asan_test.cc revision 37b3fcd6fdec5740fe51fc1315c5d4d54313de98
1//===-- asan_test.cc ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22
23#if defined(__i386__) || defined(__x86_64__)
24#include <emmintrin.h>
25#endif
26
27#include "asan_test_config.h"
28#include "asan_test_utils.h"
29
30#ifndef __APPLE__
31#include <malloc.h>
32#else
33#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
34#include <CoreFoundation/CFString.h>
35#endif  // __APPLE__
36
37#if ASAN_HAS_EXCEPTIONS
38# define ASAN_THROW(x) throw (x)
39#else
40# define ASAN_THROW(x)
41#endif
42
43#include <sys/mman.h>
44
45typedef uint8_t   U1;
46typedef uint16_t  U2;
47typedef uint32_t  U4;
48typedef uint64_t  U8;
49
50static const char *progname;
51static const int kPageSize = 4096;
52
53// Simple stand-alone pseudorandom number generator.
54// Current algorithm is ANSI C linear congruential PRNG.
55static inline uint32_t my_rand(uint32_t* state) {
56  return (*state = *state * 1103515245 + 12345) >> 16;
57}
58
59static uint32_t global_seed = 0;
60
61const size_t kLargeMalloc = 1 << 24;
62
63template<typename T>
64NOINLINE void asan_write(T *a) {
65  *a = 0;
66}
67
68NOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
69  EXPECT_EQ(0, ((uintptr_t)p % size));
70  if      (size == 1) asan_write((uint8_t*)p);
71  else if (size == 2) asan_write((uint16_t*)p);
72  else if (size == 4) asan_write((uint32_t*)p);
73  else if (size == 8) asan_write((uint64_t*)p);
74}
75
76NOINLINE void *malloc_fff(size_t size) {
77  void *res = malloc/**/(size); break_optimization(0); return res;}
78NOINLINE void *malloc_eee(size_t size) {
79  void *res = malloc_fff(size); break_optimization(0); return res;}
80NOINLINE void *malloc_ddd(size_t size) {
81  void *res = malloc_eee(size); break_optimization(0); return res;}
82NOINLINE void *malloc_ccc(size_t size) {
83  void *res = malloc_ddd(size); break_optimization(0); return res;}
84NOINLINE void *malloc_bbb(size_t size) {
85  void *res = malloc_ccc(size); break_optimization(0); return res;}
86NOINLINE void *malloc_aaa(size_t size) {
87  void *res = malloc_bbb(size); break_optimization(0); return res;}
88
89#ifndef __APPLE__
90NOINLINE void *memalign_fff(size_t alignment, size_t size) {
91  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
92NOINLINE void *memalign_eee(size_t alignment, size_t size) {
93  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
94NOINLINE void *memalign_ddd(size_t alignment, size_t size) {
95  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
96NOINLINE void *memalign_ccc(size_t alignment, size_t size) {
97  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
98NOINLINE void *memalign_bbb(size_t alignment, size_t size) {
99  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
100NOINLINE void *memalign_aaa(size_t alignment, size_t size) {
101  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
102#endif  // __APPLE__
103
104
105NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
106NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
107NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
108
109template<typename T>
110NOINLINE void oob_test(int size, int off) {
111  char *p = (char*)malloc_aaa(size);
112  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
113  //        sizeof(T), p, p + size, off);
114  asan_write((T*)(p + off));
115  free_aaa(p);
116}
117
118
119template<typename T>
120NOINLINE void uaf_test(int size, int off) {
121  char *p = (char *)malloc_aaa(size);
122  free_aaa(p);
123  for (int i = 1; i < 100; i++)
124    free_aaa(malloc_aaa(i));
125  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
126          (long)sizeof(T), p, off);
127  asan_write((T*)(p + off));
128}
129
130TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
131#if defined(__has_feature) && __has_feature(address_sanitizer)
132  bool asan = 1;
133#else
134  bool asan = 0;
135#endif
136  EXPECT_EQ(true, asan);
137}
138
139TEST(AddressSanitizer, SimpleDeathTest) {
140  EXPECT_DEATH(exit(1), "");
141}
142
143TEST(AddressSanitizer, VariousMallocsTest) {
144  // fprintf(stderr, "malloc:\n");
145  int *a = (int*)malloc(100 * sizeof(int));
146  a[50] = 0;
147  free(a);
148
149  // fprintf(stderr, "realloc:\n");
150  int *r = (int*)malloc(10);
151  r = (int*)realloc(r, 2000 * sizeof(int));
152  r[1000] = 0;
153  free(r);
154
155  // fprintf(stderr, "operator new []\n");
156  int *b = new int[100];
157  b[50] = 0;
158  delete [] b;
159
160  // fprintf(stderr, "operator new\n");
161  int *c = new int;
162  *c = 0;
163  delete c;
164
165#if !defined(__APPLE__) && !defined(ANDROID)
166  // fprintf(stderr, "posix_memalign\n");
167  int *pm;
168  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
169  EXPECT_EQ(0, pm_res);
170  free(pm);
171#endif
172
173#if !defined(__APPLE__)
174  int *ma = (int*)memalign(kPageSize, kPageSize);
175  EXPECT_EQ(0, (uintptr_t)ma % kPageSize);
176  ma[123] = 0;
177  free(ma);
178#endif  // __APPLE__
179}
180
181TEST(AddressSanitizer, CallocTest) {
182  int *a = (int*)calloc(100, sizeof(int));
183  EXPECT_EQ(0, a[10]);
184  free(a);
185}
186
187TEST(AddressSanitizer, VallocTest) {
188  void *a = valloc(100);
189  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
190  free(a);
191}
192
193#ifndef __APPLE__
194TEST(AddressSanitizer, PvallocTest) {
195  char *a = (char*)pvalloc(kPageSize + 100);
196  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
197  a[kPageSize + 101] = 1;  // we should not report an error here.
198  free(a);
199
200  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
201  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
202  a[101] = 1;  // we should not report an error here.
203  free(a);
204}
205#endif  // __APPLE__
206
207void *TSDWorker(void *test_key) {
208  if (test_key) {
209    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
210  }
211  return NULL;
212}
213
214void TSDDestructor(void *tsd) {
215  // Spawning a thread will check that the current thread id is not -1.
216  pthread_t th;
217  pthread_create(&th, NULL, TSDWorker, NULL);
218  pthread_join(th, NULL);
219}
220
221// This tests triggers the thread-specific data destruction fiasco which occurs
222// if we don't manage the TSD destructors ourselves. We create a new pthread
223// key with a non-NULL destructor which is likely to be put after the destructor
224// of AsanThread in the list of destructors.
225// In this case the TSD for AsanThread will be destroyed before TSDDestructor
226// is called for the child thread, and a CHECK will fail when we call
227// pthread_create() to spawn the grandchild.
228TEST(AddressSanitizer, DISABLED_TSDTest) {
229  pthread_t th;
230  pthread_key_t test_key;
231  pthread_key_create(&test_key, TSDDestructor);
232  pthread_create(&th, NULL, TSDWorker, &test_key);
233  pthread_join(th, NULL);
234  pthread_key_delete(test_key);
235}
236
237template<typename T>
238void OOBTest() {
239  char expected_str[100];
240  for (int size = sizeof(T); size < 20; size += 5) {
241    for (int i = -5; i < 0; i++) {
242      const char *str =
243          "is located.*%d byte.*to the left";
244      sprintf(expected_str, str, abs(i));
245      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
246    }
247
248    for (int i = 0; i < size - sizeof(T) + 1; i++)
249      oob_test<T>(size, i);
250
251    for (int i = size - sizeof(T) + 1; i <= size + 3 * sizeof(T); i++) {
252      const char *str =
253          "is located.*%d byte.*to the right";
254      int off = i >= size ? (i - size) : 0;
255      // we don't catch unaligned partially OOB accesses.
