asan_test.cc revision 431e51782d62d1257348e41e24da6b544fe70507
1//===-- asan_test.cc ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22
23#if defined(__i386__) or defined(__x86_64__)
24#include <emmintrin.h>
25#endif
26
27#include "asan_test_config.h"
28#include "asan_test_utils.h"
29
30#ifndef __APPLE__
31#include <malloc.h>
32#else
33#include <CoreFoundation/CFString.h>
34#endif  // __APPLE__
35
36#ifdef __APPLE__
37static bool APPLE = true;
38#else
39static bool APPLE = false;
40#endif
41
42#if ASAN_HAS_EXCEPTIONS
43# define ASAN_THROW(x) throw (x)
44#else
45# define ASAN_THROW(x)
46#endif
47
48#include <sys/mman.h>
49
50typedef uint8_t   U1;
51typedef uint16_t  U2;
52typedef uint32_t  U4;
53typedef uint64_t  U8;
54
55static const char *progname;
56static const int kPageSize = 4096;
57
58// Simple stand-alone pseudorandom number generator.
59// Current algorithm is ANSI C linear congruential PRNG.
60static inline uint32_t my_rand(uint32_t* state) {
61  return (*state = *state * 1103515245 + 12345) >> 16;
62}
63
64static uint32_t global_seed = 0;
65
66const size_t kLargeMalloc = 1 << 24;
67
68template<class T>
69__attribute__((noinline))
70void asan_write(T *a) {
71  *a = 0;
72}
73
74__attribute__((noinline))
75void asan_write_sized_aligned(uint8_t *p, size_t size) {
76  EXPECT_EQ(0, ((uintptr_t)p % size));
77  if      (size == 1) asan_write((uint8_t*)p);
78  else if (size == 2) asan_write((uint16_t*)p);
79  else if (size == 4) asan_write((uint32_t*)p);
80  else if (size == 8) asan_write((uint64_t*)p);
81}
82
83__attribute__((noinline)) void *malloc_fff(size_t size) {
84  void *res = malloc/**/(size); break_optimization(0); return res;}
85__attribute__((noinline)) void *malloc_eee(size_t size) {
86  void *res = malloc_fff(size); break_optimization(0); return res;}
87__attribute__((noinline)) void *malloc_ddd(size_t size) {
88  void *res = malloc_eee(size); break_optimization(0); return res;}
89__attribute__((noinline)) void *malloc_ccc(size_t size) {
90  void *res = malloc_ddd(size); break_optimization(0); return res;}
91__attribute__((noinline)) void *malloc_bbb(size_t size) {
92  void *res = malloc_ccc(size); break_optimization(0); return res;}
93__attribute__((noinline)) void *malloc_aaa(size_t size) {
94  void *res = malloc_bbb(size); break_optimization(0); return res;}
95
96#ifndef __APPLE__
97__attribute__((noinline)) void *memalign_fff(size_t alignment, size_t size) {
98  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
99__attribute__((noinline)) void *memalign_eee(size_t alignment, size_t size) {
100  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
101__attribute__((noinline)) void *memalign_ddd(size_t alignment, size_t size) {
102  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
103__attribute__((noinline)) void *memalign_ccc(size_t alignment, size_t size) {
104  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
105__attribute__((noinline)) void *memalign_bbb(size_t alignment, size_t size) {
106  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
107__attribute__((noinline)) void *memalign_aaa(size_t alignment, size_t size) {
108  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
109#endif  // __APPLE__
110
111
112__attribute__((noinline))
113  void free_ccc(void *p) { free(p); break_optimization(0);}
114__attribute__((noinline))
115  void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
116__attribute__((noinline))
117  void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
118
119template<class T>
120__attribute__((noinline))
121void oob_test(int size, int off) {
122  char *p = (char*)malloc_aaa(size);
123  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
124  //        sizeof(T), p, p + size, off);
125  asan_write((T*)(p + off));
126  free_aaa(p);
127}
128
129
130template<class T>
131__attribute__((noinline))
132void uaf_test(int size, int off) {
133  char *p = (char *)malloc_aaa(size);
134  free_aaa(p);
135  for (int i = 1; i < 100; i++)
136    free_aaa(malloc_aaa(i));
137  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
138          (long)sizeof(T), p, off);
139  asan_write((T*)(p + off));
140}
141
142TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
143#if defined(__has_feature) && __has_feature(address_sanitizer)
144  bool asan = 1;
145#else
146  bool asan = 0;
147#endif
148  EXPECT_EQ(true, asan);
149}
150
151TEST(AddressSanitizer, SimpleDeathTest) {
152  EXPECT_DEATH(exit(1), "");
153}
154
155TEST(AddressSanitizer, VariousMallocsTest) {
156  // fprintf(stderr, "malloc:\n");
157  int *a = (int*)malloc(100 * sizeof(int));
158  a[50] = 0;
159  free(a);
160
161  // fprintf(stderr, "realloc:\n");
162  int *r = (int*)malloc(10);
163  r = (int*)realloc(r, 2000 * sizeof(int));
164  r[1000] = 0;
165  free(r);
166
167  // fprintf(stderr, "operator new []\n");
168  int *b = new int[100];
169  b[50] = 0;
170  delete [] b;
171
172  // fprintf(stderr, "operator new\n");
173  int *c = new int;
174  *c = 0;
175  delete c;
176
177#if !defined(__APPLE__) && !defined(ANDROID)
178  // fprintf(stderr, "posix_memalign\n");
179  int *pm;
180  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
181  EXPECT_EQ(0, pm_res);
182  free(pm);
183#endif
184
185#if !defined(__APPLE__)
186  int *ma = (int*)memalign(kPageSize, kPageSize);
187  EXPECT_EQ(0, (uintptr_t)ma % kPageSize);
188  ma[123] = 0;
189  free(ma);
190#endif  // __APPLE__
191}
192
193TEST(AddressSanitizer, CallocTest) {
194  int *a = (int*)calloc(100, sizeof(int));
195  EXPECT_EQ(0, a[10]);
196  free(a);
197}
198
199TEST(AddressSanitizer, VallocTest) {
200  void *a = valloc(100);
201  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
202  free(a);
203}
204
205#ifndef __APPLE__
206TEST(AddressSanitizer, PvallocTest) {
207  char *a = (char*)pvalloc(kPageSize + 100);
208  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
209  a[kPageSize + 101] = 1;  // we should not report an error here.
210  free(a);
211
212  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
213  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
214  a[101] = 1;  // we should not report an error here.
215  free(a);
216}
217#endif  // __APPLE__
218
219void NoOpSignalHandler(int unused) {
220  fprintf(stderr, "NoOpSignalHandler (should not happen). Aborting\n");
221  abort();
222}
223
224void NoOpSigaction(int, siginfo_t *siginfo, void *context) {
225  fprintf(stderr, "NoOpSigaction (should not happen). Aborting\n");
226  abort();
227}
228
229TEST(AddressSanitizer, SignalTest) {
230  signal(SIGSEGV, NoOpSignalHandler);
231  signal(SIGILL, NoOpSignalHandler);
232  // If asan did not intercept sigaction NoOpSigaction will fire.
