asan_test.cc revision 2697687059e64a4f1319dc23a0a3ca59982d53f6
1//===-- asan_test.cc ------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22
23#if defined(__i386__) || defined(__x86_64__)
24#include <emmintrin.h>
25#endif
26
27#include "asan_test_utils.h"
28
29#ifndef __APPLE__
30#include <malloc.h>
31#else
32#include <malloc/malloc.h>
33#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
34#include <CoreFoundation/CFString.h>
35#endif  // __APPLE__
36
37#if ASAN_HAS_EXCEPTIONS
38# define ASAN_THROW(x) throw (x)
39#else
40# define ASAN_THROW(x)
41#endif
42
43#include <sys/mman.h>
44
45typedef uint8_t   U1;
46typedef uint16_t  U2;
47typedef uint32_t  U4;
48typedef uint64_t  U8;
49
50static const int kPageSize = 4096;
51
52// Simple stand-alone pseudorandom number generator.
53// Current algorithm is ANSI C linear congruential PRNG.
54static inline uint32_t my_rand(uint32_t* state) {
55  return (*state = *state * 1103515245 + 12345) >> 16;
56}
57
58static uint32_t global_seed = 0;
59
60const size_t kLargeMalloc = 1 << 24;
61
62template<typename T>
63NOINLINE void asan_write(T *a) {
64  *a = 0;
65}
66
67NOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
68  EXPECT_EQ(0U, ((uintptr_t)p % size));
69  if      (size == 1) asan_write((uint8_t*)p);
70  else if (size == 2) asan_write((uint16_t*)p);
71  else if (size == 4) asan_write((uint32_t*)p);
72  else if (size == 8) asan_write((uint64_t*)p);
73}
74
75NOINLINE void *malloc_fff(size_t size) {
76  void *res = malloc/**/(size); break_optimization(0); return res;}
77NOINLINE void *malloc_eee(size_t size) {
78  void *res = malloc_fff(size); break_optimization(0); return res;}
79NOINLINE void *malloc_ddd(size_t size) {
80  void *res = malloc_eee(size); break_optimization(0); return res;}
81NOINLINE void *malloc_ccc(size_t size) {
82  void *res = malloc_ddd(size); break_optimization(0); return res;}
83NOINLINE void *malloc_bbb(size_t size) {
84  void *res = malloc_ccc(size); break_optimization(0); return res;}
85NOINLINE void *malloc_aaa(size_t size) {
86  void *res = malloc_bbb(size); break_optimization(0); return res;}
87
88#ifndef __APPLE__
89NOINLINE void *memalign_fff(size_t alignment, size_t size) {
90  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
91NOINLINE void *memalign_eee(size_t alignment, size_t size) {
92  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
93NOINLINE void *memalign_ddd(size_t alignment, size_t size) {
94  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
95NOINLINE void *memalign_ccc(size_t alignment, size_t size) {
96  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
97NOINLINE void *memalign_bbb(size_t alignment, size_t size) {
98  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
99NOINLINE void *memalign_aaa(size_t alignment, size_t size) {
100  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
101#endif  // __APPLE__
102
103
104NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
105NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
106NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
107
108template<typename T>
109NOINLINE void oob_test(int size, int off) {
110  char *p = (char*)malloc_aaa(size);
111  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
112  //        sizeof(T), p, p + size, off);
113  asan_write((T*)(p + off));
114  free_aaa(p);
115}
116
117
118template<typename T>
119NOINLINE void uaf_test(int size, int off) {
120  char *p = (char *)malloc_aaa(size);
121  free_aaa(p);
122  for (int i = 1; i < 100; i++)
123    free_aaa(malloc_aaa(i));
124  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
125          (long)sizeof(T), p, off);
126  asan_write((T*)(p + off));
127}
128
129TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
130#if defined(__has_feature) && __has_feature(address_sanitizer)
131  bool asan = 1;
132#elif defined(__SANITIZE_ADDRESS__)
133  bool asan = 1;
134#else
135  bool asan = 0;
136#endif
137  EXPECT_EQ(true, asan);
138}
139
140TEST(AddressSanitizer, SimpleDeathTest) {
141  EXPECT_DEATH(exit(1), "");
142}
143
144TEST(AddressSanitizer, VariousMallocsTest) {
145  int *a = (int*)malloc(100 * sizeof(int));
146  a[50] = 0;
147  free(a);
148
149  int *r = (int*)malloc(10);
150  r = (int*)realloc(r, 2000 * sizeof(int));
151  r[1000] = 0;
152  free(r);
153
154  int *b = new int[100];
155  b[50] = 0;
156  delete [] b;
157
158  int *c = new int;
159  *c = 0;
160  delete c;
161
162#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
163  int *pm;
164  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
165  EXPECT_EQ(0, pm_res);
166  free(pm);
167#endif
168
169#if !defined(__APPLE__)
170  int *ma = (int*)memalign(kPageSize, kPageSize);
171  EXPECT_EQ(0U, (uintptr_t)ma % kPageSize);
172  ma[123] = 0;
173  free(ma);
174#endif  // __APPLE__
175}
176
177TEST(AddressSanitizer, CallocTest) {
178  int *a = (int*)calloc(100, sizeof(int));
179  EXPECT_EQ(0, a[10]);
180  free(a);
181}
182
183TEST(AddressSanitizer, VallocTest) {
184  void *a = valloc(100);
185  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
186  free(a);
187}
188
189#ifndef __APPLE__
190TEST(AddressSanitizer, PvallocTest) {
191  char *a = (char*)pvalloc(kPageSize + 100);
192  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
193  a[kPageSize + 101] = 1;  // we should not report an error here.
194  free(a);
195
196  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
197  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
198  a[101] = 1;  // we should not report an error here.
199  free(a);
200}
201#endif  // __APPLE__
202
203void *TSDWorker(void *test_key) {
204  if (test_key) {
205    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
206  }
207  return NULL;
208}
209
210void TSDDestructor(void *tsd) {
211  // Spawning a thread will check that the current thread id is not -1.
212  pthread_t th;
213  PTHREAD_CREATE(&th, NULL, TSDWorker, NULL);
214  PTHREAD_JOIN(th, NULL);
215}
216
217// This tests triggers the thread-specific data destruction fiasco which occurs
218// if we don't manage the TSD destructors ourselves. We create a new pthread
219// key with a non-NULL destructor which is likely to be put after the destructor
220// of AsanThread in the list of destructors.
221// In this case the TSD for AsanThread will be destroyed before TSDDestructor
222// is called for the child thread, and a CHECK will fail when we call
223// pthread_create() to spawn the grandchild.
224TEST(AddressSanitizer, DISABLED_TSDTest) {
225  pthread_t th;
226  pthread_key_t test_key;
227  pthread_key_create(&test_key, TSDDestructor);
228  PTHREAD_CREATE(&th, NULL, TSDWorker, &test_key);
229  PTHREAD_JOIN(th, NULL);
230  pthread_key_delete(test_key);
231}
232
233template<typename T>
234void OOBTest() {
235  char expected_str[100];
236  for (int size = sizeof(T); size < 20; size += 5) {
237    for (int i = -5; i < 0; i++) {
238      const char *str =
239          "is located.*%d byte.*to the left";
240      sprintf(expected_str, str, abs(i));
241      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
242    }
243
244    for (int i = 0; i < (int)(size - sizeof(T) + 1); i++)
245      oob_test<T>(size, i);
246
247    for (int i = size - sizeof(T) + 1; i <= (int)(size + 3 * sizeof(T)); i++) {
248      const char *str =
249          "is located.*%d byte.*to the right";
250      int off = i >= size ? (i - size) : 0;
251      // we don't catch unaligned partially OOB accesses.