256      if (i % sizeof(T)) continue;
257      sprintf(expected_str, str, off);
258      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
259    }
260  }
261
262  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
263          "is located.*1 byte.*to the left");
264  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
265          "is located.*0 byte.*to the right");
266}
267
268// TODO(glider): the following tests are EXTREMELY slow on Darwin:
269//   AddressSanitizer.OOB_char (125503 ms)
270//   AddressSanitizer.OOB_int (126890 ms)
271//   AddressSanitizer.OOBRightTest (315605 ms)
272//   AddressSanitizer.SimpleStackTest (366559 ms)
273
274TEST(AddressSanitizer, OOB_char) {
275  OOBTest<U1>();
276}
277
278TEST(AddressSanitizer, OOB_int) {
279  OOBTest<U4>();
280}
281
282TEST(AddressSanitizer, OOBRightTest) {
283  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
284    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
285      for (size_t offset = 0; offset <= 8; offset += access_size) {
286        void *p = malloc(alloc_size);
287        // allocated: [p, p + alloc_size)
288        // accessed:  [p + offset, p + offset + access_size)
289        uint8_t *addr = (uint8_t*)p + offset;
290        if (offset + access_size <= alloc_size) {
291          asan_write_sized_aligned(addr, access_size);
292        } else {
293          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
294          const char *str =
295              "is located.%d *byte.*to the right";
296          char expected_str[100];
297          sprintf(expected_str, str, outside_bytes);
298          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
299                       expected_str);
300        }
301        free(p);
302      }
303    }
304  }
305}
306
307TEST(AddressSanitizer, UAF_char) {
308  const char *uaf_string = "AddressSanitizer.*heap-use-after-free";
309  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
310  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
311  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
312  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
313  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
314}
315
316#if ASAN_HAS_BLACKLIST
317TEST(AddressSanitizer, IgnoreTest) {
318  int *x = Ident(new int);
319  delete Ident(x);
320  *x = 0;
321}
322#endif  // ASAN_HAS_BLACKLIST
323
324struct StructWithBitField {
325  int bf1:1;
326  int bf2:1;
327  int bf3:1;
328  int bf4:29;
329};
330
331TEST(AddressSanitizer, BitFieldPositiveTest) {
332  StructWithBitField *x = new StructWithBitField;
333  delete Ident(x);
334  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
335  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
336  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
337  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
338};
339
340struct StructWithBitFields_8_24 {
341  int a:8;
342  int b:24;
343};
344
345TEST(AddressSanitizer, BitFieldNegativeTest) {
346  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
347  x->a = 0;
348  x->b = 0;
349  delete Ident(x);
350}
351
352TEST(AddressSanitizer, OutOfMemoryTest) {
353  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
354  EXPECT_EQ(0, realloc(0, size));
355  EXPECT_EQ(0, realloc(0, ~Ident(0)));
356  EXPECT_EQ(0, malloc(size));
357  EXPECT_EQ(0, malloc(~Ident(0)));
358  EXPECT_EQ(0, calloc(1, size));
359  EXPECT_EQ(0, calloc(1, ~Ident(0)));
360}
361
362#if ASAN_NEEDS_SEGV
363TEST(AddressSanitizer, WildAddressTest) {
364  char *c = (char*)0x123;
365  EXPECT_DEATH(*c = 0, "AddressSanitizer crashed on unknown address");
366}
367#endif
368
369static void MallocStress(size_t n) {
370  uint32_t seed = my_rand(&global_seed);
371  for (size_t iter = 0; iter < 10; iter++) {
372    vector<void *> vec;
373    for (size_t i = 0; i < n; i++) {
374      if ((i % 3) == 0) {
375        if (vec.empty()) continue;
376        size_t idx = my_rand(&seed) % vec.size();
377        void *ptr = vec[idx];
378        vec[idx] = vec.back();
379        vec.pop_back();
380        free_aaa(ptr);
381      } else {
382        size_t size = my_rand(&seed) % 1000 + 1;
383#ifndef __APPLE__
384        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
385        char *ptr = (char*)memalign_aaa(alignment, size);
386#else
387        char *ptr = (char*) malloc_aaa(size);
388#endif
389        vec.push_back(ptr);
390        ptr[0] = 0;
391        ptr[size-1] = 0;
392        ptr[size/2] = 0;
393      }
394    }
395    for (size_t i = 0; i < vec.size(); i++)
396      free_aaa(vec[i]);
397  }
398}
399
400TEST(AddressSanitizer, MallocStressTest) {
401  MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
402}
403
404static void TestLargeMalloc(size_t size) {
405  char buff[1024];
406  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
407  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
408}
409
410TEST(AddressSanitizer, LargeMallocTest) {
411  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
412    TestLargeMalloc(i);
413  }
414}
415
416#if ASAN_LOW_MEMORY != 1
417TEST(AddressSanitizer, HugeMallocTest) {
418#ifdef __APPLE__
419  // It was empirically found out that 1215 megabytes is the maximum amount of
420  // memory available to the process under AddressSanitizer on 32-bit Mac 10.6.
421  // 32-bit Mac 10.7 gives even less (< 1G).
422  // (the libSystem malloc() allows allocating up to 2300 megabytes without
423  // ASan).
424  size_t n_megs = __WORDSIZE == 32 ? 500 : 4100;
425#else
426  size_t n_megs = __WORDSIZE == 32 ? 2600 : 4100;
427#endif
428  TestLargeMalloc(n_megs << 20);
429}
430#endif
431
432TEST(AddressSanitizer, ThreadedMallocStressTest) {
433  const int kNumThreads = 4;
434  const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
435  pthread_t t[kNumThreads];
436  for (int i = 0; i < kNumThreads; i++) {
437    pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress,
438        (void*)kNumIterations);
439  }
440  for (int i = 0; i < kNumThreads; i++) {
441    pthread_join(t[i], 0);
442  }
443}
444
445void *ManyThreadsWorker(void *a) {
446  for (int iter = 0; iter < 100; iter++) {
447    for (size_t size = 100; size < 2000; size *= 2) {
448      free(Ident(malloc(size)));
449    }
450  }
451  return 0;
452}
453
454TEST(AddressSanitizer, ManyThreadsTest) {
455  const size_t kNumThreads = __WORDSIZE == 32 ? 30 : 1000;
456  pthread_t t[kNumThreads];
457  for (size_t i = 0; i < kNumThreads; i++) {
458    pthread_create(&t[i], 0, (void* (*)(void *x))ManyThreadsWorker, (void*)i);
459  }
460  for (size_t i = 0; i < kNumThreads; i++) {
461    pthread_join(t[i], 0);
462  }
463}
464
465TEST(AddressSanitizer, ReallocTest) {
466  const int kMinElem = 5;
467  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
468  ptr[3] = 3;
469  for (int i = 0; i < 10000; i++) {
470    ptr = (int*)realloc(ptr,
471        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
472    EXPECT_EQ(3, ptr[3]);
473  }
474}
475
476#ifndef __APPLE__
477static const char *kMallocUsableSizeErrorMsg =
478  "AddressSanitizer attempting to call malloc_usable_size()";
479
480TEST(AddressSanitizer, MallocUsableSizeTest) {
481  const size_t kArraySize = 100;
482  char *array = Ident((char*)malloc(kArraySize));
483  int *int_ptr = Ident(new int);
484  EXPECT_EQ(0, malloc_usable_size(NULL));
485  EXPECT_EQ(kArraySize, malloc_usable_size(array));
486  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
487  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
488  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
489               kMallocUsableSizeErrorMsg);
490  free(array);
491  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
492}
493#endif
494
495void WrongFree() {
496  int *x = (int*)malloc(100 * sizeof(int));
497  // Use the allocated memory, otherwise Clang will optimize it out.