233  char *x = Ident((char*)malloc(5));
234  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
235  free(Ident(x));
236}
237
238TEST(AddressSanitizer, SigactionTest) {
239  {
240    struct sigaction sigact;
241    memset(&sigact, 0, sizeof(sigact));
242    sigact.sa_sigaction = NoOpSigaction;;
243    sigact.sa_flags = SA_SIGINFO;
244    sigaction(SIGSEGV, &sigact, 0);
245  }
246
247  {
248    struct sigaction sigact;
249    memset(&sigact, 0, sizeof(sigact));
250    sigact.sa_sigaction = NoOpSigaction;;
251    sigact.sa_flags = SA_SIGINFO;
252    sigaction(SIGILL, &sigact, 0);
253  }
254
255  // If asan did not intercept sigaction NoOpSigaction will fire.
256  char *x = Ident((char*)malloc(5));
257  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
258  free(Ident(x));
259}
260
261void *TSDWorker(void *test_key) {
262  if (test_key) {
263    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
264  }
265  return NULL;
266}
267
268void TSDDestructor(void *tsd) {
269  // Spawning a thread will check that the current thread id is not -1.
270  pthread_t th;
271  pthread_create(&th, NULL, TSDWorker, NULL);
272  pthread_join(th, NULL);
273}
274
275// This tests triggers the thread-specific data destruction fiasco which occurs
276// if we don't manage the TSD destructors ourselves. We create a new pthread
277// key with a non-NULL destructor which is likely to be put after the destructor
278// of AsanThread in the list of destructors.
279// In this case the TSD for AsanThread will be destroyed before TSDDestructor
280// is called for the child thread, and a CHECK will fail when we call
281// pthread_create() to spawn the grandchild.
282TEST(AddressSanitizer, DISABLED_TSDTest) {
283  pthread_t th;
284  pthread_key_t test_key;
285  pthread_key_create(&test_key, TSDDestructor);
286  pthread_create(&th, NULL, TSDWorker, &test_key);
287  pthread_join(th, NULL);
288  pthread_key_delete(test_key);
289}
290
291template<class T>
292void OOBTest() {
293  char expected_str[100];
294  for (int size = sizeof(T); size < 20; size += 5) {
295    for (int i = -5; i < 0; i++) {
296      const char *str =
297          "is located.*%d byte.*to the left";
298      sprintf(expected_str, str, abs(i));
299      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
300    }
301
302    for (int i = 0; i < size - sizeof(T) + 1; i++)
303      oob_test<T>(size, i);
304
305    for (int i = size - sizeof(T) + 1; i <= size + 3 * sizeof(T); i++) {
306      const char *str =
307          "is located.*%d byte.*to the right";
308      int off = i >= size ? (i - size) : 0;
309      // we don't catch unaligned partially OOB accesses.
310      if (i % sizeof(T)) continue;
311      sprintf(expected_str, str, off);
312      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
313    }
314  }
315
316  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
317          "is located.*1 byte.*to the left");
318  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
319          "is located.*0 byte.*to the right");
320}
321
322// TODO(glider): the following tests are EXTREMELY slow on Darwin:
323//   AddressSanitizer.OOB_char (125503 ms)
324//   AddressSanitizer.OOB_int (126890 ms)
325//   AddressSanitizer.OOBRightTest (315605 ms)
326//   AddressSanitizer.SimpleStackTest (366559 ms)
327
328TEST(AddressSanitizer, OOB_char) {
329  OOBTest<U1>();
330}
331
332TEST(AddressSanitizer, OOB_int) {
333  OOBTest<U4>();
334}
335
336TEST(AddressSanitizer, OOBRightTest) {
337  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
338    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
339      for (size_t offset = 0; offset <= 8; offset += access_size) {
340        void *p = malloc(alloc_size);
341        // allocated: [p, p + alloc_size)
342        // accessed:  [p + offset, p + offset + access_size)
343        uint8_t *addr = (uint8_t*)p + offset;
344        if (offset + access_size <= alloc_size) {
345          asan_write_sized_aligned(addr, access_size);
346        } else {
347          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
348          const char *str =
349              "is located.%d *byte.*to the right";
350          char expected_str[100];
351          sprintf(expected_str, str, outside_bytes);
352          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
353                       expected_str);
354        }
355        free(p);
356      }
357    }
358  }
359}
360
361TEST(AddressSanitizer, UAF_char) {
362  const char *uaf_string = "AddressSanitizer.*heap-use-after-free";
363  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
364  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
365  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
366  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
367  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
368}
369
370#if ASAN_HAS_BLACKLIST
371TEST(AddressSanitizer, IgnoreTest) {
372  int *x = Ident(new int);
373  delete Ident(x);
374  *x = 0;
375}
376#endif  // ASAN_HAS_BLACKLIST
377
378struct StructWithBitField {
379  int bf1:1;
380  int bf2:1;
381  int bf3:1;
382  int bf4:29;
383};
384
385TEST(AddressSanitizer, BitFieldPositiveTest) {
386  StructWithBitField *x = new StructWithBitField;
387  delete Ident(x);
388  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
389  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
390  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
391  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
392};
393
394struct StructWithBitFields_8_24 {
395  int a:8;
396  int b:24;
397};
398
399TEST(AddressSanitizer, BitFieldNegativeTest) {
400  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
401  x->a = 0;
402  x->b = 0;
403  delete Ident(x);
404}
405
406TEST(AddressSanitizer, OutOfMemoryTest) {
407  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
408  EXPECT_EQ(0, realloc(0, size));
409  EXPECT_EQ(0, realloc(0, ~Ident(0)));
410  EXPECT_EQ(0, malloc(size));
411  EXPECT_EQ(0, malloc(~Ident(0)));
412  EXPECT_EQ(0, calloc(1, size));
413  EXPECT_EQ(0, calloc(1, ~Ident(0)));
414}
415
416#if ASAN_NEEDS_SEGV
417TEST(AddressSanitizer, WildAddressTest) {
418  char *c = (char*)0x123;
419  EXPECT_DEATH(*c = 0, "AddressSanitizer crashed on unknown address");
420}
421#endif
422
423static void MallocStress(size_t n) {
424  uint32_t seed = my_rand(&global_seed);
425  for (size_t iter = 0; iter < 10; iter++) {
426    vector<void *> vec;
427    for (size_t i = 0; i < n; i++) {
428      if ((i % 3) == 0) {
429        if (vec.empty()) continue;
430        size_t idx = my_rand(&seed) % vec.size();
431        void *ptr = vec[idx];
432        vec[idx] = vec.back();
433        vec.pop_back();
434        free_aaa(ptr);
435      } else {
436        size_t size = my_rand(&seed) % 1000 + 1;
437#ifndef __APPLE__
438        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
439        char *ptr = (char*)memalign_aaa(alignment, size);
440#else
441        char *ptr = (char*) malloc_aaa(size);
442#endif
443        vec.push_back(ptr);
444        ptr[0] = 0;
445        ptr[size-1] = 0;
446        ptr[size/2] = 0;
447      }
448    }
449    for (size_t i = 0; i < vec.size(); i++)
450      free_aaa(vec[i]);
451  }
452}
453
454TEST(AddressSanitizer, MallocStressTest) {
455  MallocStress(200000);
456}
457
458static void TestLargeMalloc(size_t size) {
459  char buff[1024];
460  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
461  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
462}
463
464TEST(AddressSanitizer, LargeMallocTest) {
465  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
466    TestLargeMalloc(i);
467  }
468}
469
470TEST(AddressSanitizer, HugeMallocTest) {
471#ifdef __APPLE__
472  // It was empirically found out that 1215 megabytes is the maximum amount of
473  // memory available to the process under AddressSanitizer on Darwin.