252      if (i % sizeof(T)) continue;
253      sprintf(expected_str, str, off);
254      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
255    }
256  }
257
258  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
259          "is located.*1 byte.*to the left");
260  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
261          "is located.*0 byte.*to the right");
262}
263
264// TODO(glider): the following tests are EXTREMELY slow on Darwin:
265//   AddressSanitizer.OOB_char (125503 ms)
266//   AddressSanitizer.OOB_int (126890 ms)
267//   AddressSanitizer.OOBRightTest (315605 ms)
268//   AddressSanitizer.SimpleStackTest (366559 ms)
269
270TEST(AddressSanitizer, OOB_char) {
271  OOBTest<U1>();
272}
273
274TEST(AddressSanitizer, OOB_int) {
275  OOBTest<U4>();
276}
277
278TEST(AddressSanitizer, OOBRightTest) {
279  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
280    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
281      for (size_t offset = 0; offset <= 8; offset += access_size) {
282        void *p = malloc(alloc_size);
283        // allocated: [p, p + alloc_size)
284        // accessed:  [p + offset, p + offset + access_size)
285        uint8_t *addr = (uint8_t*)p + offset;
286        if (offset + access_size <= alloc_size) {
287          asan_write_sized_aligned(addr, access_size);
288        } else {
289          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
290          const char *str =
291              "is located.%d *byte.*to the right";
292          char expected_str[100];
293          sprintf(expected_str, str, outside_bytes);
294          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
295                       expected_str);
296        }
297        free(p);
298      }
299    }
300  }
301}
302
303TEST(AddressSanitizer, UAF_char) {
304  const char *uaf_string = "AddressSanitizer:.*heap-use-after-free";
305  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
306  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
307  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
308  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
309  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
310}
311
312#if ASAN_HAS_BLACKLIST
313TEST(AddressSanitizer, IgnoreTest) {
314  int *x = Ident(new int);
315  delete Ident(x);
316  *x = 0;
317}
318#endif  // ASAN_HAS_BLACKLIST
319
320struct StructWithBitField {
321  int bf1:1;
322  int bf2:1;
323  int bf3:1;
324  int bf4:29;
325};
326
327TEST(AddressSanitizer, BitFieldPositiveTest) {
328  StructWithBitField *x = new StructWithBitField;
329  delete Ident(x);
330  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
331  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
332  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
333  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
334}
335
336struct StructWithBitFields_8_24 {
337  int a:8;
338  int b:24;
339};
340
341TEST(AddressSanitizer, BitFieldNegativeTest) {
342  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
343  x->a = 0;
344  x->b = 0;
345  delete Ident(x);
346}
347
348TEST(AddressSanitizer, OutOfMemoryTest) {
349  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
350  EXPECT_EQ(0, realloc(0, size));
351  EXPECT_EQ(0, realloc(0, ~Ident(0)));
352  EXPECT_EQ(0, malloc(size));
353  EXPECT_EQ(0, malloc(~Ident(0)));
354  EXPECT_EQ(0, calloc(1, size));
355  EXPECT_EQ(0, calloc(1, ~Ident(0)));
356}
357
358#if ASAN_NEEDS_SEGV
359namespace {
360
361const char kUnknownCrash[] = "AddressSanitizer: SEGV on unknown address";
362const char kOverriddenHandler[] = "ASan signal handler has been overridden\n";
363
364TEST(AddressSanitizer, WildAddressTest) {
365  char *c = (char*)0x123;
366  EXPECT_DEATH(*c = 0, kUnknownCrash);
367}
368
369void my_sigaction_sighandler(int, siginfo_t*, void*) {
370  fprintf(stderr, kOverriddenHandler);
371  exit(1);
372}
373
374void my_signal_sighandler(int signum) {
375  fprintf(stderr, kOverriddenHandler);
376  exit(1);
377}
378
379TEST(AddressSanitizer, SignalTest) {
380  struct sigaction sigact;
381  memset(&sigact, 0, sizeof(sigact));
382  sigact.sa_sigaction = my_sigaction_sighandler;
383  sigact.sa_flags = SA_SIGINFO;
384  // ASan should silently ignore sigaction()...
385  EXPECT_EQ(0, sigaction(SIGSEGV, &sigact, 0));
386#ifdef __APPLE__
387  EXPECT_EQ(0, sigaction(SIGBUS, &sigact, 0));
388#endif
389  char *c = (char*)0x123;
390  EXPECT_DEATH(*c = 0, kUnknownCrash);
391  // ... and signal().
392  EXPECT_EQ(0, signal(SIGSEGV, my_signal_sighandler));
393  EXPECT_DEATH(*c = 0, kUnknownCrash);
394}
395}  // namespace
396#endif
397
398static void MallocStress(size_t n) {
399  uint32_t seed = my_rand(&global_seed);
400  for (size_t iter = 0; iter < 10; iter++) {
401    vector<void *> vec;
402    for (size_t i = 0; i < n; i++) {
403      if ((i % 3) == 0) {
404        if (vec.empty()) continue;
405        size_t idx = my_rand(&seed) % vec.size();
406        void *ptr = vec[idx];
407        vec[idx] = vec.back();
408        vec.pop_back();
409        free_aaa(ptr);
410      } else {
411        size_t size = my_rand(&seed) % 1000 + 1;
412#ifndef __APPLE__
413        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
414        char *ptr = (char*)memalign_aaa(alignment, size);
415#else
416        char *ptr = (char*) malloc_aaa(size);
417#endif
418        vec.push_back(ptr);
419        ptr[0] = 0;
420        ptr[size-1] = 0;
421        ptr[size/2] = 0;
422      }
423    }
424    for (size_t i = 0; i < vec.size(); i++)
425      free_aaa(vec[i]);
426  }
427}
428
429TEST(AddressSanitizer, MallocStressTest) {
430  MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
431}
432
433static void TestLargeMalloc(size_t size) {
434  char buff[1024];
435  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
436  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
437}
438
439TEST(AddressSanitizer, LargeMallocTest) {
440  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
441    TestLargeMalloc(i);
442  }
443}
444
445#if ASAN_LOW_MEMORY != 1
446TEST(AddressSanitizer, HugeMallocTest) {
447#ifdef __APPLE__
448  // It was empirically found out that 1215 megabytes is the maximum amount of
449  // memory available to the process under AddressSanitizer on 32-bit Mac 10.6.
450  // 32-bit Mac 10.7 gives even less (< 1G).
451  // (the libSystem malloc() allows allocating up to 2300 megabytes without
452  // ASan).
453  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 500 : 4100;
454#else
455  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 2600 : 4100;
456#endif
457  TestLargeMalloc(n_megs << 20);
458}
459#endif
460
461TEST(AddressSanitizer, ThreadedMallocStressTest) {
462  const int kNumThreads = 4;
463  const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
464  pthread_t t[kNumThreads];
465  for (int i = 0; i < kNumThreads; i++) {
466    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))MallocStress,
467        (void*)kNumIterations);
468  }
469  for (int i = 0; i < kNumThreads; i++) {
470    PTHREAD_JOIN(t[i], 0);
471  }
472}
473
474void *ManyThreadsWorker(void *a) {
475  for (int iter = 0; iter < 100; iter++) {
476    for (size_t size = 100; size < 2000; size *= 2) {
477      free(Ident(malloc(size)));
478    }
479  }
480  return 0;
481}
482
483TEST(AddressSanitizer, ManyThreadsTest) {
484  const size_t kNumThreads =
485      (SANITIZER_WORDSIZE == 32 || ASAN_AVOID_EXPENSIVE_TESTS) ? 30 : 1000;
486  pthread_t t[kNumThreads];
487  for (size_t i = 0; i < kNumThreads; i++) {
488    PTHREAD_CREATE(&t[i], 0, ManyThreadsWorker, (void*)i);
489  }
490  for (size_t i = 0; i < kNumThreads; i++) {
491    PTHREAD_JOIN(t[i], 0);
492  }
493}
494
495TEST(AddressSanitizer, ReallocTest) {
496  const int kMinElem = 5;
497  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
498  ptr[3] = 3;
499  for (int i = 0; i < 10000; i++) {
500    ptr = (int*)realloc(ptr,
501        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
502    EXPECT_EQ(3, ptr[3]);
503  }
504}
505
506#ifndef __APPLE__
507static const char *kMallocUsableSizeErrorMsg =
508  "AddressSanitizer: attempting to call malloc_usable_size()";
509
510TEST(AddressSanitizer, MallocUsableSizeTest) {
511  const size_t kArraySize = 100;
512  char *array = Ident((char*)malloc(kArraySize));
513  int *int_ptr = Ident(new int);
514  EXPECT_EQ(0U, malloc_usable_size(NULL));
515  EXPECT_EQ(kArraySize, malloc_usable_size(array));
516  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
517  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
518  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
519               kMallocUsableSizeErrorMsg);
520  free(array);
521  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
522}
523#endif
524
525void WrongFree() {
526  int *x = (int*)malloc(100 * sizeof(int));
527  // Use the allocated memory, otherwise Clang will optimize it out.