498  Ident(x);
499  free(x + 1);
500}
501
502TEST(AddressSanitizer, WrongFreeTest) {
503  EXPECT_DEATH(WrongFree(),
504               "ERROR: AddressSanitizer attempting free.*not malloc");
505}
506
507void DoubleFree() {
508  int *x = (int*)malloc(100 * sizeof(int));
509  fprintf(stderr, "DoubleFree: x=%p\n", x);
510  free(x);
511  free(x);
512  fprintf(stderr, "should have failed in the second free(%p)\n", x);
513  abort();
514}
515
516TEST(AddressSanitizer, DoubleFreeTest) {
517  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
518               "ERROR: AddressSanitizer attempting double-free"
519               ".*is located 0 bytes inside of 400-byte region"
520               ".*freed by thread T0 here"
521               ".*previously allocated by thread T0 here");
522}
523
524template<int kSize>
525NOINLINE void SizedStackTest() {
526  char a[kSize];
527  char  *A = Ident((char*)&a);
528  for (size_t i = 0; i < kSize; i++)
529    A[i] = i;
530  EXPECT_DEATH(A[-1] = 0, "");
531  EXPECT_DEATH(A[-20] = 0, "");
532  EXPECT_DEATH(A[-31] = 0, "");
533  EXPECT_DEATH(A[kSize] = 0, "");
534  EXPECT_DEATH(A[kSize + 1] = 0, "");
535  EXPECT_DEATH(A[kSize + 10] = 0, "");
536  EXPECT_DEATH(A[kSize + 31] = 0, "");
537}
538
539TEST(AddressSanitizer, SimpleStackTest) {
540  SizedStackTest<1>();
541  SizedStackTest<2>();
542  SizedStackTest<3>();
543  SizedStackTest<4>();
544  SizedStackTest<5>();
545  SizedStackTest<6>();
546  SizedStackTest<7>();
547  SizedStackTest<16>();
548  SizedStackTest<25>();
549  SizedStackTest<34>();
550  SizedStackTest<43>();
551  SizedStackTest<51>();
552  SizedStackTest<62>();
553  SizedStackTest<64>();
554  SizedStackTest<128>();
555}
556
557TEST(AddressSanitizer, ManyStackObjectsTest) {
558  char XXX[10];
559  char YYY[20];
560  char ZZZ[30];
561  Ident(XXX);
562  Ident(YYY);
563  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
564}
565
566NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
567  char d[4] = {0};
568  char *D = Ident(d);
569  switch (frame) {
570    case 3: a[5]++; break;
571    case 2: b[5]++; break;
572    case 1: c[5]++; break;
573    case 0: D[5]++; break;
574  }
575}
576NOINLINE static void Frame1(int frame, char *a, char *b) {
577  char c[4] = {0}; Frame0(frame, a, b, c);
578  break_optimization(0);
579}
580NOINLINE static void Frame2(int frame, char *a) {
581  char b[4] = {0}; Frame1(frame, a, b);
582  break_optimization(0);
583}
584NOINLINE static void Frame3(int frame) {
585  char a[4] = {0}; Frame2(frame, a);
586  break_optimization(0);
587}
588
589TEST(AddressSanitizer, GuiltyStackFrame0Test) {
590  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
591}
592TEST(AddressSanitizer, GuiltyStackFrame1Test) {
593  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
594}
595TEST(AddressSanitizer, GuiltyStackFrame2Test) {
596  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
597}
598TEST(AddressSanitizer, GuiltyStackFrame3Test) {
599  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
600}
601
602NOINLINE void LongJmpFunc1(jmp_buf buf) {
603  // create three red zones for these two stack objects.
604  int a;
605  int b;
606
607  int *A = Ident(&a);
608  int *B = Ident(&b);
609  *A = *B;
610  longjmp(buf, 1);
611}
612
613NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
614  // create three red zones for these two stack objects.
615  int a;
616  int b;
617
618  int *A = Ident(&a);
619  int *B = Ident(&b);
620  *A = *B;
621  _longjmp(buf, 1);
622}
623
624NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
625  // create three red zones for these two stack objects.
626  int a;
627  int b;
628
629  int *A = Ident(&a);
630  int *B = Ident(&b);
631  *A = *B;
632  siglongjmp(buf, 1);
633}
634
635
636NOINLINE void TouchStackFunc() {
637  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
638  int *A = Ident(a);
639  for (int i = 0; i < 100; i++)
640    A[i] = i*i;
641}
642
643// Test that we handle longjmp and do not report fals positives on stack.
644TEST(AddressSanitizer, LongJmpTest) {
645  static jmp_buf buf;
646  if (!setjmp(buf)) {
647    LongJmpFunc1(buf);
648  } else {
649    TouchStackFunc();
650  }
651}
652
653TEST(AddressSanitizer, UnderscopeLongJmpTest) {
654  static jmp_buf buf;
655  if (!_setjmp(buf)) {
656    UnderscopeLongJmpFunc1(buf);
657  } else {
658    TouchStackFunc();
659  }
660}
661
662TEST(AddressSanitizer, SigLongJmpTest) {
663  static sigjmp_buf buf;
664  if (!sigsetjmp(buf, 1)) {
665    SigLongJmpFunc1(buf);
666  } else {
667    TouchStackFunc();
668  }
669}
670
671#ifdef __EXCEPTIONS
672NOINLINE void ThrowFunc() {
673  // create three red zones for these two stack objects.
674  int a;
675  int b;
676
677  int *A = Ident(&a);
678  int *B = Ident(&b);
679  *A = *B;
680  ASAN_THROW(1);
681}
682
683TEST(AddressSanitizer, CxxExceptionTest) {
684  if (ASAN_UAR) return;
685  // TODO(kcc): this test crashes on 32-bit for some reason...
686  if (__WORDSIZE == 32) return;
687  try {
688    ThrowFunc();
689  } catch(...) {}
690  TouchStackFunc();
691}
692#endif
693
694void *ThreadStackReuseFunc1(void *unused) {
695  // create three red zones for these two stack objects.
696  int a;
697  int b;
698
699  int *A = Ident(&a);
700  int *B = Ident(&b);
701  *A = *B;
702  pthread_exit(0);
703  return 0;
704}
705
706void *ThreadStackReuseFunc2(void *unused) {
707  TouchStackFunc();
708  return 0;
709}
710
711TEST(AddressSanitizer, ThreadStackReuseTest) {
712  pthread_t t;
713  pthread_create(&t, 0, ThreadStackReuseFunc1, 0);
714  pthread_join(t, 0);
715  pthread_create(&t, 0, ThreadStackReuseFunc2, 0);
716  pthread_join(t, 0);
717}
718
719#if defined(__i386__) || defined(__x86_64__)
720TEST(AddressSanitizer, Store128Test) {
721  char *a = Ident((char*)malloc(Ident(12)));
722  char *p = a;
723  if (((uintptr_t)a % 16) != 0)
724    p = a + 8;
725  assert(((uintptr_t)p % 16) == 0);
726  __m128i value_wide = _mm_set1_epi16(0x1234);
727  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
728               "AddressSanitizer heap-buffer-overflow");
729  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
730               "WRITE of size 16");
731  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
732               "located 0 bytes to the right of 12-byte");
733  free(a);
734}
735#endif
736
737static string RightOOBErrorMessage(int oob_distance) {
738  assert(oob_distance >= 0);
739  char expected_str[100];
740  sprintf(expected_str, "located %d bytes to the right", oob_distance);
741  return string(expected_str);
742}
743
744static string LeftOOBErrorMessage(int oob_distance) {
745  assert(oob_distance > 0);
746  char expected_str[100];
747  sprintf(expected_str, "located %d bytes to the left", oob_distance);
748  return string(expected_str);
749}
750
751template<typename T>
752void MemSetOOBTestTemplate(size_t length) {
753  if (length == 0) return;
754  size_t size = Ident(sizeof(T) * length);
755  T *array = Ident((T*)malloc(size));
756  int element = Ident(42);
757  int zero = Ident(0);
758  // memset interval inside array
759  memset(array, element, size);
760  memset(array, element, size - 1);
761  memset(array + length - 1, element, sizeof(T));
762  memset(array, element, 1);
763
764  // memset 0 bytes
765  memset(array - 10, element, zero);
766  memset(array - 1, element, zero);
767  memset(array, element, zero);
768  memset(array + length, 0, zero);
769  memset(array + length + 1, 0, zero);
770
771  // try to memset bytes to the right of array
772  EXPECT_DEATH(memset(array, 0, size + 1),
773               RightOOBErrorMessage(0));
774  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
775               RightOOBErrorMessage(4));
776  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
777               RightOOBErrorMessage(2 * sizeof(T) - 1));
778  // whole interval is to the right
779  EXPECT_DEATH(memset(array + length + 1, 0, 10),
780               RightOOBErrorMessage(sizeof(T)));
781
782  // try to memset bytes to the left of array
783  EXPECT_DEATH(memset((char*)array - 1, element, size),
784               LeftOOBErrorMessage(1));
785  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
786               LeftOOBErrorMessage(5));
787  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
788               LeftOOBErrorMessage(5 * sizeof(T)));
789  // whole interval is to the left
790  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
791               LeftOOBErrorMessage(2 * sizeof(T)));
792
793  // try to memset bytes both to the left & to the right
794  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
795               LeftOOBErrorMessage(2));
796
797  free(array);
798}
799
800TEST(AddressSanitizer, MemSetOOBTest) {
801  MemSetOOBTestTemplate<char>(100);
802  MemSetOOBTestTemplate<int>(5);
803  MemSetOOBTestTemplate<double>(256);
804  // We can test arrays of structres/classes here, but what for?