474  // (the libSystem malloc() allows allocating up to 2300 megabytes without
475  // ASan).
476  size_t n_megs = __WORDSIZE == 32 ? 1200 : 4100;
477#else
478  size_t n_megs = __WORDSIZE == 32 ? 2600 : 4100;
479#endif
480  TestLargeMalloc(n_megs << 20);
481}
482
483TEST(AddressSanitizer, ThreadedMallocStressTest) {
484  const int kNumThreads = 4;
485  pthread_t t[kNumThreads];
486  for (int i = 0; i < kNumThreads; i++) {
487    pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress, (void*)100000);
488  }
489  for (int i = 0; i < kNumThreads; i++) {
490    pthread_join(t[i], 0);
491  }
492}
493
494void *ManyThreadsWorker(void *a) {
495  for (int iter = 0; iter < 100; iter++) {
496    for (size_t size = 100; size < 2000; size *= 2) {
497      free(Ident(malloc(size)));
498    }
499  }
500  return 0;
501}
502
503TEST(AddressSanitizer, ManyThreadsTest) {
504  const size_t kNumThreads = __WORDSIZE == 32 ? 30 : 1000;
505  pthread_t t[kNumThreads];
506  for (size_t i = 0; i < kNumThreads; i++) {
507    pthread_create(&t[i], 0, (void* (*)(void *x))ManyThreadsWorker, (void*)i);
508  }
509  for (size_t i = 0; i < kNumThreads; i++) {
510    pthread_join(t[i], 0);
511  }
512}
513
514TEST(AddressSanitizer, ReallocTest) {
515  const int kMinElem = 5;
516  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
517  ptr[3] = 3;
518  for (int i = 0; i < 10000; i++) {
519    ptr = (int*)realloc(ptr,
520        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
521    EXPECT_EQ(3, ptr[3]);
522  }
523}
524
525#ifndef __APPLE__
526static const char *kMallocUsableSizeErrorMsg =
527  "AddressSanitizer attempting to call malloc_usable_size()";
528
529TEST(AddressSanitizer, MallocUsableSizeTest) {
530  const size_t kArraySize = 100;
531  char *array = Ident((char*)malloc(kArraySize));
532  int *int_ptr = Ident(new int);
533  EXPECT_EQ(0, malloc_usable_size(NULL));
534  EXPECT_EQ(kArraySize, malloc_usable_size(array));
535  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
536  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
537  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
538               kMallocUsableSizeErrorMsg);
539  free(array);
540  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
541}
542#endif
543
544void WrongFree() {
545  int *x = (int*)malloc(100 * sizeof(int));
546  // Use the allocated memory, otherwise Clang will optimize it out.
547  Ident(x);
548  free(x + 1);
549}
550
551TEST(AddressSanitizer, WrongFreeTest) {
552  EXPECT_DEATH(WrongFree(),
553               "ERROR: AddressSanitizer attempting free.*not malloc");
554}
555
556void DoubleFree() {
557  int *x = (int*)malloc(100 * sizeof(int));
558  fprintf(stderr, "DoubleFree: x=%p\n", x);
559  free(x);
560  free(x);
561  fprintf(stderr, "should have failed in the second free(%p)\n", x);
562  abort();
563}
564
565TEST(AddressSanitizer, DoubleFreeTest) {
566  EXPECT_DEATH(DoubleFree(), "ERROR: AddressSanitizer attempting double-free");
567}
568
569template<int kSize>
570__attribute__((noinline))
571void SizedStackTest() {
572  char a[kSize];
573  char  *A = Ident((char*)&a);
574  for (size_t i = 0; i < kSize; i++)
575    A[i] = i;
576  EXPECT_DEATH(A[-1] = 0, "");
577  EXPECT_DEATH(A[-20] = 0, "");
578  EXPECT_DEATH(A[-31] = 0, "");
579  EXPECT_DEATH(A[kSize] = 0, "");
580  EXPECT_DEATH(A[kSize + 1] = 0, "");
581  EXPECT_DEATH(A[kSize + 10] = 0, "");
582  EXPECT_DEATH(A[kSize + 31] = 0, "");
583}
584
585TEST(AddressSanitizer, SimpleStackTest) {
586  SizedStackTest<1>();
587  SizedStackTest<2>();
588  SizedStackTest<3>();
589  SizedStackTest<4>();
590  SizedStackTest<5>();
591  SizedStackTest<6>();
592  SizedStackTest<7>();
593  SizedStackTest<16>();
594  SizedStackTest<25>();
595  SizedStackTest<34>();
596  SizedStackTest<43>();
597  SizedStackTest<51>();
598  SizedStackTest<62>();
599  SizedStackTest<64>();
600  SizedStackTest<128>();
601}
602
603TEST(AddressSanitizer, ManyStackObjectsTest) {
604  char XXX[10];
605  char YYY[20];
606  char ZZZ[30];
607  Ident(XXX);
608  Ident(YYY);
609  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
610}
611
612__attribute__((noinline))
613static void Frame0(int frame, char *a, char *b, char *c) {
614  char d[4] = {0};
615  char *D = Ident(d);
616  switch (frame) {
617    case 3: a[5]++; break;
618    case 2: b[5]++; break;
619    case 1: c[5]++; break;
620    case 0: D[5]++; break;
621  }
622}
623__attribute__((noinline)) static void Frame1(int frame, char *a, char *b) {
624  char c[4] = {0}; Frame0(frame, a, b, c);
625  break_optimization(0);
626}
627__attribute__((noinline)) static void Frame2(int frame, char *a) {
628  char b[4] = {0}; Frame1(frame, a, b);
629  break_optimization(0);
630}
631__attribute__((noinline)) static void Frame3(int frame) {
632  char a[4] = {0}; Frame2(frame, a);
633  break_optimization(0);
634}
635
636TEST(AddressSanitizer, GuiltyStackFrame0Test) {
637  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
638}
639TEST(AddressSanitizer, GuiltyStackFrame1Test) {
640  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
641}
642TEST(AddressSanitizer, GuiltyStackFrame2Test) {
643  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
644}
645TEST(AddressSanitizer, GuiltyStackFrame3Test) {
646  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
647}
648
649__attribute__((noinline))
650void LongJmpFunc1(jmp_buf buf) {
651  // create three red zones for these two stack objects.