528  Ident(x);
529  free(x + 1);
530}
531
532TEST(AddressSanitizer, WrongFreeTest) {
533  EXPECT_DEATH(WrongFree(),
534               "ERROR: AddressSanitizer: attempting free.*not malloc");
535}
536
537void DoubleFree() {
538  int *x = (int*)malloc(100 * sizeof(int));
539  fprintf(stderr, "DoubleFree: x=%p\n", x);
540  free(x);
541  free(x);
542  fprintf(stderr, "should have failed in the second free(%p)\n", x);
543  abort();
544}
545
546TEST(AddressSanitizer, DoubleFreeTest) {
547  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
548               "ERROR: AddressSanitizer: attempting double-free"
549               ".*is located 0 bytes inside of 400-byte region"
550               ".*freed by thread T0 here"
551               ".*previously allocated by thread T0 here");
552}
553
554template<int kSize>
555NOINLINE void SizedStackTest() {
556  char a[kSize];
557  char  *A = Ident((char*)&a);
558  for (size_t i = 0; i < kSize; i++)
559    A[i] = i;
560  EXPECT_DEATH(A[-1] = 0, "");
561  EXPECT_DEATH(A[-20] = 0, "");
562  EXPECT_DEATH(A[-31] = 0, "");
563  EXPECT_DEATH(A[kSize] = 0, "");
564  EXPECT_DEATH(A[kSize + 1] = 0, "");
565  EXPECT_DEATH(A[kSize + 10] = 0, "");
566  EXPECT_DEATH(A[kSize + 31] = 0, "");
567}
568
569TEST(AddressSanitizer, SimpleStackTest) {
570  SizedStackTest<1>();
571  SizedStackTest<2>();
572  SizedStackTest<3>();
573  SizedStackTest<4>();
574  SizedStackTest<5>();
575  SizedStackTest<6>();
576  SizedStackTest<7>();
577  SizedStackTest<16>();
578  SizedStackTest<25>();
579  SizedStackTest<34>();
580  SizedStackTest<43>();
581  SizedStackTest<51>();
582  SizedStackTest<62>();
583  SizedStackTest<64>();
584  SizedStackTest<128>();
585}
586
587TEST(AddressSanitizer, ManyStackObjectsTest) {
588  char XXX[10];
589  char YYY[20];
590  char ZZZ[30];
591  Ident(XXX);
592  Ident(YYY);
593  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
594}
595
596NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
597  char d[4] = {0};
598  char *D = Ident(d);
599  switch (frame) {
600    case 3: a[5]++; break;
601    case 2: b[5]++; break;
602    case 1: c[5]++; break;
603    case 0: D[5]++; break;
604  }
605}
606NOINLINE static void Frame1(int frame, char *a, char *b) {
607  char c[4] = {0}; Frame0(frame, a, b, c);
608  break_optimization(0);
609}
610NOINLINE static void Frame2(int frame, char *a) {
611  char b[4] = {0}; Frame1(frame, a, b);
612  break_optimization(0);
613}
614NOINLINE static void Frame3(int frame) {
615  char a[4] = {0}; Frame2(frame, a);
616  break_optimization(0);
617}
618
619TEST(AddressSanitizer, GuiltyStackFrame0Test) {
620  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
621}
622TEST(AddressSanitizer, GuiltyStackFrame1Test) {
623  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
624}
625TEST(AddressSanitizer, GuiltyStackFrame2Test) {
626  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
627}
628TEST(AddressSanitizer, GuiltyStackFrame3Test) {
629  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
630}
631
632NOINLINE void LongJmpFunc1(jmp_buf buf) {
633  // create three red zones for these two stack objects.
634  int a;
635  int b;
636
637  int *A = Ident(&a);
638  int *B = Ident(&b);
639  *A = *B;
640  longjmp(buf, 1);
641}
642
643NOINLINE void BuiltinLongJmpFunc1(jmp_buf buf) {
644  // create three red zones for these two stack objects.
645  int a;
646  int b;
647
648  int *A = Ident(&a);
649  int *B = Ident(&b);
650  *A = *B;
651  __builtin_longjmp((void**)buf, 1);
652}
653
654NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
655  // create three red zones for these two stack objects.
656  int a;
657  int b;
658
659  int *A = Ident(&a);
660  int *B = Ident(&b);
661  *A = *B;
662  _longjmp(buf, 1);
663}
664
665NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
666  // create three red zones for these two stack objects.
667  int a;
668  int b;
669
670  int *A = Ident(&a);
671  int *B = Ident(&b);
672  *A = *B;
673  siglongjmp(buf, 1);
674}
675
676
677NOINLINE void TouchStackFunc() {
678  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
679  int *A = Ident(a);
680  for (int i = 0; i < 100; i++)
681    A[i] = i*i;
682}
683
684// Test that we handle longjmp and do not report fals positives on stack.
685TEST(AddressSanitizer, LongJmpTest) {
686  static jmp_buf buf;
687  if (!setjmp(buf)) {
688    LongJmpFunc1(buf);
689  } else {
690    TouchStackFunc();
691  }
692}
693
694#if not defined(__ANDROID__)
695TEST(AddressSanitizer, BuiltinLongJmpTest) {
696  static jmp_buf buf;
697  if (!__builtin_setjmp((void**)buf)) {
698    BuiltinLongJmpFunc1(buf);
699  } else {
700    TouchStackFunc();
701  }
702}
703#endif  // not defined(__ANDROID__)
704
705TEST(AddressSanitizer, UnderscopeLongJmpTest) {
706  static jmp_buf buf;
707  if (!_setjmp(buf)) {
708    UnderscopeLongJmpFunc1(buf);
709  } else {
710    TouchStackFunc();
711  }
712}
713
714TEST(AddressSanitizer, SigLongJmpTest) {
715  static sigjmp_buf buf;
716  if (!sigsetjmp(buf, 1)) {
717    SigLongJmpFunc1(buf);
718  } else {
719    TouchStackFunc();
720  }
721}
722
723#ifdef __EXCEPTIONS
724NOINLINE void ThrowFunc() {
725  // create three red zones for these two stack objects.
726  int a;
727  int b;
728
729  int *A = Ident(&a);
730  int *B = Ident(&b);
731  *A = *B;
732  ASAN_THROW(1);
733}
734
735TEST(AddressSanitizer, CxxExceptionTest) {
736  if (ASAN_UAR) return;
737  // TODO(kcc): this test crashes on 32-bit for some reason...
738  if (SANITIZER_WORDSIZE == 32) return;
739  try {
740    ThrowFunc();
741  } catch(...) {}
742  TouchStackFunc();
743}
744#endif
745
746void *ThreadStackReuseFunc1(void *unused) {
747  // create three red zones for these two stack objects.
748  int a;
749  int b;
750
751  int *A = Ident(&a);
752  int *B = Ident(&b);
753  *A = *B;
754  pthread_exit(0);
755  return 0;
756}
757
758void *ThreadStackReuseFunc2(void *unused) {
759  TouchStackFunc();
760  return 0;
761}
762
763TEST(AddressSanitizer, ThreadStackReuseTest) {
764  pthread_t t;
765  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc1, 0);
766  PTHREAD_JOIN(t, 0);
767  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc2, 0);
768  PTHREAD_JOIN(t, 0);
769}
770
771#if defined(__i386__) || defined(__x86_64__)
772TEST(AddressSanitizer, Store128Test) {
773  char *a = Ident((char*)malloc(Ident(12)));
774  char *p = a;
775  if (((uintptr_t)a % 16) != 0)
776    p = a + 8;
777  assert(((uintptr_t)p % 16) == 0);
778  __m128i value_wide = _mm_set1_epi16(0x1234);
779  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
780               "AddressSanitizer: heap-buffer-overflow");
781  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
782               "WRITE of size 16");
783  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
784               "located 0 bytes to the right of 12-byte");
785  free(a);
786}
787#endif
788
789static string RightOOBErrorMessage(int oob_distance) {
790  assert(oob_distance >= 0);
791  char expected_str[100];
792  sprintf(expected_str, "located %d bytes to the right", oob_distance);
793  return string(expected_str);
794}
795
796static string LeftOOBErrorMessage(int oob_distance) {
797  assert(oob_distance > 0);
798  char expected_str[100];
799  sprintf(expected_str, "located %d bytes to the left", oob_distance);
800  return string(expected_str);
801}
802
803template<typename T>
804void MemSetOOBTestTemplate(size_t length) {
805  if (length == 0) return;
806  size_t size = Ident(sizeof(T) * length);
807  T *array = Ident((T*)malloc(size));
808  int element = Ident(42);
809  int zero = Ident(0);
810  // memset interval inside array
811  memset(array, element, size);
812  memset(array, element, size - 1);
813  memset(array + length - 1, element, sizeof(T));
814  memset(array, element, 1);
815
816  // memset 0 bytes
817  memset(array - 10, element, zero);
818  memset(array - 1, element, zero);
819  memset(array, element, zero);
820  memset(array + length, 0, zero);
821  memset(array + length + 1, 0, zero);
822
823  // try to memset bytes to the right of array
824  EXPECT_DEATH(memset(array, 0, size + 1),
825               RightOOBErrorMessage(0));
826  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
827               RightOOBErrorMessage(4));
828  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
829               RightOOBErrorMessage(2 * sizeof(T) - 1));
830  // whole interval is to the right
831  EXPECT_DEATH(memset(array + length + 1, 0, 10),
832               RightOOBErrorMessage(sizeof(T)));
833
834  // try to memset bytes to the left of array
835  EXPECT_DEATH(memset((char*)array - 1, element, size),
836               LeftOOBErrorMessage(1));
837  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
838               LeftOOBErrorMessage(5));
839  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
840               LeftOOBErrorMessage(5 * sizeof(T)));
841  // whole interval is to the left
842  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
843               LeftOOBErrorMessage(2 * sizeof(T)));
844
845  // try to memset bytes both to the left & to the right
846  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
847               LeftOOBErrorMessage(2));
848
849  free(array);
850}
851
852TEST(AddressSanitizer, MemSetOOBTest) {
853  MemSetOOBTestTemplate<char>(100);
854  MemSetOOBTestTemplate<int>(5);
855  MemSetOOBTestTemplate<double>(256);
856  // We can test arrays of structres/classes here, but what for?