805}
806
807// Same test for memcpy and memmove functions
808template <typename T, class M>
809void MemTransferOOBTestTemplate(size_t length) {
810  if (length == 0) return;
811  size_t size = Ident(sizeof(T) * length);
812  T *src = Ident((T*)malloc(size));
813  T *dest = Ident((T*)malloc(size));
814  int zero = Ident(0);
815
816  // valid transfer of bytes between arrays
817  M::transfer(dest, src, size);
818  M::transfer(dest + 1, src, size - sizeof(T));
819  M::transfer(dest, src + length - 1, sizeof(T));
820  M::transfer(dest, src, 1);
821
822  // transfer zero bytes
823  M::transfer(dest - 1, src, 0);
824  M::transfer(dest + length, src, zero);
825  M::transfer(dest, src - 1, zero);
826  M::transfer(dest, src, zero);
827
828  // try to change mem to the right of dest
829  EXPECT_DEATH(M::transfer(dest + 1, src, size),
830               RightOOBErrorMessage(sizeof(T) - 1));
831  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
832               RightOOBErrorMessage(3));
833
834  // try to change mem to the left of dest
835  EXPECT_DEATH(M::transfer(dest - 2, src, size),
836               LeftOOBErrorMessage(2 * sizeof(T)));
837  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
838               LeftOOBErrorMessage(3));
839
840  // try to access mem to the right of src
841  EXPECT_DEATH(M::transfer(dest, src + 2, size),
842               RightOOBErrorMessage(2 * sizeof(T) - 1));
843  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
844               RightOOBErrorMessage(2));
845
846  // try to access mem to the left of src
847  EXPECT_DEATH(M::transfer(dest, src - 1, size),
848               LeftOOBErrorMessage(sizeof(T)));
849  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
850               LeftOOBErrorMessage(6));
851
852  // Generally we don't need to test cases where both accessing src and writing
853  // to dest address to poisoned memory.
854
855  T *big_src = Ident((T*)malloc(size * 2));
856  T *big_dest = Ident((T*)malloc(size * 2));
857  // try to change mem to both sides of dest
858  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
859               LeftOOBErrorMessage(sizeof(T)));
860  // try to access mem to both sides of src
861  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
862               LeftOOBErrorMessage(2 * sizeof(T)));
863
864  free(src);
865  free(dest);
866  free(big_src);
867  free(big_dest);
868}
869
870class MemCpyWrapper {
871 public:
872  static void* transfer(void *to, const void *from, size_t size) {
873    return memcpy(to, from, size);
874  }
875};
876TEST(AddressSanitizer, MemCpyOOBTest) {
877  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
878  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
879}
880
881class MemMoveWrapper {
882 public:
883  static void* transfer(void *to, const void *from, size_t size) {
884    return memmove(to, from, size);
885  }
886};
887TEST(AddressSanitizer, MemMoveOOBTest) {
888  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
889  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
890}
891
892// Tests for string functions
893
894// Used for string functions tests
895static char global_string[] = "global";
896static size_t global_string_length = 6;
897
898// Input to a test is a zero-terminated string str with given length
899// Accesses to the bytes to the left and to the right of str
900// are presumed to produce OOB errors
901void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
902  // Normal strlen calls
903  EXPECT_EQ(strlen(str), length);
904  if (length > 0) {
905    EXPECT_EQ(strlen(str + 1), length - 1);
906    EXPECT_EQ(strlen(str + length), 0);
907  }
908  // Arg of strlen is not malloced, OOB access
909  if (!is_global) {
910    // We don't insert RedZones to the left of global variables
911    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
912    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
913  }
914  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
915  // Overwrite terminator
916  str[length] = 'a';
917  // String is not zero-terminated, strlen will lead to OOB access
918  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
919  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
920  // Restore terminator
921  str[length] = 0;
922}
923TEST(AddressSanitizer, StrLenOOBTest) {
924  // Check heap-allocated string
925  size_t length = Ident(10);
926  char *heap_string = Ident((char*)malloc(length + 1));
927  char stack_string[10 + 1];
928  for (int i = 0; i < length; i++) {
929    heap_string[i] = 'a';
930    stack_string[i] = 'b';
931  }
932  heap_string[length] = 0;
933  stack_string[length] = 0;
934  StrLenOOBTestTemplate(heap_string, length, false);
935  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
936  //      make test for stack_string work. Or move it to output tests.
937  // StrLenOOBTestTemplate(stack_string, length, false);
938  StrLenOOBTestTemplate(global_string, global_string_length, true);
939  free(heap_string);
940}
941
942static inline char* MallocAndMemsetString(size_t size, char ch) {
943  char *s = Ident((char*)malloc(size));
944  memset(s, ch, size);
945  return s;
946}
947static inline char* MallocAndMemsetString(size_t size) {
948  return MallocAndMemsetString(size, 'z');
949}
950
951#ifndef __APPLE__
952TEST(AddressSanitizer, StrNLenOOBTest) {
953  size_t size = Ident(123);
954  char *str = MallocAndMemsetString(size);
955  // Normal strnlen calls.
956  Ident(strnlen(str - 1, 0));
957  Ident(strnlen(str, size));
958  Ident(strnlen(str + size - 1, 1));
959  str[size - 1] = '\0';
960  Ident(strnlen(str, 2 * size));
961  // Argument points to not allocated memory.
962  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
963  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
964  // Overwrite the terminating '\0' and hit unallocated memory.
965  str[size - 1] = 'z';
966  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
967  free(str);
968}
969#endif
970
971TEST(AddressSanitizer, StrDupOOBTest) {
972  size_t size = Ident(42);
973  char *str = MallocAndMemsetString(size);
974  char *new_str;
975  // Normal strdup calls.
976  str[size - 1] = '\0';
977  new_str = strdup(str);
978  free(new_str);
979  new_str = strdup(str + size - 1);
980  free(new_str);
981  // Argument points to not allocated memory.
982  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
983  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
984  // Overwrite the terminating '\0' and hit unallocated memory.
985  str[size - 1] = 'z';
986  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
987  free(str);
988}
989
990TEST(AddressSanitizer, StrCpyOOBTest) {
991  size_t to_size = Ident(30);
992  size_t from_size = Ident(6);  // less than to_size
993  char *to = Ident((char*)malloc(to_size));
994  char *from = Ident((char*)malloc(from_size));
995  // Normal strcpy calls.
996  strcpy(from, "hello");
997  strcpy(to, from);
998  strcpy(to + to_size - from_size, from);
999  // Length of "from" is too small.
1000  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1001  // "to" or "from" points to not allocated memory.
1002  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1003  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1004  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1005  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1006  // Overwrite the terminating '\0' character and hit unallocated memory.
1007  from[from_size - 1] = '!';
1008  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1009  free(to);
1010  free(from);
1011}
1012
1013TEST(AddressSanitizer, StrNCpyOOBTest) {
1014  size_t to_size = Ident(20);
1015  size_t from_size = Ident(6);  // less than to_size
1016  char *to = Ident((char*)malloc(to_size));
1017  // From is a zero-terminated string "hello\0" of length 6
1018  char *from = Ident((char*)malloc(from_size));
1019  strcpy(from, "hello");
1020  // copy 0 bytes
1021  strncpy(to, from, 0);
1022  strncpy(to - 1, from - 1, 0);
1023  // normal strncpy calls
1024  strncpy(to, from, from_size);
1025  strncpy(to, from, to_size);
1026  strncpy(to, from + from_size - 1, to_size);
1027  strncpy(to + to_size - 1, from, 1);
1028  // One of {to, from} points to not allocated memory
1029  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1030               LeftOOBErrorMessage(1));
1031  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1032               LeftOOBErrorMessage(1));
1033  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1034               RightOOBErrorMessage(0));
1035  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1036               RightOOBErrorMessage(0));
1037  // Length of "to" is too small
1038  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1039               RightOOBErrorMessage(0));
1040  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1041               RightOOBErrorMessage(0));
1042  // Overwrite terminator in from
1043  from[from_size - 1] = '!';
1044  // normal strncpy call
1045  strncpy(to, from, from_size);
1046  // Length of "from" is too small
1047  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1048               RightOOBErrorMessage(0));
1049  free(to);
1050  free(from);
1051}
1052
1053typedef char*(*PointerToStrChr)(const char*, int);
1054void RunStrChrTest(PointerToStrChr StrChr) {
1055  size_t size = Ident(100);
1056  char *str = MallocAndMemsetString(size);
1057  str[10] = 'q';
1058  str[11] = '\0';
1059  EXPECT_EQ(str, StrChr(str, 'z'));
1060  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1061  EXPECT_EQ(NULL, StrChr(str, 'a'));
1062  // StrChr argument points to not allocated memory.
