alloc_beg)[0] = 0;
356  uptr alloc_end = alloc_beg + needed_size;
357  uptr beg_plus_redzone = alloc_beg + rz_size;
358  uptr user_beg = beg_plus_redzone;
359  if (!IsAligned(user_beg, alignment))
360    user_beg = RoundUpTo(user_beg, alignment);
361  uptr user_end = user_beg + size;
362  CHECK_LE(user_end, alloc_end);
363  uptr chunk_beg = user_beg - kChunkHeaderSize;
364  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
365  m->chunk_state = CHUNK_ALLOCATED;
366  m->alloc_type = alloc_type;
367  m->rz_log = rz_log;
368  u32 alloc_tid = t ? t->tid() : 0;
369  m->alloc_tid = alloc_tid;
370  CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
371  m->free_tid = kInvalidTid;
372  m->from_memalign = user_beg != beg_plus_redzone;
373  if (m->from_memalign) {
374    CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg);
375    uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
376    memalign_magic[0] = kMemalignMagic;
377    memalign_magic[1] = chunk_beg;
378  }
379  if (using_primary_allocator) {
380    CHECK(size);
381    m->user_requested_size = size;
382    CHECK(allocator.FromPrimary(allocated));
383  } else {
384    CHECK(!allocator.FromPrimary(allocated));
385    m->user_requested_size = SizeClassMap::kMaxSize;
386    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
387    meta[0] = size;
388    meta[1] = chunk_beg;
389  }
390
391  if (flags()->use_stack_depot) {
392    m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
393  } else {
394    m->alloc_context_id = 0;
395    StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
396  }
397
398  uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
399  // Unpoison the bulk of the memory region.
400  if (size_rounded_down_to_granularity)
401    PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
402  // Deal with the end of the region if size is not aligned to granularity.
403  if (size != size_rounded_down_to_granularity && flags()->poison_heap) {
404    u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
405    *shadow = size & (SHADOW_GRANULARITY - 1);
406  }
407
408  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
409  thread_stats.mallocs++;
410  thread_stats.malloced += size;
411  thread_stats.malloced_redzones += needed_size - size;
412  uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
413  thread_stats.malloced_by_size[class_id]++;
414  if (needed_size > SizeClassMap::kMaxSize)
415    thread_stats.malloc_large++;
416
417  void *res = reinterpret_cast<void *>(user_beg);
418  ASAN_MALLOC_HOOK(res, size);
419  return res;
420}
421
422static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
423  uptr p = reinterpret_cast<uptr>(ptr);
424  if (p == 0 || p == kReturnOnZeroMalloc) return;
425  uptr chunk_beg = p - kChunkHeaderSize;
426  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
427
428  // Flip the chunk_state atomically to avoid race on double-free.
429  u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
430                                       memory_order_relaxed);
431
432  if (old_chunk_state == CHUNK_QUARANTINE)
433    ReportDoubleFree((uptr)ptr, stack);
434  else if (old_chunk_state != CHUNK_ALLOCATED)
435    ReportFreeNotMalloced((uptr)ptr, stack);
436  CHECK(old_chunk_state == CHUNK_ALLOCATED);
437  if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
438    ReportAllocTypeMismatch((uptr)ptr, stack,
439                            (AllocType)m->alloc_type, (AllocType)alloc_type);
440
441  CHECK_GE(m->alloc_tid, 0);
442  if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
443    CHECK_EQ(m->free_tid, kInvalidTid);
444  AsanThread *t = asanThreadRegistry().GetCurrent();
445  m->free_tid = t ? t->tid() : 0;
446  if (flags()->use_stack_depot) {
447    m->free_context_id = StackDepotPut(stack->trace, stack->size);
448  } else {
449    m->free_context_id = 0;
450    StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
451  }
452  CHECK(m->chunk_state == CHUNK_QUARANTINE);
453  // Poison the region.
454  PoisonShadow(m->Beg(),
455               RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
456               kAsanHeapFreeMagic);
457
458  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
459  thread_stats.frees++;
460  thread_stats.freed += m->UsedSize();
461
462  // Push into quarantine.