857}
858
859// Same test for memcpy and memmove functions
860template <typename T, class M>
861void MemTransferOOBTestTemplate(size_t length) {
862  if (length == 0) return;
863  size_t size = Ident(sizeof(T) * length);
864  T *src = Ident((T*)malloc(size));
865  T *dest = Ident((T*)malloc(size));
866  int zero = Ident(0);
867
868  // valid transfer of bytes between arrays
869  M::transfer(dest, src, size);
870  M::transfer(dest + 1, src, size - sizeof(T));
871  M::transfer(dest, src + length - 1, sizeof(T));
872  M::transfer(dest, src, 1);
873
874  // transfer zero bytes
875  M::transfer(dest - 1, src, 0);
876  M::transfer(dest + length, src, zero);
877  M::transfer(dest, src - 1, zero);
878  M::transfer(dest, src, zero);
879
880  // try to change mem to the right of dest
881  EXPECT_DEATH(M::transfer(dest + 1, src, size),
882               RightOOBErrorMessage(sizeof(T) - 1));
883  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
884               RightOOBErrorMessage(3));
885
886  // try to change mem to the left of dest
887  EXPECT_DEATH(M::transfer(dest - 2, src, size),
888               LeftOOBErrorMessage(2 * sizeof(T)));
889  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
890               LeftOOBErrorMessage(3));
891
892  // try to access mem to the right of src
893  EXPECT_DEATH(M::transfer(dest, src + 2, size),
894               RightOOBErrorMessage(2 * sizeof(T) - 1));
895  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
896               RightOOBErrorMessage(2));
897
898  // try to access mem to the left of src
899  EXPECT_DEATH(M::transfer(dest, src - 1, size),
900               LeftOOBErrorMessage(sizeof(T)));
901  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
902               LeftOOBErrorMessage(6));
903
904  // Generally we don't need to test cases where both accessing src and writing
905  // to dest address to poisoned memory.
906
907  T *big_src = Ident((T*)malloc(size * 2));
908  T *big_dest = Ident((T*)malloc(size * 2));
909  // try to change mem to both sides of dest
910  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
911               LeftOOBErrorMessage(sizeof(T)));
912  // try to access mem to both sides of src
913  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
914               LeftOOBErrorMessage(2 * sizeof(T)));
915
916  free(src);
917  free(dest);
918  free(big_src);
919  free(big_dest);
920}
921
922class MemCpyWrapper {
923 public:
924  static void* transfer(void *to, const void *from, size_t size) {
925    return memcpy(to, from, size);
926  }
927};
928TEST(AddressSanitizer, MemCpyOOBTest) {
929  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
930  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
931}
932
933class MemMoveWrapper {
934 public:
935  static void* transfer(void *to, const void *from, size_t size) {
936    return memmove(to, from, size);
937  }
938};
939TEST(AddressSanitizer, MemMoveOOBTest) {
940  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
941  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
942}
943
944// Tests for string functions
945
946// Used for string functions tests
947static char global_string[] = "global";
948static size_t global_string_length = 6;
949
950// Input to a test is a zero-terminated string str with given length
951// Accesses to the bytes to the left and to the right of str
952// are presumed to produce OOB errors
953void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
954  // Normal strlen calls
955  EXPECT_EQ(strlen(str), length);
956  if (length > 0) {
957    EXPECT_EQ(length - 1, strlen(str + 1));
958    EXPECT_EQ(0U, strlen(str + length));
959  }
960  // Arg of strlen is not malloced, OOB access
961  if (!is_global) {
962    // We don't insert RedZones to the left of global variables
963    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
964    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
965  }
966  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
967  // Overwrite terminator
968  str[length] = 'a';
969  // String is not zero-terminated, strlen will lead to OOB access
970  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
971  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
972  // Restore terminator
973  str[length] = 0;
974}
975TEST(AddressSanitizer, StrLenOOBTest) {
976  // Check heap-allocated string
977  size_t length = Ident(10);
978  char *heap_string = Ident((char*)malloc(length + 1));
979  char stack_string[10 + 1];
980  break_optimization(&stack_string);
981  for (size_t i = 0; i < length; i++) {
982    heap_string[i] = 'a';
983    stack_string[i] = 'b';
984  }
985  heap_string[length] = 0;
986  stack_string[length] = 0;
987  StrLenOOBTestTemplate(heap_string, length, false);
988  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
989  //      make test for stack_string work. Or move it to output tests.
990  // StrLenOOBTestTemplate(stack_string, length, false);
991  StrLenOOBTestTemplate(global_string, global_string_length, true);
992  free(heap_string);
993}
994
995static inline char* MallocAndMemsetString(size_t size, char ch) {
996  char *s = Ident((char*)malloc(size));
997  memset(s, ch, size);
998  return s;
999}
1000static inline char* MallocAndMemsetString(size_t size) {
1001  return MallocAndMemsetString(size, 'z');
1002}
1003
1004#ifndef __APPLE__
1005TEST(AddressSanitizer, StrNLenOOBTest) {
1006  size_t size = Ident(123);
1007  char *str = MallocAndMemsetString(size);
1008  // Normal strnlen calls.
1009  Ident(strnlen(str - 1, 0));
1010  Ident(strnlen(str, size));
1011  Ident(strnlen(str + size - 1, 1));
1012  str[size - 1] = '\0';
1013  Ident(strnlen(str, 2 * size));
1014  // Argument points to not allocated memory.
1015  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
1016  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
1017  // Overwrite the terminating '\0' and hit unallocated memory.
1018  str[size - 1] = 'z';
1019  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
1020  free(str);
1021}
1022#endif
1023
1024TEST(AddressSanitizer, StrDupOOBTest) {
1025  size_t size = Ident(42);
1026  char *str = MallocAndMemsetString(size);
1027  char *new_str;
1028  // Normal strdup calls.
1029  str[size - 1] = '\0';
1030  new_str = strdup(str);
1031  free(new_str);
1032  new_str = strdup(str + size - 1);
1033  free(new_str);
1034  // Argument points to not allocated memory.
1035  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
1036  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
1037  // Overwrite the terminating '\0' and hit unallocated memory.
1038  str[size - 1] = 'z';
1039  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
1040  free(str);
1041}
1042
1043TEST(AddressSanitizer, StrCpyOOBTest) {
1044  size_t to_size = Ident(30);
1045  size_t from_size = Ident(6);  // less than to_size
1046  char *to = Ident((char*)malloc(to_size));
1047  char *from = Ident((char*)malloc(from_size));
1048  // Normal strcpy calls.
1049  strcpy(from, "hello");
1050  strcpy(to, from);
1051  strcpy(to + to_size - from_size, from);
1052  // Length of "from" is too small.
1053  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1054  // "to" or "from" points to not allocated memory.
1055  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1056  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1057  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1058  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1059  // Overwrite the terminating '\0' character and hit unallocated memory.
1060  from[from_size - 1] = '!';
1061  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1062  free(to);
1063  free(from);
1064}
1065
1066TEST(AddressSanitizer, StrNCpyOOBTest) {
1067  size_t to_size = Ident(20);
1068  size_t from_size = Ident(6);  // less than to_size
1069  char *to = Ident((char*)malloc(to_size));
1070  // From is a zero-terminated string "hello\0" of length 6
1071  char *from = Ident((char*)malloc(from_size));
1072  strcpy(from, "hello");
1073  // copy 0 bytes
1074  strncpy(to, from, 0);
1075  strncpy(to - 1, from - 1, 0);
1076  // normal strncpy calls
1077  strncpy(to, from, from_size);
1078  strncpy(to, from, to_size);
1079  strncpy(to, from + from_size - 1, to_size);
1080  strncpy(to + to_size - 1, from, 1);
1081  // One of {to, from} points to not allocated memory
1082  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1083               LeftOOBErrorMessage(1));
1084  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1085               LeftOOBErrorMessage(1));
1086  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1087               RightOOBErrorMessage(0));
1088  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1089               RightOOBErrorMessage(0));
1090  // Length of "to" is too small
1091  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1092               RightOOBErrorMessage(0));
1093  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1094               RightOOBErrorMessage(0));
1095  // Overwrite terminator in from
1096  from[from_size - 1] = '!';
1097  // normal strncpy call
1098  strncpy(to, from, from_size);
1099  // Length of "from" is too small
1100  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1101               RightOOBErrorMessage(0));
1102  free(to);
1103  free(from);
1104}
1105
1106// Users may have different definitions of "strchr" and "index", so provide
1107// function pointer typedefs and overload RunStrChrTest implementation.