1063  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1064  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1065  // Overwrite the terminator and hit not allocated memory.
1066  str[11] = 'z';
1067  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1068  free(str);
1069}
1070TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1071  RunStrChrTest(&strchr);
1072  RunStrChrTest(&index);
1073}
1074
1075TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1076  // strcmp
1077  EXPECT_EQ(0, strcmp("", ""));
1078  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1079  EXPECT_GT(0, strcmp("ab", "ac"));
1080  EXPECT_GT(0, strcmp("abc", "abcd"));
1081  EXPECT_LT(0, strcmp("acc", "abc"));
1082  EXPECT_LT(0, strcmp("abcd", "abc"));
1083
1084  // strncmp
1085  EXPECT_EQ(0, strncmp("a", "b", 0));
1086  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1087  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1088  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1089  EXPECT_GT(0, strncmp("a", "b", 5));
1090  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1091  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1092  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1093  EXPECT_LT(0, strncmp("zyx", "", 2));
1094
1095  // strcasecmp
1096  EXPECT_EQ(0, strcasecmp("", ""));
1097  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1098  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1099  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1100  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1101  EXPECT_LT(0, strcasecmp("acc", "abc"));
1102  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1103
1104  // strncasecmp
1105  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1106  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1107  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1108  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1109  EXPECT_GT(0, strncasecmp("a", "B", 5));
1110  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1111  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1112  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1113  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1114
1115  // memcmp
1116  EXPECT_EQ(0, memcmp("a", "b", 0));
1117  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1118  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1119  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1120  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1121  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1122}
1123
1124typedef int(*PointerToStrCmp)(const char*, const char*);
1125void RunStrCmpTest(PointerToStrCmp StrCmp) {
1126  size_t size = Ident(100);
1127  char *s1 = MallocAndMemsetString(size);
1128  char *s2 = MallocAndMemsetString(size);
1129  s1[size - 1] = '\0';
1130  s2[size - 1] = '\0';
1131  // Normal StrCmp calls
1132  Ident(StrCmp(s1, s2));
1133  Ident(StrCmp(s1, s2 + size - 1));
1134  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1135  s1[size - 1] = 'z';
1136  s2[size - 1] = 'x';
1137  Ident(StrCmp(s1, s2));
1138  // One of arguments points to not allocated memory.
1139  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1140  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1141  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1142  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1143  // Hit unallocated memory and die.
1144  s2[size - 1] = 'z';
1145  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1146  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1147  free(s1);
1148  free(s2);
1149}
1150
1151TEST(AddressSanitizer, StrCmpOOBTest) {
1152  RunStrCmpTest(&strcmp);
1153}
1154
1155TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1156  RunStrCmpTest(&strcasecmp);
1157}
1158
1159typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1160void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1161  size_t size = Ident(100);
1162  char *s1 = MallocAndMemsetString(size);
1163  char *s2 = MallocAndMemsetString(size);
1164  s1[size - 1] = '\0';
1165  s2[size - 1] = '\0';
1166  // Normal StrNCmp calls
1167  Ident(StrNCmp(s1, s2, size + 2));
1168  s1[size - 1] = 'z';
1169  s2[size - 1] = 'x';
1170  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1171  s2[size - 1] = 'z';
1172  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1173  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1174  // One of arguments points to not allocated memory.
1175  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1176  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1177  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1178  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1179  // Hit unallocated memory and die.
1180  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1181  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1182  free(s1);
1183  free(s2);
1184}
1185
1186TEST(AddressSanitizer, StrNCmpOOBTest) {
1187  RunStrNCmpTest(&strncmp);
1188}
1189
1190TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1191  RunStrNCmpTest(&strncasecmp);
1192}
1193
1194TEST(AddressSanitizer, MemCmpOOBTest) {
1195  size_t size = Ident(100);
1196  char *s1 = MallocAndMemsetString(size);
1197  char *s2 = MallocAndMemsetString(size);
1198  // Normal memcmp calls.
1199  Ident(memcmp(s1, s2, size));
1200  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1201  Ident(memcmp(s1 - 1, s2 - 1, 0));
1202  // One of arguments points to not allocated memory.
1203  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1204  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1205  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1206  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1207  // Hit unallocated memory and die.
1208  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1209  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1210  // Zero bytes are not terminators and don't prevent from OOB.
1211  s1[size - 1] = '\0';
1212  s2[size - 1] = '\0';
1213  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1214  free(s1);
1215  free(s2);
1216}
1217
1218TEST(AddressSanitizer, StrCatOOBTest) {
1219  size_t to_size = Ident(100);
1220  char *to = MallocAndMemsetString(to_size);
1221  to[0] = '\0';
1222  size_t from_size = Ident(20);
1223  char *from = MallocAndMemsetString(from_size);
1224  from[from_size - 1] = '\0';
1225  // Normal strcat calls.
1226  strcat(to, from);
1227  strcat(to, from);
1228  strcat(to + from_size, from + from_size - 2);
1229  // Passing an invalid pointer is an error even when concatenating an empty
1230  // string.
1231  EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBErrorMessage(1));
1232  // One of arguments points to not allocated memory.
1233  EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1234  EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1235  EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1236  EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1237
1238  // "from" is not zero-terminated.
1239  from[from_size - 1] = 'z';
1240  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1241  from[from_size - 1] = '\0';
1242  // "to" is not zero-terminated.
1243  memset(to, 'z', to_size);
1244  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1245  // "to" is too short to fit "from".
1246  to[to_size - from_size + 1] = '\0';
1247  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1248  // length of "to" is just enough.
1249  strcat(to, from + 1);
1250
1251  free(to);
1252  free(from);
1253}
1254
1255TEST(AddressSanitizer, StrNCatOOBTest) {
1256  size_t to_size = Ident(100);
1257  char *to = MallocAndMemsetString(to_size);
1258  to[0] = '\0';
1259  size_t from_size = Ident(20);
1260  char *from = MallocAndMemsetString(from_size);
1261  // Normal strncat calls.
1262  strncat(to, from, 0);
1263  strncat(to, from, from_size);
1264  from[from_size - 1] = '\0';
1265  strncat(to, from, 2 * from_size);
1266  // Catenating empty string with an invalid string is still an error.
1267  EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBErrorMessage(1));
1268  strncat(to, from + from_size - 1, 10);
1269  // One of arguments points to not allocated memory.
1270  EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBErrorMessage(1));
1271  EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBErrorMessage(1));
1272  EXPECT_DEATH(strncat(to + to_size, from, 2), RightOOBErrorMessage(0));
1273  EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBErrorMessage(0));
1274
1275  memset(from, 'z', from_size);
1276  memset(to, 'z', to_size);
1277  to[0] = '\0';
1278  // "from" is too short.
1279  EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBErrorMessage(0));
1280  // "to" is not zero-terminated.
1281  EXPECT_DEATH(strncat(to + 1, from, 1), RightOOBErrorMessage(0));
1282  // "to" is too short to fit "from".
1283  to[0] = 'z';
1284  to[to_size - from_size + 1] = '\0';
1285  EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBErrorMessage(0));
1286  // "to" is just enough.
1287  strncat(to, from, from_size - 2);
1288
1289  free(to);
1290  free(from);
1291}
1292
1293static string OverlapErrorMessage(const string &func) {
1294  return func + "-param-overlap";
1295}
1296
1297TEST(AddressSanitizer, StrArgsOverlapTest) {
1298  size_t size = Ident(100);
1299  char *str = Ident((char*)malloc(size));
1300
1301// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1302// memmove().
1303#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1304    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1305  // Check "memcpy". Use Ident() to avoid inlining.