652  int a;
653  int b;
654
655  int *A = Ident(&a);
656  int *B = Ident(&b);
657  *A = *B;
658  longjmp(buf, 1);
659}
660
661__attribute__((noinline))
662void UnderscopeLongJmpFunc1(jmp_buf buf) {
663  // create three red zones for these two stack objects.
664  int a;
665  int b;
666
667  int *A = Ident(&a);
668  int *B = Ident(&b);
669  *A = *B;
670  _longjmp(buf, 1);
671}
672
673__attribute__((noinline))
674void SigLongJmpFunc1(sigjmp_buf buf) {
675  // create three red zones for these two stack objects.
676  int a;
677  int b;
678
679  int *A = Ident(&a);
680  int *B = Ident(&b);
681  *A = *B;
682  siglongjmp(buf, 1);
683}
684
685
686__attribute__((noinline))
687void TouchStackFunc() {
688  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
689  int *A = Ident(a);
690  for (int i = 0; i < 100; i++)
691    A[i] = i*i;
692}
693
694// Test that we handle longjmp and do not report fals positives on stack.
695TEST(AddressSanitizer, LongJmpTest) {
696  static jmp_buf buf;
697  if (!setjmp(buf)) {
698    LongJmpFunc1(buf);
699  } else {
700    TouchStackFunc();
701  }
702}
703
704TEST(AddressSanitizer, UnderscopeLongJmpTest) {
705  static jmp_buf buf;
706  if (!_setjmp(buf)) {
707    UnderscopeLongJmpFunc1(buf);
708  } else {
709    TouchStackFunc();
710  }
711}
712
713TEST(AddressSanitizer, SigLongJmpTest) {
714  static sigjmp_buf buf;
715  if (!sigsetjmp(buf, 1)) {
716    SigLongJmpFunc1(buf);
717  } else {
718    TouchStackFunc();
719  }
720}
721
722#ifdef __EXCEPTIONS
723__attribute__((noinline))
724void ThrowFunc() {
725  // create three red zones for these two stack objects.
726  int a;
727  int b;
728
729  int *A = Ident(&a);
730  int *B = Ident(&b);
731  *A = *B;
732  ASAN_THROW(1);
733}
734
735TEST(AddressSanitizer, CxxExceptionTest) {
736  if (ASAN_UAR) return;
737  // TODO(kcc): this test crashes on 32-bit for some reason...
738  if (__WORDSIZE == 32) return;
739  try {
740    ThrowFunc();
741  } catch(...) {}
742  TouchStackFunc();
743}
744#endif
745
746void *ThreadStackReuseFunc1(void *unused) {
747  // create three red zones for these two stack objects.
748  int a;
749  int b;
750
751  int *A = Ident(&a);
752  int *B = Ident(&b);
753  *A = *B;
754  pthread_exit(0);
755  return 0;
756}
757
758void *ThreadStackReuseFunc2(void *unused) {
759  TouchStackFunc();
760  return 0;
761}
762
763TEST(AddressSanitizer, ThreadStackReuseTest) {
764  pthread_t t;
765  pthread_create(&t, 0, ThreadStackReuseFunc1, 0);
766  pthread_join(t, 0);
767  pthread_create(&t, 0, ThreadStackReuseFunc2, 0);
768  pthread_join(t, 0);
769}
770
771#if defined(__i386__) or defined(__x86_64__)
772TEST(AddressSanitizer, Store128Test) {
773  char *a = Ident((char*)malloc(Ident(12)));
774  char *p = a;
775  if (((uintptr_t)a % 16) != 0)
776    p = a + 8;
777  assert(((uintptr_t)p % 16) == 0);
778  __m128i value_wide = _mm_set1_epi16(0x1234);
779  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
780               "AddressSanitizer heap-buffer-overflow");
781  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
782               "WRITE of size 16");
783  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
784               "located 0 bytes to the right of 12-byte");
785  free(a);
786}
787#endif
788
789static string RightOOBErrorMessage(int oob_distance) {
790  assert(oob_distance >= 0);
791  char expected_str[100];
792  sprintf(expected_str, "located %d bytes to the right", oob_distance);
793  return string(expected_str);
794}
795
796static string LeftOOBErrorMessage(int oob_distance) {
797  assert(oob_distance > 0);
798  char expected_str[100];
799  sprintf(expected_str, "located %d bytes to the left", oob_distance);
800  return string(expected_str);
801}
802
803template<class T>
804void MemSetOOBTestTemplate(size_t length) {
805  if (length == 0) return;
806  size_t size = Ident(sizeof(T) * length);
807  T *array = Ident((T*)malloc(size));
808  int element = Ident(42);
809  int zero = Ident(0);
810  // memset interval inside array
811  memset(array, element, size);
812  memset(array, element, size - 1);
813  memset(array + length - 1, element, sizeof(T));
814  memset(array, element, 1);
815
816  // memset 0 bytes
817  memset(array - 10, element, zero);
818  memset(array - 1, element, zero);
819  memset(array, element, zero);
820  memset(array + length, 0, zero);
821  memset(array + length + 1, 0, zero);
822
823  // try to memset bytes to the right of array
824  EXPECT_DEATH(memset(array, 0, size + 1),
825               RightOOBErrorMessage(0));
826  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
827               RightOOBErrorMessage(4));
828  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
829               RightOOBErrorMessage(2 * sizeof(T) - 1));
830  // whole interval is to the right
831  EXPECT_DEATH(memset(array + length + 1, 0, 10),
832               RightOOBErrorMessage(sizeof(T)));
833
834  // try to memset bytes to the left of array
835  EXPECT_DEATH(memset((char*)array - 1, element, size),
836               LeftOOBErrorMessage(1));
837  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
838               LeftOOBErrorMessage(5));
839  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
840               LeftOOBErrorMessage(5 * sizeof(T)));
841  // whole interval is to the left
842  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
843               LeftOOBErrorMessage(2 * sizeof(T)));
844
845  // try to memset bytes both to the left & to the right
846  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
847               LeftOOBErrorMessage(2));
848
849  free(array);
850}
851
852TEST(AddressSanitizer, MemSetOOBTest) {
853  MemSetOOBTestTemplate<char>(100);
854  MemSetOOBTestTemplate<int>(5);
855  MemSetOOBTestTemplate<double>(256);
856  // We can test arrays of structres/classes here, but what for?