1108// We can't use macro for RunStrChrTest body here, as this macro would
1109// confuse EXPECT_DEATH gtest macro.
1110typedef char*(*PointerToStrChr1)(const char*, int);
1111typedef char*(*PointerToStrChr2)(char*, int);
1112
1113USED static void RunStrChrTest(PointerToStrChr1 StrChr) {
1114  size_t size = Ident(100);
1115  char *str = MallocAndMemsetString(size);
1116  str[10] = 'q';
1117  str[11] = '\0';
1118  EXPECT_EQ(str, StrChr(str, 'z'));
1119  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1120  EXPECT_EQ(NULL, StrChr(str, 'a'));
1121  // StrChr argument points to not allocated memory.
1122  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1123  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1124  // Overwrite the terminator and hit not allocated memory.
1125  str[11] = 'z';
1126  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1127  free(str);
1128}
1129USED static void RunStrChrTest(PointerToStrChr2 StrChr) {
1130  size_t size = Ident(100);
1131  char *str = MallocAndMemsetString(size);
1132  str[10] = 'q';
1133  str[11] = '\0';
1134  EXPECT_EQ(str, StrChr(str, 'z'));
1135  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1136  EXPECT_EQ(NULL, StrChr(str, 'a'));
1137  // StrChr argument points to not allocated memory.
1138  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1139  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1140  // Overwrite the terminator and hit not allocated memory.
1141  str[11] = 'z';
1142  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1143  free(str);
1144}
1145
1146TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1147  RunStrChrTest(&strchr);
1148  RunStrChrTest(&index);
1149}
1150
1151TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1152  // strcmp
1153  EXPECT_EQ(0, strcmp("", ""));
1154  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1155  EXPECT_GT(0, strcmp("ab", "ac"));
1156  EXPECT_GT(0, strcmp("abc", "abcd"));
1157  EXPECT_LT(0, strcmp("acc", "abc"));
1158  EXPECT_LT(0, strcmp("abcd", "abc"));
1159
1160  // strncmp
1161  EXPECT_EQ(0, strncmp("a", "b", 0));
1162  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1163  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1164  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1165  EXPECT_GT(0, strncmp("a", "b", 5));
1166  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1167  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1168  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1169  EXPECT_LT(0, strncmp("zyx", "", 2));
1170
1171  // strcasecmp
1172  EXPECT_EQ(0, strcasecmp("", ""));
1173  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1174  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1175  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1176  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1177  EXPECT_LT(0, strcasecmp("acc", "abc"));
1178  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1179
1180  // strncasecmp
1181  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1182  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1183  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1184  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1185  EXPECT_GT(0, strncasecmp("a", "B", 5));
1186  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1187  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1188  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1189  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1190
1191  // memcmp
1192  EXPECT_EQ(0, memcmp("a", "b", 0));
1193  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1194  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1195  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1196  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1197  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1198}
1199
1200typedef int(*PointerToStrCmp)(const char*, const char*);
1201void RunStrCmpTest(PointerToStrCmp StrCmp) {
1202  size_t size = Ident(100);
1203  char *s1 = MallocAndMemsetString(size);
1204  char *s2 = MallocAndMemsetString(size);
1205  s1[size - 1] = '\0';
1206  s2[size - 1] = '\0';
1207  // Normal StrCmp calls
1208  Ident(StrCmp(s1, s2));
1209  Ident(StrCmp(s1, s2 + size - 1));
1210  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1211  s1[size - 1] = 'z';
1212  s2[size - 1] = 'x';
1213  Ident(StrCmp(s1, s2));
1214  // One of arguments points to not allocated memory.
1215  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1216  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1217  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1218  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1219  // Hit unallocated memory and die.
1220  s2[size - 1] = 'z';
1221  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1222  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1223  free(s1);
1224  free(s2);
1225}
1226
1227TEST(AddressSanitizer, StrCmpOOBTest) {
1228  RunStrCmpTest(&strcmp);
1229}
1230
1231TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1232  RunStrCmpTest(&strcasecmp);
1233}
1234
1235typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1236void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1237  size_t size = Ident(100);
1238  char *s1 = MallocAndMemsetString(size);
1239  char *s2 = MallocAndMemsetString(size);
1240  s1[size - 1] = '\0';
1241  s2[size - 1] = '\0';
1242  // Normal StrNCmp calls
1243  Ident(StrNCmp(s1, s2, size + 2));
1244  s1[size - 1] = 'z';
1245  s2[size - 1] = 'x';
1246  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1247  s2[size - 1] = 'z';
1248  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1249  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1250  // One of arguments points to not allocated memory.
1251  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1252  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1253  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1254  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1255  // Hit unallocated memory and die.
1256  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1257  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1258  free(s1);
1259  free(s2);
1260}
1261
1262TEST(AddressSanitizer, StrNCmpOOBTest) {
1263  RunStrNCmpTest(&strncmp);
1264}
1265
1266TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1267  RunStrNCmpTest(&strncasecmp);
1268}
1269
1270TEST(AddressSanitizer, MemCmpOOBTest) {
1271  size_t size = Ident(100);
1272  char *s1 = MallocAndMemsetString(size);
1273  char *s2 = MallocAndMemsetString(size);
1274  // Normal memcmp calls.
1275  Ident(memcmp(s1, s2, size));
1276  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1277  Ident(memcmp(s1 - 1, s2 - 1, 0));
1278  // One of arguments points to not allocated memory.
1279  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1280  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1281  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1282  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1283  // Hit unallocated memory and die.
1284  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1285  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1286  // Zero bytes are not terminators and don't prevent from OOB.
1287  s1[size - 1] = '\0';
1288  s2[size - 1] = '\0';
1289  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1290  free(s1);
1291  free(s2);
1292}
1293
1294TEST(AddressSanitizer, StrCatOOBTest) {
1295  size_t to_size = Ident(100);
1296  char *to = MallocAndMemsetString(to_size);
1297  to[0] = '\0';
1298  size_t from_size = Ident(20);
1299  char *from = MallocAndMemsetString(from_size);
1300  from[from_size - 1] = '\0';
1301  // Normal strcat calls.
1302  strcat(to, from);
1303  strcat(to, from);
1304  strcat(to + from_size, from + from_size - 2);
1305  // Passing an invalid pointer is an error even when concatenating an empty
1306  // string.
1307  EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBErrorMessage(1));
1308  // One of arguments points to not allocated memory.
1309  EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1310  EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1311  EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1312  EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1313
1314  // "from" is not zero-terminated.
1315  from[from_size - 1] = 'z';
1316  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1317  from[from_size - 1] = '\0';
1318  // "to" is not zero-terminated.
1319  memset(to, 'z', to_size);
1320  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1321  // "to" is too short to fit "from".
1322  to[to_size - from_size + 1] = '\0';
1323  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1324  // length of "to" is just enough.
1325  strcat(to, from + 1);
1326
1327  free(to);
1328  free(from);
1329}
1330
1331TEST(AddressSanitizer, StrNCatOOBTest) {
1332  size_t to_size = Ident(100);
1333  char *to = MallocAndMemsetString(to_size);
1334  to[0] = '\0';
1335  size_t from_size = Ident(20);
1336  char *from = MallocAndMemsetString(from_size);
1337  // Normal strncat calls.
1338  strncat(to, from, 0);
1339  strncat(to, from, from_size);
1340  from[from_size - 1] = '\0';
1341  strncat(to, from, 2 * from_size);
1342  // Catenating empty string with an invalid string is still an error.
1343  EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBErrorMessage(1));
1344  strncat(to, from + from_size - 1, 10);
1345  // One of arguments points to not allocated memory.
1346  EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBErrorMessage(1));
1347  EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBErrorMessage(1));
1348  EXPECT_DEATH(strncat(to + to_size, from, 2), RightOOBErrorMessage(0));
1349  EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBErrorMessage(0));
1350
1351  memset(from, 'z', from_size);
1352  memset(to, 'z', to_size);
1353  to[0] = '\0';
1354  // "from" is too short.
1355  EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBErrorMessage(0));
1356  // "to" is not zero-terminated.
1357  EXPECT_DEATH(strncat(to + 1, from, 1), RightOOBErrorMessage(0));
1358  // "to" is too short to fit "from".