1306  memset(str, 'z', size);
1307  Ident(memcpy)(str + 1, str + 11, 10);
1308  Ident(memcpy)(str, str, 0);
1309  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1310  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1311#endif
1312
1313  // We do not treat memcpy with to==from as a bug.
1314  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1315  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1316  //              OverlapErrorMessage("memcpy"));
1317
1318  // Check "strcpy".
1319  memset(str, 'z', size);
1320  str[9] = '\0';
1321  strcpy(str + 10, str);
1322  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1323  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1324  strcpy(str, str + 5);
1325
1326  // Check "strncpy".
1327  memset(str, 'z', size);
1328  strncpy(str, str + 10, 10);
1329  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1330  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1331  str[10] = '\0';
1332  strncpy(str + 11, str, 20);
1333  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1334
1335  // Check "strcat".
1336  memset(str, 'z', size);
1337  str[10] = '\0';
1338  str[20] = '\0';
1339  strcat(str, str + 10);
1340  EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
1341  str[10] = '\0';
1342  strcat(str + 11, str);
1343  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1344  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1345  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1346
1347  // Check "strncat".
1348  memset(str, 'z', size);
1349  str[10] = '\0';
1350  strncat(str, str + 10, 10);  // from is empty
1351  EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
1352  str[10] = '\0';
1353  str[20] = '\0';
1354  strncat(str + 5, str, 5);
1355  str[10] = '\0';
1356  EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
1357  EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
1358
1359  free(str);
1360}
1361
1362void CallAtoi(const char *nptr) {
1363  Ident(atoi(nptr));
1364}
1365void CallAtol(const char *nptr) {
1366  Ident(atol(nptr));
1367}
1368void CallAtoll(const char *nptr) {
1369  Ident(atoll(nptr));
1370}
1371typedef void(*PointerToCallAtoi)(const char*);
1372
1373void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
1374  char *array = MallocAndMemsetString(10, '1');
1375  // Invalid pointer to the string.
1376  EXPECT_DEATH(Atoi(array + 11), RightOOBErrorMessage(1));
1377  EXPECT_DEATH(Atoi(array - 1), LeftOOBErrorMessage(1));
1378  // Die if a buffer doesn't have terminating NULL.
1379  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1380  // Make last symbol a terminating NULL or other non-digit.
1381  array[9] = '\0';
1382  Atoi(array);
1383  array[9] = 'a';
1384  Atoi(array);
1385  Atoi(array + 9);
1386  // Sometimes we need to detect overflow if no digits are found.
1387  memset(array, ' ', 10);
1388  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1389  array[9] = '-';
1390  EXPECT_DEATH(Atoi(array), RightOOBErrorMessage(0));
1391  EXPECT_DEATH(Atoi(array + 9), RightOOBErrorMessage(0));
1392  array[8] = '-';
1393  Atoi(array);
1394  delete array;
1395}
1396
1397TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
1398  RunAtoiOOBTest(&CallAtoi);
1399  RunAtoiOOBTest(&CallAtol);
1400  RunAtoiOOBTest(&CallAtoll);
1401}
1402
1403void CallStrtol(const char *nptr, char **endptr, int base) {
1404  Ident(strtol(nptr, endptr, base));
1405}
1406void CallStrtoll(const char *nptr, char **endptr, int base) {
1407  Ident(strtoll(nptr, endptr, base));
1408}
1409typedef void(*PointerToCallStrtol)(const char*, char**, int);
1410
1411void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
1412  char *array = MallocAndMemsetString(3);
1413  char *endptr = NULL;
1414  array[0] = '1';
1415  array[1] = '2';
1416  array[2] = '3';
1417  // Invalid pointer to the string.
1418  EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBErrorMessage(0));
1419  EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBErrorMessage(1));
1420  // Buffer overflow if there is no terminating null (depends on base).
1421  Strtol(array, &endptr, 3);
1422  EXPECT_EQ(array + 2, endptr);
1423  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1424  array[2] = 'z';
1425  Strtol(array, &endptr, 35);
1426  EXPECT_EQ(array + 2, endptr);
1427  EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBErrorMessage(0));
1428  // Add terminating zero to get rid of overflow.
1429  array[2] = '\0';
1430  Strtol(array, NULL, 36);
1431  // Don't check for overflow if base is invalid.
1432  Strtol(array - 1, NULL, -1);
1433  Strtol(array + 3, NULL, 1);
1434  // Sometimes we need to detect overflow if no digits are found.
1435  array[0] = array[1] = array[2] = ' ';
1436  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1437  array[2] = '+';
1438  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1439  array[2] = '-';
1440  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBErrorMessage(0));
1441  array[1] = '+';
1442  Strtol(array, NULL, 0);
1443  array[1] = array[2] = 'z';
1444  Strtol(array, &endptr, 0);
1445  EXPECT_EQ(array, endptr);
1446  Strtol(array + 2, NULL, 0);
1447  EXPECT_EQ(array, endptr);
1448  delete array;
1449}
1450
1451TEST(AddressSanitizer, StrtollOOBTest) {
1452  RunStrtolOOBTest(&CallStrtoll);
1453}
1454TEST(AddressSanitizer, StrtolOOBTest) {
1455  RunStrtolOOBTest(&CallStrtol);
1456}
1457
1458// At the moment we instrument memcpy/memove/memset calls at compile time so we
1459// can't handle OOB error if these functions are called by pointer, see disabled
1460// MemIntrinsicCallByPointerTest below
1461typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1462typedef void*(*PointerToMemSet)(void*, int, size_t);
1463
1464void CallMemSetByPointer(PointerToMemSet MemSet) {
1465  size_t size = Ident(100);
1466  char *array = Ident((char*)malloc(size));
1467  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1468  free(array);
1469}
1470
1471void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1472  size_t size = Ident(100);
1473  char *src = Ident((char*)malloc(size));
1474  char *dst = Ident((char*)malloc(size));
1475  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1476  free(src);
1477  free(dst);
1478}
1479
1480TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1481  CallMemSetByPointer(&memset);
1482  CallMemTransferByPointer(&memcpy);
1483  CallMemTransferByPointer(&memmove);
1484}
1485
1486// This test case fails
1487// Clang optimizes memcpy/memset calls which lead to unaligned access
1488TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1489  int size = Ident(4096);
1490  char *s = Ident((char*)malloc(size));
1491  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1492  free(s);
1493}
1494
1495// TODO(samsonov): Add a test with malloc(0)
1496// TODO(samsonov): Add tests for str* and mem* functions.
1497
1498NOINLINE static int LargeFunction(bool do_bad_access) {
1499  int *x = new int[100];
1500  x[0]++;
1501  x[1]++;
1502  x[2]++;
1503  x[3]++;
1504  x[4]++;
1505  x[5]++;
1506  x[6]++;
1507  x[7]++;
1508  x[8]++;
1509  x[9]++;
1510
1511  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1512
1513  x[10]++;
1514  x[11]++;
1515  x[12]++;
1516  x[13]++;
1517  x[14]++;
1518  x[15]++;
1519  x[16]++;
1520  x[17]++;
1521  x[18]++;
1522  x[19]++;
1523
1524  delete x;
1525  return res;
1526}
1527
1528// Test the we have correct debug info for the failing instruction.
1529// This test requires the in-process symbolizer to be enabled by default.
1530TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1531  int failing_line = LargeFunction(false);
1532  char expected_warning[128];
1533  sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1534  EXPECT_DEATH(LargeFunction(true), expected_warning);
1535}
1536
1537// Check that we unwind and symbolize correctly.