857}
858
859// Same test for memcpy and memmove functions
860template <class T, class M>
861void MemTransferOOBTestTemplate(size_t length) {
862  if (length == 0) return;
863  size_t size = Ident(sizeof(T) * length);
864  T *src = Ident((T*)malloc(size));
865  T *dest = Ident((T*)malloc(size));
866  int zero = Ident(0);
867
868  // valid transfer of bytes between arrays
869  M::transfer(dest, src, size);
870  M::transfer(dest + 1, src, size - sizeof(T));
871  M::transfer(dest, src + length - 1, sizeof(T));
872  M::transfer(dest, src, 1);
873
874  // transfer zero bytes
875  M::transfer(dest - 1, src, 0);
876  M::transfer(dest + length, src, zero);
877  M::transfer(dest, src - 1, zero);
878  M::transfer(dest, src, zero);
879
880  // try to change mem to the right of dest
881  EXPECT_DEATH(M::transfer(dest + 1, src, size),
882               RightOOBErrorMessage(sizeof(T) - 1));
883  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
884               RightOOBErrorMessage(3));
885
886  // try to change mem to the left of dest
887  EXPECT_DEATH(M::transfer(dest - 2, src, size),
888               LeftOOBErrorMessage(2 * sizeof(T)));
889  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
890               LeftOOBErrorMessage(3));
891
892  // try to access mem to the right of src
893  EXPECT_DEATH(M::transfer(dest, src + 2, size),
894               RightOOBErrorMessage(2 * sizeof(T) - 1));
895  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
896               RightOOBErrorMessage(2));
897
898  // try to access mem to the left of src
899  EXPECT_DEATH(M::transfer(dest, src - 1, size),
900               LeftOOBErrorMessage(sizeof(T)));
901  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
902               LeftOOBErrorMessage(6));
903
904  // Generally we don't need to test cases where both accessing src and writing
905  // to dest address to poisoned memory.
906
907  T *big_src = Ident((T*)malloc(size * 2));
908  T *big_dest = Ident((T*)malloc(size * 2));
909  // try to change mem to both sides of dest
910  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
911               LeftOOBErrorMessage(sizeof(T)));
912  // try to access mem to both sides of src
913  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
914               LeftOOBErrorMessage(2 * sizeof(T)));
915
916  free(src);
917  free(dest);
918  free(big_src);
919  free(big_dest);
920}
921
922class MemCpyWrapper {
923 public:
924  static void* transfer(void *to, const void *from, size_t size) {
925    return memcpy(to, from, size);
926  }
927};
928TEST(AddressSanitizer, MemCpyOOBTest) {
929  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
930  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
931}
932
933class MemMoveWrapper {
934 public:
935  static void* transfer(void *to, const void *from, size_t size) {
936    return memmove(to, from, size);
937  }
938};
939TEST(AddressSanitizer, MemMoveOOBTest) {
940  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
941  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
942}
943
944// Tests for string functions
945
946// Used for string functions tests
947static char global_string[] = "global";
948static size_t global_string_length = 6;
949
950// Input to a test is a zero-terminated string str with given length
951// Accesses to the bytes to the left and to the right of str
952// are presumed to produce OOB errors
953void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
954  // Normal strlen calls
955  EXPECT_EQ(strlen(str), length);
956  if (length > 0) {
957    EXPECT_EQ(strlen(str + 1), length - 1);
958    EXPECT_EQ(strlen(str + length), 0);
959  }
960  // Arg of strlen is not malloced, OOB access
961  if (!is_global) {
962    // We don't insert RedZones to the left of global variables
963    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
964    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
965  }
966  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
967  // Overwrite terminator
968  str[length] = 'a';
969  // String is not zero-terminated, strlen will lead to OOB access
970  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
971  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
972  // Restore terminator
973  str[length] = 0;
974}
975TEST(AddressSanitizer, StrLenOOBTest) {
976  // Check heap-allocated string
977  size_t length = Ident(10);
978  char *heap_string = Ident((char*)malloc(length + 1));
979  char stack_string[10 + 1];
980  for (int i = 0; i < length; i++) {
981    heap_string[i] = 'a';
982    stack_string[i] = 'b';
983  }
984  heap_string[length] = 0;
985  stack_string[length] = 0;
986  StrLenOOBTestTemplate(heap_string, length, false);
987  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
988  //      make test for stack_string work. Or move it to output tests.
989  // StrLenOOBTestTemplate(stack_string, length, false);
990  StrLenOOBTestTemplate(global_string, global_string_length, true);
991  free(heap_string);
992}
993
994static inline char* MallocAndMemsetString(size_t size) {
995  char *s = Ident((char*)malloc(size));
996  memset(s, 'z', size);
997  return s;
998}
999
1000#ifndef __APPLE__
1001TEST(AddressSanitizer, StrNLenOOBTest) {
1002  size_t size = Ident(123);
1003  char *str = MallocAndMemsetString(size);
1004  // Normal strnlen calls.
1005  Ident(strnlen(str - 1, 0));
1006  Ident(strnlen(str, size));
1007  Ident(strnlen(str + size - 1, 1));
1008  str[size - 1] = '\0';
1009  Ident(strnlen(str, 2 * size));
1010  // Argument points to not allocated memory.
1011  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
1012  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
1013  // Overwrite the terminating '\0' and hit unallocated memory.
1014  str[size - 1] = 'z';
1015  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
1016  free(str);
1017}
1018#endif
1019
1020TEST(AddressSanitizer, StrDupOOBTest) {
1021  size_t size = Ident(42);
1022  char *str = MallocAndMemsetString(size);
1023  char *new_str;
1024  // Normal strdup calls.
1025  str[size - 1] = '\0';
1026  new_str = strdup(str);
1027  free(new_str);
1028  new_str = strdup(str + size - 1);
1029  free(new_str);
1030  // Argument points to not allocated memory.
1031  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
1032  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
1033  // Overwrite the terminating '\0' and hit unallocated memory.
1034  str[size - 1] = 'z';
1035  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
1036  free(str);
1037}
1038
1039TEST(AddressSanitizer, StrCpyOOBTest) {
1040  size_t to_size = Ident(30);
1041  size_t from_size = Ident(6);  // less than to_size
1042  char *to = Ident((char*)malloc(to_size));
1043  char *from = Ident((char*)malloc(from_size));
1044  // Normal strcpy calls.
1045  strcpy(from, "hello");
1046  strcpy(to, from);
1047  strcpy(to + to_size - from_size, from);
1048  // Length of "from" is too small.
1049  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1050  // "to" or "from" points to not allocated memory.
1051  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1052  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1053  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1054  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1055  // Overwrite the terminating '\0' character and hit unallocated memory.