1359  to[0] = 'z';
1360  to[to_size - from_size + 1] = '\0';
1361  EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBErrorMessage(0));
1362  // "to" is just enough.
1363  strncat(to, from, from_size - 2);
1364
1365  free(to);
1366  free(from);
1367}
1368
1369static string OverlapErrorMessage(const string &func) {
1370  return func + "-param-overlap";
1371}
1372
1373TEST(AddressSanitizer, StrArgsOverlapTest) {
1374  size_t size = Ident(100);
1375  char *str = Ident((char*)malloc(size));
1376
1377// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1378// memmove().
1379#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1380    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1381  // Check "memcpy". Use Ident() to avoid inlining.
1382  memset(str, 'z', size);
1383  Ident(memcpy)(str + 1, str + 11, 10);
1384  Ident(memcpy)(str, str, 0);
1385  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1386  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1387#endif
1388
1389  // We do not treat memcpy with to==from as a bug.
1390  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1391  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1392  //              OverlapErrorMessage("memcpy"));
1393
1394  // Check "strcpy".
1395  memset(str, 'z', size);
1396  str[9] = '\0';
1397  strcpy(str + 10, str);
1398  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1399  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1400  strcpy(str, str + 5);
1401
1402  // Check "strncpy".
1403  memset(str, 'z', size);
1404  strncpy(str, str + 10, 10);
1405  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1406  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1407  str[10] = '\0';
1408  strncpy(str + 11, str, 20);
1409  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1410
1411  // Check "strcat".
1412  memset(str, 'z', size);
1413  str[10] = '\0';
1414  str[20] = '\0';
1415  strcat(str, str + 10);
1416  EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
1417  str[10] = '\0';
1418  strcat(str + 11, str);
1419  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1420  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1421  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1422
1423  // Check "strncat".
1424  memset(str, 'z', size);
1425  str[10] = '\0';
1426  strncat(str, str + 10, 10);  // from is empty
1427  EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
1428  str[10] = '\0';
1429  str[20] = '\0';
1430  strncat(str + 5, str, 5);
1431  str[10] = '\0';
1432  EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
1433  EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
1434
1435  free(str);
1436}
1437
1438void CallAtoi(const char *nptr) {
1439  Ident(atoi(nptr));
1440}
1441void CallAtol(const char *nptr) {
1442  Ident(atol(nptr));
1443}
1444void CallAtoll(const char *nptr) {
1445  Ident(atoll(nptr));
1446}
1447typedef void(*PointerToCallAtoi)(const char*);
1448
1449void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
1450  char *array = MallocAndMemsetString(10, '1');
1451  // Invalid pointer to the string.
1452  EXPECT_DEATH(Atoi(array + 11), RightOOBErrorMessage(1));
1453  EXPECT_DEATH(Atoi(array - 1), LeftOOBErrorMessage(1));
1454  // Die if a buffer doesn't have terminating NULL.
1455  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1456  // Make last symbol a terminating NULL or other non-digit.
1457  array[9] = '\0';
1458  Atoi(array);
1459  array[9] = 'a';
1460  Atoi(array);
1461  Atoi(array + 9);
1462  // Sometimes we need to detect overflow if no digits are found.
1463  memset(array, ' ', 10);
1464  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1465  array[9] = '-';
1466  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1467  EXPECT_DEATH(Atoi(array + 9), RightOOBErrorMessage(0));
1468  array[8] = '-';
1469  Atoi(array);
1470  delete array;
1471}
1472
1473TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
1474  RunAtoiOOBTest(&CallAtoi);
1475  RunAtoiOOBTest(&CallAtol);
1476  RunAtoiOOBTest(&CallAtoll);
1477}
1478
1479void CallStrtol(const char *nptr, char **endptr, int base) {
1480  Ident(strtol(nptr, endptr, base));
1481}
1482void CallStrtoll(const char *nptr, char **endptr, int base) {
1483  Ident(strtoll(nptr, endptr, base));
1484}
1485typedef void(*PointerToCallStrtol)(const char*, char**, int);
1486
1487void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
1488  char *array = MallocAndMemsetString(3);
1489  char *endptr = NULL;
1490  array[0] = '1';
1491  array[1] = '2';
1492  array[2] = '3';
1493  // Invalid pointer to the string.
1494  EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBErrorMessage(0));
1495  EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBErrorMessage(1));
1496  // Buffer overflow if there is no terminating null (depends on base).
1497  Strtol(array, &endptr, 3);
1498  EXPECT_EQ(array + 2, endptr);
1499  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1500  array[2] = 'z';
1501  Strtol(array, &endptr, 35);
1502  EXPECT_EQ(array + 2, endptr);
1503  EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBErrorMessage(0));
1504  // Add terminating zero to get rid of overflow.
1505  array[2] = '\0';
1506  Strtol(array, NULL, 36);
1507  // Don't check for overflow if base is invalid.
1508  Strtol(array - 1, NULL, -1);
1509  Strtol(array + 3, NULL, 1);
1510  // Sometimes we need to detect overflow if no digits are found.
1511  array[0] = array[1] = array[2] = ' ';
1512  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1513  array[2] = '+';
1514  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1515  array[2] = '-';
1516  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1517  array[1] = '+';
1518  Strtol(array, NULL, 0);
1519  array[1] = array[2] = 'z';
1520  Strtol(array, &endptr, 0);
1521  EXPECT_EQ(array, endptr);
1522  Strtol(array + 2, NULL, 0);
1523  EXPECT_EQ(array, endptr);
1524  delete array;
1525}
1526
1527TEST(AddressSanitizer, StrtollOOBTest) {
1528  RunStrtolOOBTest(&CallStrtoll);
1529}
1530TEST(AddressSanitizer, StrtolOOBTest) {
1531  RunStrtolOOBTest(&CallStrtol);
1532}
1533
1534// At the moment we instrument memcpy/memove/memset calls at compile time so we
1535// can't handle OOB error if these functions are called by pointer, see disabled
1536// MemIntrinsicCallByPointerTest below
1537typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1538typedef void*(*PointerToMemSet)(void*, int, size_t);
1539
1540void CallMemSetByPointer(PointerToMemSet MemSet) {
1541  size_t size = Ident(100);
1542  char *array = Ident((char*)malloc(size));
1543  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1544  free(array);
1545}
1546
1547void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1548  size_t size = Ident(100);
1549  char *src = Ident((char*)malloc(size));
1550  char *dst = Ident((char*)malloc(size));
1551  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1552  free(src);
1553  free(dst);
1554}
1555
1556TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1557  CallMemSetByPointer(&memset);
1558  CallMemTransferByPointer(&memcpy);
1559  CallMemTransferByPointer(&memmove);
1560}
1561
1562// This test case fails
1563// Clang optimizes memcpy/memset calls which lead to unaligned access
1564TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1565  int size = Ident(4096);
1566  char *s = Ident((char*)malloc(size));
1567  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1568  free(s);
1569}
1570
1571// TODO(samsonov): Add a test with malloc(0)
1572// TODO(samsonov): Add tests for str* and mem* functions.
1573
1574NOINLINE static int LargeFunction(bool do_bad_access) {
1575  int *x = new int[100];
1576  x[0]++;
1577  x[1]++;
1578  x[2]++;
1579  x[3]++;
1580  x[4]++;
1581  x[5]++;
1582  x[6]++;
1583  x[7]++;
1584  x[8]++;
1585  x[9]++;
1586
1587  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1588
1589  x[10]++;
1590  x[11]++;
1591  x[12]++;
1592  x[13]++;
1593  x[14]++;
1594  x[15]++;
1595  x[16]++;
1596  x[17]++;
1597  x[18]++;
1598  x[19]++;
1599
1600  delete x;
1601  return res;
1602}
1603
1604// Test the we have correct debug info for the failing instruction.
1605// This test requires the in-process symbolizer to be enabled by default.
1606TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1607  int failing_line = LargeFunction(false);
1608  char expected_warning[128];
1609  sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1610  EXPECT_DEATH(LargeFunction(true), expected_warning);
1611}
1612
1613// Check that we unwind and symbolize correctly.