1538TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1539  int *a = (int*)malloc_aaa(sizeof(int));
1540  *a = 1;
1541  free_aaa(a);
1542  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1543               "malloc_fff.*malloc_eee.*malloc_ddd");
1544}
1545
1546void *ThreadedTestAlloc(void *a) {
1547  int **p = (int**)a;
1548  *p = new int;
1549  return 0;
1550}
1551
1552void *ThreadedTestFree(void *a) {
1553  int **p = (int**)a;
1554  delete *p;
1555  return 0;
1556}
1557
1558void *ThreadedTestUse(void *a) {
1559  int **p = (int**)a;
1560  **p = 1;
1561  return 0;
1562}
1563
1564void ThreadedTestSpawn() {
1565  pthread_t t;
1566  int *x;
1567  pthread_create(&t, 0, ThreadedTestAlloc, &x);
1568  pthread_join(t, 0);
1569  pthread_create(&t, 0, ThreadedTestFree, &x);
1570  pthread_join(t, 0);
1571  pthread_create(&t, 0, ThreadedTestUse, &x);
1572  pthread_join(t, 0);
1573}
1574
1575TEST(AddressSanitizer, ThreadedTest) {
1576  EXPECT_DEATH(ThreadedTestSpawn(),
1577               ASAN_PCRE_DOTALL
1578               "Thread T.*created"
1579               ".*Thread T.*created"
1580               ".*Thread T.*created");
1581}
1582
1583#if ASAN_NEEDS_SEGV
1584TEST(AddressSanitizer, ShadowGapTest) {
1585#if __WORDSIZE == 32
1586  char *addr = (char*)0x22000000;
1587#else
1588  char *addr = (char*)0x0000100000080000;
1589#endif
1590  EXPECT_DEATH(*addr = 1, "AddressSanitizer crashed on unknown");
1591}
1592#endif  // ASAN_NEEDS_SEGV
1593
1594extern "C" {
1595NOINLINE static void UseThenFreeThenUse() {
1596  char *x = Ident((char*)malloc(8));
1597  *x = 1;
1598  free_aaa(x);
1599  *x = 2;
1600}
1601}
1602
1603TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1604  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1605}
1606
1607TEST(AddressSanitizer, StrDupTest) {
1608  free(strdup(Ident("123")));
1609}
1610
1611// Currently we create and poison redzone at right of global variables.
1612char glob5[5];
1613static char static110[110];
1614const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1615static const char StaticConstGlob[3] = {9, 8, 7};
1616extern int GlobalsTest(int x);
1617
1618TEST(AddressSanitizer, GlobalTest) {
1619  static char func_static15[15];
1620
1621  static char fs1[10];
1622  static char fs2[10];
1623  static char fs3[10];
1624
1625  glob5[Ident(0)] = 0;
1626  glob5[Ident(1)] = 0;
1627  glob5[Ident(2)] = 0;
1628  glob5[Ident(3)] = 0;
1629  glob5[Ident(4)] = 0;
1630
1631  EXPECT_DEATH(glob5[Ident(5)] = 0,
1632               "0 bytes to the right of global variable.*glob5.* size 5");
1633  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1634               "6 bytes to the right of global variable.*glob5.* size 5");
1635  Ident(static110);  // avoid optimizations
1636  static110[Ident(0)] = 0;
1637  static110[Ident(109)] = 0;
1638  EXPECT_DEATH(static110[Ident(110)] = 0,
1639               "0 bytes to the right of global variable");
1640  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1641               "7 bytes to the right of global variable");
1642
1643  Ident(func_static15);  // avoid optimizations
1644  func_static15[Ident(0)] = 0;
1645  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1646               "0 bytes to the right of global variable");
1647  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1648               "9 bytes to the right of global variable");
1649
1650  Ident(fs1);
1651  Ident(fs2);
1652  Ident(fs3);
1653
1654  // We don't create left redzones, so this is not 100% guaranteed to fail.
1655  // But most likely will.
1656  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1657
1658  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1659               "is located 1 bytes to the right of .*ConstGlob");
1660  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1661               "is located 2 bytes to the right of .*StaticConstGlob");
1662
1663  // call stuff from another file.
1664  GlobalsTest(0);
1665}
1666
1667TEST(AddressSanitizer, GlobalStringConstTest) {
1668  static const char *zoo = "FOOBAR123";
1669  const char *p = Ident(zoo);
1670  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1671}
1672
1673TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1674  static char zoo[10];
1675  const char *p = Ident(zoo);
1676  // The file name should be present in the report.
1677  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1678}
1679
1680int *ReturnsPointerToALocalObject() {
1681  int a = 0;
1682  return Ident(&a);
1683}
1684
1685#if ASAN_UAR == 1
1686TEST(AddressSanitizer, LocalReferenceReturnTest) {
1687  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1688  int *p = f();
1689  // Call 'f' a few more times, 'p' should still be poisoned.
1690  for (int i = 0; i < 32; i++)
1691    f();
1692  EXPECT_DEATH(*p = 1, "AddressSanitizer stack-use-after-return");
1693  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1694}
1695#endif
1696
1697template <int kSize>
1698NOINLINE static void FuncWithStack() {
1699  char x[kSize];
1700  Ident(x)[0] = 0;
1701  Ident(x)[kSize-1] = 0;
1702}
1703
1704static void LotsOfStackReuse() {
1705  int LargeStack[10000];
1706  Ident(LargeStack)[0] = 0;
1707  for (int i = 0; i < 10000; i++) {
1708    FuncWithStack<128 * 1>();
1709    FuncWithStack<128 * 2>();
1710    FuncWithStack<128 * 4>();
1711    FuncWithStack<128 * 8>();
1712    FuncWithStack<128 * 16>();
1713    FuncWithStack<128 * 32>();
1714    FuncWithStack<128 * 64>();
1715    FuncWithStack<128 * 128>();
1716    FuncWithStack<128 * 256>();
1717    FuncWithStack<128 * 512>();
1718    Ident(LargeStack)[0] = 0;
1719  }
1720}
1721
1722TEST(AddressSanitizer, StressStackReuseTest) {
1723  LotsOfStackReuse();
1724}
1725
1726TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1727  const int kNumThreads = 20;
1728  pthread_t t[kNumThreads];
1729  for (int i = 0; i < kNumThreads; i++) {
1730    pthread_create(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1731  }
1732  for (int i = 0; i < kNumThreads; i++) {
1733    pthread_join(t[i], 0);
1734  }
1735}
1736
1737static void *PthreadExit(void *a) {
1738  pthread_exit(0);
1739  return 0;
1740}
1741
1742TEST(AddressSanitizer, PthreadExitTest) {
1743  pthread_t t;
1744  for (int i = 0; i < 1000; i++) {
1745    pthread_create(&t, 0, PthreadExit, 0);
1746    pthread_join(t, 0);
1747  }
1748}
1749
1750#ifdef __EXCEPTIONS
1751NOINLINE static void StackReuseAndException() {
1752  int large_stack[1000];
1753  Ident(large_stack);
1754  ASAN_THROW(1);
1755}
1756
1757// TODO(kcc): support exceptions with use-after-return.
1758TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1759  for (int i = 0; i < 10000; i++) {
1760    try {
1761    StackReuseAndException();
1762    } catch(...) {
1763    }
1764  }
1765}
1766#endif
1767
1768TEST(AddressSanitizer, MlockTest) {
1769  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1770  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1771  EXPECT_EQ(0, munlockall());
1772  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1773}
1774
1775struct LargeStruct {
1776  int foo[100];
1777};
1778
1779// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
1780// Struct copy should not cause asan warning even if lhs == rhs.