1056  from[from_size - 1] = '!';
1057  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1058  free(to);
1059  free(from);
1060}
1061
1062TEST(AddressSanitizer, StrNCpyOOBTest) {
1063  size_t to_size = Ident(20);
1064  size_t from_size = Ident(6);  // less than to_size
1065  char *to = Ident((char*)malloc(to_size));
1066  // From is a zero-terminated string "hello\0" of length 6
1067  char *from = Ident((char*)malloc(from_size));
1068  strcpy(from, "hello");
1069  // copy 0 bytes
1070  strncpy(to, from, 0);
1071  strncpy(to - 1, from - 1, 0);
1072  // normal strncpy calls
1073  strncpy(to, from, from_size);
1074  strncpy(to, from, to_size);
1075  strncpy(to, from + from_size - 1, to_size);
1076  strncpy(to + to_size - 1, from, 1);
1077  // One of {to, from} points to not allocated memory
1078  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1079               LeftOOBErrorMessage(1));
1080  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1081               LeftOOBErrorMessage(1));
1082  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1083               RightOOBErrorMessage(0));
1084  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1085               RightOOBErrorMessage(0));
1086  // Length of "to" is too small
1087  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1088               RightOOBErrorMessage(0));
1089  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1090               RightOOBErrorMessage(0));
1091  // Overwrite terminator in from
1092  from[from_size - 1] = '!';
1093  // normal strncpy call
1094  strncpy(to, from, from_size);
1095  // Length of "from" is too small
1096  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1097               RightOOBErrorMessage(0));
1098  free(to);
1099  free(from);
1100}
1101
1102typedef char*(*PointerToStrChr)(const char*, int);
1103void RunStrChrTest(PointerToStrChr StrChr) {
1104  size_t size = Ident(100);
1105  char *str = MallocAndMemsetString(size);
1106  str[10] = 'q';
1107  str[11] = '\0';
1108  EXPECT_EQ(str, StrChr(str, 'z'));
1109  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1110  EXPECT_EQ(NULL, StrChr(str, 'a'));
1111  // StrChr argument points to not allocated memory.
1112  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1113  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1114  // Overwrite the terminator and hit not allocated memory.
1115  str[11] = 'z';
1116  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1117  free(str);
1118}
1119TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1120  RunStrChrTest(&strchr);
1121  RunStrChrTest(&index);
1122}
1123
1124TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1125  // strcmp
1126  EXPECT_EQ(0, strcmp("", ""));
1127  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1128  EXPECT_GT(0, strcmp("ab", "ac"));
1129  EXPECT_GT(0, strcmp("abc", "abcd"));
1130  EXPECT_LT(0, strcmp("acc", "abc"));
1131  EXPECT_LT(0, strcmp("abcd", "abc"));
1132
1133  // strncmp
1134  EXPECT_EQ(0, strncmp("a", "b", 0));
1135  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1136  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1137  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1138  EXPECT_GT(0, strncmp("a", "b", 5));
1139  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1140  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1141  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1142  EXPECT_LT(0, strncmp("zyx", "", 2));
1143
1144  // strcasecmp
1145  EXPECT_EQ(0, strcasecmp("", ""));
1146  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1147  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1148  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1149  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1150  EXPECT_LT(0, strcasecmp("acc", "abc"));
1151  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1152
1153  // strncasecmp
1154  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1155  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1156  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1157  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1158  EXPECT_GT(0, strncasecmp("a", "B", 5));
1159  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1160  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1161  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1162  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1163
1164  // memcmp
1165  EXPECT_EQ(0, memcmp("a", "b", 0));
1166  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1167  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1168  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1169  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1170  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1171}
1172
1173typedef int(*PointerToStrCmp)(const char*, const char*);
1174void RunStrCmpTest(PointerToStrCmp StrCmp) {
1175  size_t size = Ident(100);
1176  char *s1 = MallocAndMemsetString(size);
1177  char *s2 = MallocAndMemsetString(size);
1178  s1[size - 1] = '\0';
1179  s2[size - 1] = '\0';
1180  // Normal StrCmp calls
1181  Ident(StrCmp(s1, s2));
1182  Ident(StrCmp(s1, s2 + size - 1));
1183  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1184  s1[size - 1] = 'z';
1185  s2[size - 1] = 'x';
1186  Ident(StrCmp(s1, s2));
1187  // One of arguments points to not allocated memory.
1188  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1189  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1190  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1191  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1192  // Hit unallocated memory and die.
1193  s2[size - 1] = 'z';
1194  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1195  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1196  free(s1);
1197  free(s2);
1198}
1199
1200TEST(AddressSanitizer, StrCmpOOBTest) {
1201  RunStrCmpTest(&strcmp);
1202}
1203
1204TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1205  RunStrCmpTest(&strcasecmp);
1206}
1207
1208typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1209void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1210  size_t size = Ident(100);
1211  char *s1 = MallocAndMemsetString(size);
1212  char *s2 = MallocAndMemsetString(size);
1213  s1[size - 1] = '\0';
1214  s2[size - 1] = '\0';
1215  // Normal StrNCmp calls
1216  Ident(StrNCmp(s1, s2, size + 2));
1217  s1[size - 1] = 'z';
1218  s2[size - 1] = 'x';
1219  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1220  s2[size - 1] = 'z';
1221  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1222  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1223  // One of arguments points to not allocated memory.
1224  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1225  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1226  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1227  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1228  // Hit unallocated memory and die.
1229  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1230  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1231  free(s1);
1232  free(s2);
1233}
1234
1235TEST(AddressSanitizer, StrNCmpOOBTest) {
1236  RunStrNCmpTest(&strncmp);
1237}
1238
1239TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1240  RunStrNCmpTest(&strncasecmp);
1241}
1242
1243TEST(AddressSanitizer, MemCmpOOBTest) {
1244  size_t size = Ident(100);
1245  char *s1 = MallocAndMemsetString(size);
1246  char *s2 = MallocAndMemsetString(size);
1247  // Normal memcmp calls.
1248  Ident(memcmp(s1, s2, size));
1249  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1250  Ident(memcmp(s1 - 1, s2 - 1, 0));
1251  // One of arguments points to not allocated memory.
1252  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1253  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1254  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1255  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1256  // Hit unallocated memory and die.
1257  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1258  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1259  // Zero bytes are not terminators and don't prevent from OOB.
1260  s1[size - 1] = '\0';
1261  s2[size - 1] = '\0';
1262  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1263  free(s1);
1264  free(s2);
1265}
1266
1267TEST(AddressSanitizer, StrCatOOBTest) {
1268  size_t to_size = Ident(100);
1269  char *to = MallocAndMemsetString(to_size);
1270  to[0] = '\0';
1271  size_t from_size = Ident(20);
1272  char *from = MallocAndMemsetString(from_size);
1273  from[from_size - 1] = '\0';
1274  // Normal strcat calls.