1614TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1615  int *a = (int*)malloc_aaa(sizeof(int));
1616  *a = 1;
1617  free_aaa(a);
1618  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1619               "malloc_fff.*malloc_eee.*malloc_ddd");
1620}
1621
1622void *ThreadedTestAlloc(void *a) {
1623  int **p = (int**)a;
1624  *p = new int;
1625  return 0;
1626}
1627
1628void *ThreadedTestFree(void *a) {
1629  int **p = (int**)a;
1630  delete *p;
1631  return 0;
1632}
1633
1634void *ThreadedTestUse(void *a) {
1635  int **p = (int**)a;
1636  **p = 1;
1637  return 0;
1638}
1639
1640void ThreadedTestSpawn() {
1641  pthread_t t;
1642  int *x;
1643  PTHREAD_CREATE(&t, 0, ThreadedTestAlloc, &x);
1644  PTHREAD_JOIN(t, 0);
1645  PTHREAD_CREATE(&t, 0, ThreadedTestFree, &x);
1646  PTHREAD_JOIN(t, 0);
1647  PTHREAD_CREATE(&t, 0, ThreadedTestUse, &x);
1648  PTHREAD_JOIN(t, 0);
1649}
1650
1651TEST(AddressSanitizer, ThreadedTest) {
1652  EXPECT_DEATH(ThreadedTestSpawn(),
1653               ASAN_PCRE_DOTALL
1654               "Thread T.*created"
1655               ".*Thread T.*created"
1656               ".*Thread T.*created");
1657}
1658
1659#if ASAN_NEEDS_SEGV
1660TEST(AddressSanitizer, ShadowGapTest) {
1661#if SANITIZER_WORDSIZE == 32
1662  char *addr = (char*)0x22000000;
1663#else
1664  char *addr = (char*)0x0000100000080000;
1665#endif
1666  EXPECT_DEATH(*addr = 1, "AddressSanitizer: SEGV on unknown");
1667}
1668#endif  // ASAN_NEEDS_SEGV
1669
1670extern "C" {
1671NOINLINE static void UseThenFreeThenUse() {
1672  char *x = Ident((char*)malloc(8));
1673  *x = 1;
1674  free_aaa(x);
1675  *x = 2;
1676}
1677}
1678
1679TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1680  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1681}
1682
1683TEST(AddressSanitizer, StrDupTest) {
1684  free(strdup(Ident("123")));
1685}
1686
1687// Currently we create and poison redzone at right of global variables.
1688char glob5[5];
1689static char static110[110];
1690const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1691static const char StaticConstGlob[3] = {9, 8, 7};
1692extern int GlobalsTest(int x);
1693
1694TEST(AddressSanitizer, GlobalTest) {
1695  static char func_static15[15];
1696
1697  static char fs1[10];
1698  static char fs2[10];
1699  static char fs3[10];
1700
1701  glob5[Ident(0)] = 0;
1702  glob5[Ident(1)] = 0;
1703  glob5[Ident(2)] = 0;
1704  glob5[Ident(3)] = 0;
1705  glob5[Ident(4)] = 0;
1706
1707  EXPECT_DEATH(glob5[Ident(5)] = 0,
1708               "0 bytes to the right of global variable.*glob5.* size 5");
1709  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1710               "6 bytes to the right of global variable.*glob5.* size 5");
1711  Ident(static110);  // avoid optimizations
1712  static110[Ident(0)] = 0;
1713  static110[Ident(109)] = 0;
1714  EXPECT_DEATH(static110[Ident(110)] = 0,
1715               "0 bytes to the right of global variable");
1716  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1717               "7 bytes to the right of global variable");
1718
1719  Ident(func_static15);  // avoid optimizations
1720  func_static15[Ident(0)] = 0;
1721  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1722               "0 bytes to the right of global variable");
1723  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1724               "9 bytes to the right of global variable");
1725
1726  Ident(fs1);
1727  Ident(fs2);
1728  Ident(fs3);
1729
1730  // We don't create left redzones, so this is not 100% guaranteed to fail.
1731  // But most likely will.
1732  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1733
1734  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1735               "is located 1 bytes to the right of .*ConstGlob");
1736  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1737               "is located 2 bytes to the right of .*StaticConstGlob");
1738
1739  // call stuff from another file.
1740  GlobalsTest(0);
1741}
1742
1743TEST(AddressSanitizer, GlobalStringConstTest) {
1744  static const char *zoo = "FOOBAR123";
1745  const char *p = Ident(zoo);
1746  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1747}
1748
1749TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1750  static char zoo[10];
1751  const char *p = Ident(zoo);
1752  // The file name should be present in the report.
1753  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1754}
1755
1756int *ReturnsPointerToALocalObject() {
1757  int a = 0;
1758  return Ident(&a);
1759}
1760
1761#if ASAN_UAR == 1
1762TEST(AddressSanitizer, LocalReferenceReturnTest) {
1763  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1764  int *p = f();
1765  // Call 'f' a few more times, 'p' should still be poisoned.
1766  for (int i = 0; i < 32; i++)
1767    f();
1768  EXPECT_DEATH(*p = 1, "AddressSanitizer: stack-use-after-return");
1769  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1770}
1771#endif
1772
1773template <int kSize>
1774NOINLINE static void FuncWithStack() {
1775  char x[kSize];
1776  Ident(x)[0] = 0;
1777  Ident(x)[kSize-1] = 0;
1778}
1779
1780static void LotsOfStackReuse() {
1781  int LargeStack[10000];
1782  Ident(LargeStack)[0] = 0;
1783  for (int i = 0; i < 10000; i++) {
1784    FuncWithStack<128 * 1>();
1785    FuncWithStack<128 * 2>();
1786    FuncWithStack<128 * 4>();
1787    FuncWithStack<128 * 8>();
1788    FuncWithStack<128 * 16>();
1789    FuncWithStack<128 * 32>();
1790    FuncWithStack<128 * 64>();
1791    FuncWithStack<128 * 128>();
1792    FuncWithStack<128 * 256>();
1793    FuncWithStack<128 * 512>();
1794    Ident(LargeStack)[0] = 0;
1795  }
1796}
1797
1798TEST(AddressSanitizer, StressStackReuseTest) {
1799  LotsOfStackReuse();
1800}
1801
1802TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1803  const int kNumThreads = 20;
1804  pthread_t t[kNumThreads];
1805  for (int i = 0; i < kNumThreads; i++) {
1806    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1807  }
1808  for (int i = 0; i < kNumThreads; i++) {
1809    PTHREAD_JOIN(t[i], 0);
1810  }
1811}
1812
1813static void *PthreadExit(void *a) {
1814  pthread_exit(0);
1815  return 0;
1816}
1817
1818TEST(AddressSanitizer, PthreadExitTest) {
1819  pthread_t t;
1820  for (int i = 0; i < 1000; i++) {
1821    PTHREAD_CREATE(&t, 0, PthreadExit, 0);
1822    PTHREAD_JOIN(t, 0);
1823  }
1824}
1825
1826#ifdef __EXCEPTIONS
1827NOINLINE static void StackReuseAndException() {
1828  int large_stack[1000];
1829  Ident(large_stack);
1830  ASAN_THROW(1);
1831}
1832
1833// TODO(kcc): support exceptions with use-after-return.
1834TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1835  for (int i = 0; i < 10000; i++) {
1836    try {
1837    StackReuseAndException();
1838    } catch(...) {
1839    }
1840  }
1841}
1842#endif
1843
1844TEST(AddressSanitizer, MlockTest) {
1845  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1846  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1847  EXPECT_EQ(0, munlockall());
1848  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1849}
1850
1851struct LargeStruct {
1852  int foo[100];
1853};
1854
1855// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
1856// Struct copy should not cause asan warning even if lhs == rhs.
1857TEST(AddressSanitizer, LargeStructCopyTest) {
1858  LargeStruct a;
1859  *Ident(&a) = *Ident(&a);
1860}
1861
1862ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
1863static void NoAddressSafety() {
1864  char *foo = new char[10];
1865  Ident(foo)[10] = 0;
1866  delete [] foo;
1867}
1868
1869TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
1870  Ident(NoAddressSafety)();
1871}
1872
1873// ------------------ demo tests; run each one-by-one -------------
1874// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1875TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1876  ThreadedTestSpawn();
1877}
1878
1879void *SimpleBugOnSTack(void *x = 0) {
1880  char a[20];
1881  Ident(a)[20] = 0;
1882  return 0;
1883}
1884
1885TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1886  SimpleBugOnSTack();
1887}
1888
1889TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1890  pthread_t t;
1891  PTHREAD_CREATE(&t, 0, SimpleBugOnSTack, 0);
1892  PTHREAD_JOIN(t, 0);
1893}
1894
1895TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1896  uaf_test<U1>(10, 0);
1897}
1898TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1899  uaf_test<U1>(10, -2);
1900}
1901TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1902  uaf_test<U1>(10, 10);
1903}
1904
1905TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1906  uaf_test<U1>(kLargeMalloc, 0);
1907}
1908
1909TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1910  oob_test<U1>(10, -1);
1911}
1912
1913TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1914  oob_test<U1>(kLargeMalloc, -1);
1915}
1916
1917TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1918  oob_test<U1>(10, 10);
1919}
1920
1921TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1922  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1923}
1924
1925TEST(AddressSanitizer, DISABLED_DemoOOM) {
1926  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1927  printf("%p\n", malloc(size));
1928}
1929
1930TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1931  DoubleFree();
1932}
1933
1934TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1935  int *a = 0;
1936  Ident(a)[10] = 0;
1937}
1938
1939TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1940  static char a[100];
1941  static char b[100];
1942  static char c[100];
1943  Ident(a);
1944  Ident(b);
1945  Ident(c);
1946  Ident(a)[5] = 0;
1947  Ident(b)[105] = 0;
1948  Ident(a)[5] = 0;
1949}
1950
1951TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1952  const size_t kAllocSize = (1 << 28) - 1024;
1953  size_t total_size = 0;
1954  while (true) {
1955    char *x = (char*)malloc(kAllocSize);
1956    memset(x, 0, kAllocSize);
1957    total_size += kAllocSize;
1958    fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x);
1959  }
1960}
1961
1962// http://code.google.com/p/address-sanitizer/issues/detail?id=66
1963TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
1964  for (int i = 0; i < 1000000; i++) {
1965    delete [] (Ident(new char [8644]));
1966  }
1967  char *x = new char[8192];
1968  EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer: heap-buffer-overflow");
1969  delete [] Ident(x);
1970}
1971
1972#ifdef __APPLE__
1973#include "asan_mac_test.h"
1974TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
1975  EXPECT_DEATH(
1976      CFAllocatorDefaultDoubleFree(NULL),
1977      "attempting double-free");
1978}
1979
1980void CFAllocator_DoubleFreeOnPthread() {
1981  pthread_t child;