1781TEST(AddressSanitizer, LargeStructCopyTest) {
1782  LargeStruct a;
1783  *Ident(&a) = *Ident(&a);
1784}
1785
1786__attribute__((no_address_safety_analysis))
1787static void NoAddressSafety() {
1788  char *foo = new char[10];
1789  Ident(foo)[10] = 0;
1790  delete [] foo;
1791}
1792
1793TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
1794  Ident(NoAddressSafety)();
1795}
1796
1797// ------------------ demo tests; run each one-by-one -------------
1798// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1799TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1800  ThreadedTestSpawn();
1801}
1802
1803void *SimpleBugOnSTack(void *x = 0) {
1804  char a[20];
1805  Ident(a)[20] = 0;
1806  return 0;
1807}
1808
1809TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1810  SimpleBugOnSTack();
1811}
1812
1813TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1814  pthread_t t;
1815  pthread_create(&t, 0, SimpleBugOnSTack, 0);
1816  pthread_join(t, 0);
1817}
1818
1819TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1820  uaf_test<U1>(10, 0);
1821}
1822TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1823  uaf_test<U1>(10, -2);
1824}
1825TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1826  uaf_test<U1>(10, 10);
1827}
1828
1829TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1830  uaf_test<U1>(kLargeMalloc, 0);
1831}
1832
1833TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1834  oob_test<U1>(10, -1);
1835}
1836
1837TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1838  oob_test<U1>(kLargeMalloc, -1);
1839}
1840
1841TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1842  oob_test<U1>(10, 10);
1843}
1844
1845TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1846  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1847}
1848
1849TEST(AddressSanitizer, DISABLED_DemoOOM) {
1850  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1851  printf("%p\n", malloc(size));
1852}
1853
1854TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1855  DoubleFree();
1856}
1857
1858TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1859  int *a = 0;
1860  Ident(a)[10] = 0;
1861}
1862
1863TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1864  static char a[100];
1865  static char b[100];
1866  static char c[100];
1867  Ident(a);
1868  Ident(b);
1869  Ident(c);
1870  Ident(a)[5] = 0;
1871  Ident(b)[105] = 0;
1872  Ident(a)[5] = 0;
1873}
1874
1875TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1876  const size_t kAllocSize = (1 << 28) - 1024;
1877  size_t total_size = 0;
1878  while (true) {
1879    char *x = (char*)malloc(kAllocSize);
1880    memset(x, 0, kAllocSize);
1881    total_size += kAllocSize;
1882    fprintf(stderr, "total: %ldM\n", (long)total_size >> 20);
1883  }
1884}
1885
1886// http://code.google.com/p/address-sanitizer/issues/detail?id=66
1887TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
1888  for (int i = 0; i < 1000000; i++) {
1889    delete [] (Ident(new char [8644]));
1890  }
1891  char *x = new char[8192];
1892  EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer heap-buffer-overflow");
1893  delete [] Ident(x);
1894}
1895
1896#ifdef __APPLE__
1897#include "asan_mac_test.h"
1898TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
1899  EXPECT_DEATH(
1900      CFAllocatorDefaultDoubleFree(NULL),
1901      "attempting double-free");
1902}
1903
1904void CFAllocator_DoubleFreeOnPthread() {
1905  pthread_t child;
1906  pthread_create(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
1907  pthread_join(child, NULL);  // Shouldn't be reached.
1908}
1909
1910TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
1911  EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
1912}
1913
1914namespace {
1915
1916void *GLOB;
1917
1918void *CFAllocatorAllocateToGlob(void *unused) {
1919  GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
1920  return NULL;
1921}
1922
1923void *CFAllocatorDeallocateFromGlob(void *unused) {
1924  char *p = (char*)GLOB;
1925  p[100] = 'A';  // ASan should report an error here.
1926  CFAllocatorDeallocate(NULL, GLOB);
1927  return NULL;
1928}
1929
1930void CFAllocator_PassMemoryToAnotherThread() {
1931  pthread_t th1, th2;
1932  pthread_create(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
1933  pthread_join(th1, NULL);
1934  pthread_create(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
1935  pthread_join(th2, NULL);
1936}
1937
1938TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
1939  EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
1940               "heap-buffer-overflow");
1941}
1942
1943}  // namespace
1944
1945// TODO(glider): figure out whether we still need these tests. Is it correct
1946// to intercept the non-default CFAllocators?
1947TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
1948  EXPECT_DEATH(
1949      CFAllocatorSystemDefaultDoubleFree(),
1950      "attempting double-free");
1951}
1952
1953// We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
1954TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
1955  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
1956}
1957
1958TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
1959  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
1960}
1961
1962TEST(AddressSanitizerMac, GCDDispatchAsync) {
1963  // Make sure the whole ASan report is printed, i.e. that we don't die
1964  // on a CHECK.
1965  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
1966}
1967
1968TEST(AddressSanitizerMac, GCDDispatchSync) {
1969  // Make sure the whole ASan report is printed, i.e. that we don't die
1970  // on a CHECK.
1971  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
1972}
1973
1974
1975TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
1976  // Make sure the whole ASan report is printed, i.e. that we don't die
1977  // on a CHECK.
1978  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
1979}
1980
1981TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
1982  // Make sure the whole ASan report is printed, i.e. that we don't die
1983  // on a CHECK.
1984  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
1985}
1986
1987TEST(AddressSanitizerMac, GCDDispatchAfter) {
1988  // Make sure the whole ASan report is printed, i.e. that we don't die
1989  // on a CHECK.
1990  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
1991}
1992
1993TEST(AddressSanitizerMac, GCDSourceEvent) {
1994  // Make sure the whole ASan report is printed, i.e. that we don't die
1995  // on a CHECK.
1996  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
1997}
1998
1999TEST(AddressSanitizerMac, GCDSourceCancel) {
2000  // Make sure the whole ASan report is printed, i.e. that we don't die
2001  // on a CHECK.
2002  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
2003}
2004
2005TEST(AddressSanitizerMac, GCDGroupAsync) {
2006  // Make sure the whole ASan report is printed, i.e. that we don't die
2007  // on a CHECK.
2008  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
2009}
2010
2011void *MallocIntrospectionLockWorker(void *_) {
2012  const int kNumPointers = 100;
2013  int i;
2014  void *pointers[kNumPointers];
2015  for (i = 0; i < kNumPointers; i++) {
2016    pointers[i] = malloc(i + 1);
2017  }
2018  for (i = 0; i < kNumPointers; i++) {
2019    free(pointers[i]);
2020  }
2021
2022  return NULL;
2023}
2024
2025void *MallocIntrospectionLockForker(void *_) {
2026  pid_t result = fork();
2027  if (result == -1) {
2028    perror("fork");
2029  }
2030  assert(result != -1);
2031  if (result == 0) {
2032    // Call malloc in the child process to make sure we won't deadlock.
2033    void *ptr = malloc(42);
2034    free(ptr);
2035    exit(0);
2036  } else {
2037    // Return in the parent process.
2038    return NULL;
2039  }
2040}
2041
2042TEST(AddressSanitizerMac, MallocIntrospectionLock) {
2043  // Incorrect implementation of force_lock and force_unlock in our malloc zone
2044  // will cause forked processes to deadlock.
2045  // TODO(glider): need to detect that none of the child processes deadlocked.
2046  const int kNumWorkers = 5, kNumIterations = 100;
2047  int i, iter;
2048  for (iter = 0; iter < kNumIterations; iter++) {
2049    pthread_t workers[kNumWorkers], forker;
2050    for (i = 0; i < kNumWorkers; i++) {
2051      pthread_create(&workers[i], 0, MallocIntrospectionLockWorker, 0);
2052    }
2053    pthread_create(&forker, 0, MallocIntrospectionLockForker, 0);
2054    for (i = 0; i < kNumWorkers; i++) {
2055      pthread_join(workers[i], 0);
2056    }
2057    pthread_join(forker, 0);
2058  }
2059}
2060
2061void *TSDAllocWorker(void *test_key) {
2062  if (test_key) {
2063    void *mem = malloc(10);
2064    pthread_setspecific(*(pthread_key_t*)test_key, mem);
2065  }
2066  return NULL;
2067}
2068
2069TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
2070  pthread_t th;
2071  pthread_key_t test_key;
2072  pthread_key_create(&test_key, CallFreeOnWorkqueue);
2073  pthread_create(&th, NULL, TSDAllocWorker, &test_key);
2074  pthread_join(th, NULL);
2075  pthread_key_delete(test_key);
2076}
2077
2078// Test that CFStringCreateCopy does not copy constant strings.
2079TEST(AddressSanitizerMac, CFStringCreateCopy) {
2080  CFStringRef str = CFSTR("Hello world!\n");
2081  CFStringRef str2 = CFStringCreateCopy(0, str);
2082  EXPECT_EQ(str, str2);
2083}
2084
2085TEST(AddressSanitizerMac, NSObjectOOB) {
2086  // Make sure that our allocators are used for NSObjects.
2087  EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
2088}
2089
2090// Make sure that correct pointer is passed to free() when deallocating a
2091// NSURL object.
2092// See http://code.google.com/p/address-sanitizer/issues/detail?id=70.
2093TEST(AddressSanitizerMac, NSURLDeallocation) {
2094  TestNSURLDeallocation();
2095}
2096#endif  // __APPLE__
2097
2098// Test that instrumentation of stack allocations takes into account
2099// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
2100// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
2101TEST(AddressSanitizer, LongDoubleNegativeTest) {
2102  long double a, b;
2103  static long double c;
2104  memcpy(Ident(&a), Ident(&b), sizeof(long double));
2105  memcpy(Ident(&c), Ident(&b), sizeof(long double));
2106};
2107
2108int main(int argc, char **argv) {
2109  progname = argv[0];
2110  testing::GTEST_FLAG(death_test_style) = "threadsafe";
2111  testing::InitGoogleTest(&argc, argv);
2112  return RUN_ALL_TESTS();
2113}
2114