1275  strcat(to, from);
1276  strcat(to, from);
1277  strcat(to + from_size, from + from_size - 2);
1278  // Catenate empty string is not always an error.
1279  strcat(to - 1, from + from_size - 1);
1280  // One of arguments points to not allocated memory.
1281  EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1282  EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1283  EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1284  EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1285
1286  // "from" is not zero-terminated.
1287  from[from_size - 1] = 'z';
1288  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1289  from[from_size - 1] = '\0';
1290  // "to" is not zero-terminated.
1291  memset(to, 'z', to_size);
1292  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1293  // "to" is too short to fit "from".
1294  to[to_size - from_size + 1] = '\0';
1295  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1296  // length of "to" is just enough.
1297  strcat(to, from + 1);
1298}
1299
1300static string OverlapErrorMessage(const string &func) {
1301  return func + "-param-overlap";
1302}
1303
1304TEST(AddressSanitizer, StrArgsOverlapTest) {
1305  size_t size = Ident(100);
1306  char *str = Ident((char*)malloc(size));
1307
1308  // Check "memcpy". Use Ident() to avoid inlining.
1309  memset(str, 'z', size);
1310  Ident(memcpy)(str + 1, str + 11, 10);
1311  Ident(memcpy)(str, str, 0);
1312  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1313  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1314
1315  // We do not treat memcpy with to==from as a bug.
1316  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1317  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1318  //              OverlapErrorMessage("memcpy"));
1319
1320  // Check "strcpy".
1321  memset(str, 'z', size);
1322  str[9] = '\0';
1323  strcpy(str + 10, str);
1324  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1325  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1326  strcpy(str, str + 5);
1327
1328  // Check "strncpy".
1329  memset(str, 'z', size);
1330  strncpy(str, str + 10, 10);
1331  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1332  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1333  str[10] = '\0';
1334  strncpy(str + 11, str, 20);
1335  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1336
1337  // Check "strcat".
1338  memset(str, 'z', size);
1339  str[10] = '\0';
1340  str[20] = '\0';
1341  strcat(str, str + 10);
1342  strcat(str, str + 11);
1343  str[10] = '\0';
1344  strcat(str + 11, str);
1345  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1346  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1347  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1348
1349  free(str);
1350}
1351
1352// At the moment we instrument memcpy/memove/memset calls at compile time so we
1353// can't handle OOB error if these functions are called by pointer, see disabled
1354// MemIntrinsicCallByPointerTest below
1355typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1356typedef void*(*PointerToMemSet)(void*, int, size_t);
1357
1358void CallMemSetByPointer(PointerToMemSet MemSet) {
1359  size_t size = Ident(100);
1360  char *array = Ident((char*)malloc(size));
1361  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1362  free(array);
1363}
1364
1365void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1366  size_t size = Ident(100);
1367  char *src = Ident((char*)malloc(size));
1368  char *dst = Ident((char*)malloc(size));
1369  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1370  free(src);
1371  free(dst);
1372}
1373
1374TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1375  CallMemSetByPointer(&memset);
1376  CallMemTransferByPointer(&memcpy);
1377  CallMemTransferByPointer(&memmove);
1378}
1379
1380// This test case fails
1381// Clang optimizes memcpy/memset calls which lead to unaligned access
1382TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1383  int size = Ident(4096);
1384  char *s = Ident((char*)malloc(size));
1385  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1386  free(s);
1387}
1388
1389// TODO(samsonov): Add a test with malloc(0)
1390// TODO(samsonov): Add tests for str* and mem* functions.
1391
1392__attribute__((noinline))
1393static int LargeFunction(bool do_bad_access) {
1394  int *x = new int[100];
1395  x[0]++;
1396  x[1]++;
1397  x[2]++;
1398  x[3]++;
1399  x[4]++;
1400  x[5]++;
1401  x[6]++;
1402  x[7]++;
1403  x[8]++;
1404  x[9]++;
1405
1406  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1407
1408  x[10]++;
1409  x[11]++;
1410  x[12]++;
1411  x[13]++;
1412  x[14]++;
1413  x[15]++;
1414  x[16]++;
1415  x[17]++;
1416  x[18]++;
1417  x[19]++;
1418
1419  delete x;
1420  return res;
1421}
1422
1423// Test the we have correct debug info for the failing instruction.
1424// This test requires the in-process symbolizer to be enabled by default.
1425TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1426  int failing_line = LargeFunction(false);
1427  char expected_warning[128];
1428  sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1429  EXPECT_DEATH(LargeFunction(true), expected_warning);
1430}
1431
1432// Check that we unwind and symbolize correctly.
1433TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1434  int *a = (int*)malloc_aaa(sizeof(int));
1435  *a = 1;
1436  free_aaa(a);
1437  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1438               "malloc_fff.*malloc_eee.*malloc_ddd");
1439}
1440
1441void *ThreadedTestAlloc(void *a) {
1442  int **p = (int**)a;
1443  *p = new int;
1444  return 0;
1445}
1446
1447void *ThreadedTestFree(void *a) {
1448  int **p = (int**)a;
1449  delete *p;
1450  return 0;
1451}
1452
1453void *ThreadedTestUse(void *a) {
1454  int **p = (int**)a;
1455  **p = 1;
1456  return 0;
1457}
1458
1459void ThreadedTestSpawn() {
1460  pthread_t t;
1461  int *x;
1462  pthread_create(&t, 0, ThreadedTestAlloc, &x);
1463  pthread_join(t, 0);
1464  pthread_create(&t, 0, ThreadedTestFree, &x);
1465  pthread_join(t, 0);
1466  pthread_create(&t, 0, ThreadedTestUse, &x);
1467  pthread_join(t, 0);
1468}
1469
1470TEST(AddressSanitizer, ThreadedTest) {
1471  EXPECT_DEATH(ThreadedTestSpawn(),
1472               ASAN_PCRE_DOTALL
1473               "Thread T.*created"
1474               ".*Thread T.*created"
1475               ".*Thread T.*created");
1476}
1477
1478#if ASAN_NEEDS_SEGV
1479TEST(AddressSanitizer, ShadowGapTest) {
1480#if __WORDSIZE == 32
1481  char *addr = (char*)0x22000000;
1482#else
1483  char *addr = (char*)0x0000100000080000;
1484#endif
1485  EXPECT_DEATH(*addr = 1, "AddressSanitizer crashed on unknown");
1486}
1487#endif  // ASAN_NEEDS_SEGV
1488
1489extern "C" {
1490__attribute__((noinline))
1491static void UseThenFreeThenUse() {
1492  char *x = Ident((char*)malloc(8));
1493  *x = 1;
1494  free_aaa(x);
1495  *x = 2;
1496}
1497}
1498
1499TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1500  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1501}
1502
1503TEST(AddressSanitizer, StrDupTest) {
1504  free(strdup(Ident("123")));
1505}
1506
1507// Currently we create and poison redzone at right of global variables.