1982  PTHREAD_CREATE(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
1983  PTHREAD_JOIN(child, NULL);  // Shouldn't be reached.
1984}
1985
1986TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
1987  EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
1988}
1989
1990namespace {
1991
1992void *GLOB;
1993
1994void *CFAllocatorAllocateToGlob(void *unused) {
1995  GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
1996  return NULL;
1997}
1998
1999void *CFAllocatorDeallocateFromGlob(void *unused) {
2000  char *p = (char*)GLOB;
2001  p[100] = 'A';  // ASan should report an error here.
2002  CFAllocatorDeallocate(NULL, GLOB);
2003  return NULL;
2004}
2005
2006void CFAllocator_PassMemoryToAnotherThread() {
2007  pthread_t th1, th2;
2008  PTHREAD_CREATE(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
2009  PTHREAD_JOIN(th1, NULL);
2010  PTHREAD_CREATE(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
2011  PTHREAD_JOIN(th2, NULL);
2012}
2013
2014TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
2015  EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
2016               "heap-buffer-overflow");
2017}
2018
2019}  // namespace
2020
2021// TODO(glider): figure out whether we still need these tests. Is it correct
2022// to intercept the non-default CFAllocators?
2023TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
2024  EXPECT_DEATH(
2025      CFAllocatorSystemDefaultDoubleFree(),
2026      "attempting double-free");
2027}
2028
2029// We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
2030TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
2031  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
2032}
2033
2034TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
2035  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
2036}
2037
2038TEST(AddressSanitizerMac, GCDDispatchAsync) {
2039  // Make sure the whole ASan report is printed, i.e. that we don't die
2040  // on a CHECK.
2041  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
2042}
2043
2044TEST(AddressSanitizerMac, GCDDispatchSync) {
2045  // Make sure the whole ASan report is printed, i.e. that we don't die
2046  // on a CHECK.
2047  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
2048}
2049
2050
2051TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
2052  // Make sure the whole ASan report is printed, i.e. that we don't die
2053  // on a CHECK.
2054  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
2055}
2056
2057TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
2058  // Make sure the whole ASan report is printed, i.e. that we don't die
2059  // on a CHECK.
2060  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
2061}
2062
2063TEST(AddressSanitizerMac, GCDDispatchAfter) {
2064  // Make sure the whole ASan report is printed, i.e. that we don't die
2065  // on a CHECK.
2066  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
2067}
2068
2069TEST(AddressSanitizerMac, GCDSourceEvent) {
2070  // Make sure the whole ASan report is printed, i.e. that we don't die
2071  // on a CHECK.
2072  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
2073}
2074
2075TEST(AddressSanitizerMac, GCDSourceCancel) {
2076  // Make sure the whole ASan report is printed, i.e. that we don't die
2077  // on a CHECK.
2078  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
2079}
2080
2081TEST(AddressSanitizerMac, GCDGroupAsync) {
2082  // Make sure the whole ASan report is printed, i.e. that we don't die
2083  // on a CHECK.
2084  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
2085}
2086
2087void *MallocIntrospectionLockWorker(void *_) {
2088  const int kNumPointers = 100;
2089  int i;
2090  void *pointers[kNumPointers];
2091  for (i = 0; i < kNumPointers; i++) {
2092    pointers[i] = malloc(i + 1);
2093  }
2094  for (i = 0; i < kNumPointers; i++) {
2095    free(pointers[i]);
2096  }
2097
2098  return NULL;
2099}
2100
2101void *MallocIntrospectionLockForker(void *_) {
2102  pid_t result = fork();
2103  if (result == -1) {
2104    perror("fork");
2105  }
2106  assert(result != -1);
2107  if (result == 0) {
2108    // Call malloc in the child process to make sure we won't deadlock.
2109    void *ptr = malloc(42);
2110    free(ptr);
2111    exit(0);
2112  } else {
2113    // Return in the parent process.
2114    return NULL;
2115  }
2116}
2117
2118TEST(AddressSanitizerMac, MallocIntrospectionLock) {
2119  // Incorrect implementation of force_lock and force_unlock in our malloc zone
2120  // will cause forked processes to deadlock.
2121  // TODO(glider): need to detect that none of the child processes deadlocked.
2122  const int kNumWorkers = 5, kNumIterations = 100;
2123  int i, iter;
2124  for (iter = 0; iter < kNumIterations; iter++) {
2125    pthread_t workers[kNumWorkers], forker;
2126    for (i = 0; i < kNumWorkers; i++) {
2127      PTHREAD_CREATE(&workers[i], 0, MallocIntrospectionLockWorker, 0);
2128    }
2129    PTHREAD_CREATE(&forker, 0, MallocIntrospectionLockForker, 0);
2130    for (i = 0; i < kNumWorkers; i++) {
2131      PTHREAD_JOIN(workers[i], 0);
2132    }
2133    PTHREAD_JOIN(forker, 0);
2134  }
2135}
2136
2137void *TSDAllocWorker(void *test_key) {
2138  if (test_key) {
2139    void *mem = malloc(10);
2140    pthread_setspecific(*(pthread_key_t*)test_key, mem);
2141  }
2142  return NULL;
2143}
2144
2145TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
2146  pthread_t th;
2147  pthread_key_t test_key;
2148  pthread_key_create(&test_key, CallFreeOnWorkqueue);
2149  PTHREAD_CREATE(&th, NULL, TSDAllocWorker, &test_key);
2150  PTHREAD_JOIN(th, NULL);
2151  pthread_key_delete(test_key);
2152}
2153
2154// Test that CFStringCreateCopy does not copy constant strings.
2155TEST(AddressSanitizerMac, CFStringCreateCopy) {
2156  CFStringRef str = CFSTR("Hello world!\n");
2157  CFStringRef str2 = CFStringCreateCopy(0, str);
2158  EXPECT_EQ(str, str2);
2159}
2160
2161TEST(AddressSanitizerMac, NSObjectOOB) {
2162  // Make sure that our allocators are used for NSObjects.
2163  EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
2164}
2165
2166// Make sure that correct pointer is passed to free() when deallocating a
2167// NSURL object.
2168// See http://code.google.com/p/address-sanitizer/issues/detail?id=70.
2169TEST(AddressSanitizerMac, NSURLDeallocation) {
2170  TestNSURLDeallocation();
2171}
2172
2173// See http://code.google.com/p/address-sanitizer/issues/detail?id=109.
2174TEST(AddressSanitizerMac, Mstats) {
2175  malloc_statistics_t stats1, stats2;
2176  malloc_zone_statistics(/*all zones*/NULL, &stats1);
2177  const int kMallocSize = 100000;
2178  void *alloc = Ident(malloc(kMallocSize));
2179  malloc_zone_statistics(/*all zones*/NULL, &stats2);
2180  EXPECT_GT(stats2.blocks_in_use, stats1.blocks_in_use);
2181  EXPECT_GE(stats2.size_in_use - stats1.size_in_use, kMallocSize);
2182  free(alloc);
2183  // Even the default OSX allocator may not change the stats after free().
2184}
2185#endif  // __APPLE__
2186
2187// Test that instrumentation of stack allocations takes into account
2188// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
2189// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
2190TEST(AddressSanitizer, LongDoubleNegativeTest) {
2191  long double a, b;
2192  static long double c;
2193  memcpy(Ident(&a), Ident(&b), sizeof(long double));
2194  memcpy(Ident(&c), Ident(&b), sizeof(long double));
2195}
2196