463  if (t) {
464    AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
465    AllocatorCache *ac = GetAllocatorCache(ms);
466    quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
467                   m, m->UsedSize());
468  } else {
469    SpinMutexLock l(&fallback_mutex);
470    AllocatorCache *ac = &fallback_allocator_cache;
471    quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
472                   m, m->UsedSize());
473  }
474
475  ASAN_FREE_HOOK(ptr);
476}
477
478static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
479  CHECK(old_ptr && new_size);
480  uptr p = reinterpret_cast<uptr>(old_ptr);
481  uptr chunk_beg = p - kChunkHeaderSize;
482  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
483
484  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
485  thread_stats.reallocs++;
486  thread_stats.realloced += new_size;
487
488  CHECK(m->chunk_state == CHUNK_ALLOCATED);
489  uptr old_size = m->UsedSize();
490  uptr memcpy_size = Min(new_size, old_size);
491  void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
492  if (new_ptr) {
493    CHECK(REAL(memcpy) != 0);
494    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
495    Deallocate(old_ptr, stack, FROM_MALLOC);
496  }
497  return new_ptr;
498}
499
500static AsanChunk *GetAsanChunkByAddr(uptr p) {
501  void *ptr = reinterpret_cast<void *>(p);
502  uptr alloc_beg = reinterpret_cast<uptr>(allocator.GetBlockBegin(ptr));
503  if (!alloc_beg) return 0;
504  uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
505  if (memalign_magic[0] == kMemalignMagic) {
506    AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]);
507    CHECK(m->from_memalign);
508    return m;
509  }
510  if (!allocator.FromPrimary(ptr)) {
511    uptr *meta = reinterpret_cast<uptr *>(
512        allocator.GetMetaData(reinterpret_cast<void *>(alloc_beg)));
513    AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
514    return m;
515  }
516  uptr actual_size = allocator.GetActuallyAllocatedSize(ptr);
517  CHECK_LE(actual_size, SizeClassMap::kMaxSize);
518  // We know the actually allocted size, but we don't know the redzone size.
519  // Just try all possible redzone sizes.
520  for (u32 rz_log = 0; rz_log < 8; rz_log++) {
521    u32 rz_size = RZLog2Size(rz_log);
522    uptr max_possible_size = actual_size - rz_size;
523    if (ComputeRZLog(max_possible_size) != rz_log)
524      continue;
525    return reinterpret_cast<AsanChunk *>(
526        alloc_beg + rz_size - kChunkHeaderSize);
527  }
528  return 0;
529}
530
531static uptr AllocationSize(uptr p) {
532  AsanChunk *m = GetAsanChunkByAddr(p);
533  if (!m) return 0;
534  if (m->chunk_state != CHUNK_ALLOCATED) return 0;
535  if (m->Beg() != p) return 0;
536  return m->UsedSize();
537}
538
539// We have an address between two chunks, and we want to report just one.
540AsanChunk *ChooseChunk(uptr addr,
541                       AsanChunk *left_chunk, AsanChunk *right_chunk) {
542  // Prefer an allocated chunk over freed chunk and freed chunk
543  // over available chunk.
544  if (left_chunk->chunk_state != right_chunk->chunk_state) {
545    if (left_chunk->chunk_state == CHUNK_ALLOCATED)
546      return left_chunk;
547    if (right_chunk->chunk_state == CHUNK_ALLOCATED)
548      return right_chunk;
549    if (left_chunk->chunk_state == CHUNK_QUARANTINE)
550      return left_chunk;
551    if (right_chunk->chunk_state == CHUNK_QUARANTINE)
552      return right_chunk;
553  }
554  // Same chunk_state: choose based on offset.
555  uptr l_offset = 0, r_offset = 0;
556  CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
557  CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
558  if (l_offset < r_offset)
559    return left_chunk;
560  return right_chunk;
561}
562
563AsanChunkView FindHeapChunkByAddress(uptr addr) {
564  AsanChunk *m1 = GetAsanChunkByAddr(addr);
565  if (!m1) return AsanChunkView(m1);
566  uptr offset = 0;
567  if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
568    // The address is in the chunk's left redzone, so maybe it is actually
569    // a right buffer overflow from the other chunk to the left.
570    // Search a bit to the left to see if there is another chunk.
571    AsanChunk *m2 = 0;
572    for (uptr l = 1; l < GetPageSizeCached(); l++) {
573      m2 = GetAsanChunkByAddr(addr - l);
574      if (m2 == m1) continue;  // Still the same chunk.
575      break;
576    }
577    if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
578      m1 = ChooseChunk(addr, m2, m1);
579  }
580  return AsanChunkView(m1);
581}
582
583void AsanThreadLocalMallocStorage::CommitBack() {
584  AllocatorCache *ac = GetAllocatorCache(this);
585  quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
586  allocator.SwallowCache(GetAllocatorCache(this));
587}
588
589void PrintInternalAllocatorStats() {
590  allocator.PrintStats();
591}
592
593SANITIZER_INTERFACE_ATTRIBUTE
594void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
595                    AllocType alloc_type) {
596  return Allocate(size, alignment, stack, alloc_type);
597}
598
599SANITIZER_INTERFACE_ATTRIBUTE
600void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
601  Deallocate(ptr, stack, alloc_type);
602}
603
604SANITIZER_INTERFACE_ATTRIBUTE
605void *asan_malloc(uptr size, StackTrace *stack) {
606  return Allocate(size, 8, stack, FROM_MALLOC);
607}
608
609void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
610  void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
611  if (ptr)
612    REAL(memset)(ptr, 0, nmemb * size);
613  return ptr;
614}
615
616void *asan_realloc(void *p, uptr size, StackTrace *stack) {
617  if (p == 0)
618    return Allocate(size, 8, stack, FROM_MALLOC);
619  if (size == 0) {
620    Deallocate(p, stack, FROM_MALLOC);
621    return 0;
622  }
623  return Reallocate(p, size, stack);
624}
625
626void *asan_valloc(uptr size, StackTrace *stack) {
627  return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC);
628}
629
630void *asan_pvalloc(uptr size, StackTrace *stack) {
631  uptr PageSize = GetPageSizeCached();
632  size = RoundUpTo(size, PageSize);
633  if (size == 0) {
634    // pvalloc(0) should allocate one page.
635    size = PageSize;
636  }
637  return Allocate(size, PageSize, stack, FROM_MALLOC);
638}
639
640int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
641                        StackTrace *stack) {
642  void *ptr = Allocate(size, alignment, stack, FROM_MALLOC);
643  CHECK(IsAligned((uptr)ptr, alignment));
644  *memptr = ptr;
645  return 0;
646}
647
648uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
649  CHECK(stack);
650  if (ptr == 0) return 0;
651  uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
652  if (flags()->check_malloc_usable_size && (usable_size == 0))
653    ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
654  return usable_size;
655}
656
657uptr asan_mz_size(const void *ptr) {
658  UNIMPLEMENTED();
659  return 0;
660}
661
662void asan_mz_force_lock() {
663  UNIMPLEMENTED();
664}
665
666void asan_mz_force_unlock() {
667  UNIMPLEMENTED();
668}
669
670}  // namespace __asan
671
672// ---------------------- Interface ---------------- {{{1
673using namespace __asan;  // NOLINT
674
675// ASan allocator doesn't reserve extra bytes, so normally we would
676// just return "size". We don't want to expose our redzone sizes, etc here.
677uptr __asan_get_estimated_allocated_size(uptr size) {
678  return size;
679}
680
681bool __asan_get_ownership(const void *p) {
682  uptr ptr = reinterpret_cast<uptr>(p);
683  return (ptr == kReturnOnZeroMalloc) || (AllocationSize(ptr) > 0);
684}
685
686uptr __asan_get_allocated_size(const void *p) {
687  if (p == 0) return 0;
688  uptr ptr = reinterpret_cast<uptr>(p);
689  uptr allocated_size = AllocationSize(ptr);
690  // Die if p is not malloced or if it is already freed.
691  if (allocated_size == 0 && ptr != kReturnOnZeroMalloc) {
692    GET_STACK_TRACE_FATAL_HERE;
693    ReportAsanGetAllocatedSizeNotOwned(ptr, &stack);
694  }
695  return allocated_size;
696}
697
698#if !SANITIZER_SUPPORTS_WEAK_HOOKS
699// Provide default (no-op) implementation of malloc hooks.
700extern "C" {
701SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
702void __asan_malloc_hook(void *ptr, uptr size) {
703  (void)ptr;
704  (void)size;
705}
706SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
707void __asan_free_hook(void *ptr) {
708  (void)ptr;
709}
710}  // extern "C"
711#endif
712
713
714#endif  // ASAN_ALLOCATOR_VERSION
715