1508char glob5[5];
1509static char static110[110];
1510const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1511static const char StaticConstGlob[3] = {9, 8, 7};
1512extern int GlobalsTest(int x);
1513
1514TEST(AddressSanitizer, GlobalTest) {
1515  static char func_static15[15];
1516
1517  static char fs1[10];
1518  static char fs2[10];
1519  static char fs3[10];
1520
1521  glob5[Ident(0)] = 0;
1522  glob5[Ident(1)] = 0;
1523  glob5[Ident(2)] = 0;
1524  glob5[Ident(3)] = 0;
1525  glob5[Ident(4)] = 0;
1526
1527  EXPECT_DEATH(glob5[Ident(5)] = 0,
1528               "0 bytes to the right of global variable.*glob5.* size 5");
1529  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1530               "6 bytes to the right of global variable.*glob5.* size 5");
1531  Ident(static110);  // avoid optimizations
1532  static110[Ident(0)] = 0;
1533  static110[Ident(109)] = 0;
1534  EXPECT_DEATH(static110[Ident(110)] = 0,
1535               "0 bytes to the right of global variable");
1536  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1537               "7 bytes to the right of global variable");
1538
1539  Ident(func_static15);  // avoid optimizations
1540  func_static15[Ident(0)] = 0;
1541  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1542               "0 bytes to the right of global variable");
1543  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1544               "9 bytes to the right of global variable");
1545
1546  Ident(fs1);
1547  Ident(fs2);
1548  Ident(fs3);
1549
1550  // We don't create left redzones, so this is not 100% guaranteed to fail.
1551  // But most likely will.
1552  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1553
1554  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1555               "is located 1 bytes to the right of .*ConstGlob");
1556  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1557               "is located 2 bytes to the right of .*StaticConstGlob");
1558
1559  // call stuff from another file.
1560  GlobalsTest(0);
1561}
1562
1563TEST(AddressSanitizer, GlobalStringConstTest) {
1564  static const char *zoo = "FOOBAR123";
1565  const char *p = Ident(zoo);
1566  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1567}
1568
1569TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1570  static char zoo[10];
1571  const char *p = Ident(zoo);
1572  // The file name should be present in the report.
1573  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1574}
1575
1576int *ReturnsPointerToALocalObject() {
1577  int a = 0;
1578  return Ident(&a);
1579}
1580
1581#if ASAN_UAR == 1
1582TEST(AddressSanitizer, LocalReferenceReturnTest) {
1583  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1584  int *p = f();
1585  // Call 'f' a few more times, 'p' should still be poisoned.
1586  for (int i = 0; i < 32; i++)
1587    f();
1588  EXPECT_DEATH(*p = 1, "AddressSanitizer stack-use-after-return");
1589  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1590}
1591#endif
1592
1593template <int kSize>
1594__attribute__((noinline))
1595static void FuncWithStack() {
1596  char x[kSize];
1597  Ident(x)[0] = 0;
1598  Ident(x)[kSize-1] = 0;
1599}
1600
1601static void LotsOfStackReuse() {
1602  int LargeStack[10000];
1603  Ident(LargeStack)[0] = 0;
1604  for (int i = 0; i < 10000; i++) {
1605    FuncWithStack<128 * 1>();
1606    FuncWithStack<128 * 2>();
1607    FuncWithStack<128 * 4>();
1608    FuncWithStack<128 * 8>();
1609    FuncWithStack<128 * 16>();
1610    FuncWithStack<128 * 32>();
1611    FuncWithStack<128 * 64>();
1612    FuncWithStack<128 * 128>();
1613    FuncWithStack<128 * 256>();
1614    FuncWithStack<128 * 512>();
1615    Ident(LargeStack)[0] = 0;
1616  }
1617}
1618
1619TEST(AddressSanitizer, StressStackReuseTest) {
1620  LotsOfStackReuse();
1621}
1622
1623TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1624  const int kNumThreads = 20;
1625  pthread_t t[kNumThreads];
1626  for (int i = 0; i < kNumThreads; i++) {
1627    pthread_create(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1628  }
1629  for (int i = 0; i < kNumThreads; i++) {
1630    pthread_join(t[i], 0);
1631  }
1632}
1633
1634#ifdef __EXCEPTIONS
1635__attribute__((noinline))
1636static void StackReuseAndException() {
1637  int large_stack[1000];
1638  Ident(large_stack);
1639  ASAN_THROW(1);
1640}
1641
1642// TODO(kcc): support exceptions with use-after-return.
1643TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1644  for (int i = 0; i < 10000; i++) {
1645    try {
1646    StackReuseAndException();
1647    } catch(...) {
1648    }
1649  }
1650}
1651#endif
1652
1653TEST(AddressSanitizer, MlockTest) {
1654  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1655  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1656  EXPECT_EQ(0, munlockall());
1657  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1658}
1659
1660struct LargeStruct {
1661  int foo[100];
1662};
1663
1664// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
1665// Struct copy should not cause asan warning even if lhs == rhs.
1666TEST(AddressSanitizer, LargeStructCopyTest) {
1667  LargeStruct a;
1668  *Ident(&a) = *Ident(&a);
1669}
1670
1671// ------------------ demo tests; run each one-by-one -------------
1672// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1673TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1674  ThreadedTestSpawn();
1675}
1676
1677void *SimpleBugOnSTack(void *x = 0) {
1678  char a[20];
1679  Ident(a)[20] = 0;
1680  return 0;
1681}
1682
1683TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1684  SimpleBugOnSTack();
1685}
1686
1687TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1688  pthread_t t;
1689  pthread_create(&t, 0, SimpleBugOnSTack, 0);
1690  pthread_join(t, 0);
1691}
1692
1693TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1694  uaf_test<U1>(10, 0);
1695}
1696TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1697  uaf_test<U1>(10, -2);
1698}
1699TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1700  uaf_test<U1>(10, 10);
1701}
1702
1703TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1704  uaf_test<U1>(kLargeMalloc, 0);
1705}
1706
1707TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1708  oob_test<U1>(10, -1);
1709}
1710
1711TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1712  oob_test<U1>(kLargeMalloc, -1);
1713}
1714
1715TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1716  oob_test<U1>(10, 10);
1717}
1718
1719TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1720  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1721}
1722
1723TEST(AddressSanitizer, DISABLED_DemoOOM) {
1724  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1725  printf("%p\n", malloc(size));
1726}
1727
1728TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1729  DoubleFree();
1730}
1731
1732TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1733  int *a = 0;
1734  Ident(a)[10] = 0;
1735}
1736
1737TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1738  static char a[100];
1739  static char b[100];
1740  static char c[100];
1741  Ident(a);
1742  Ident(b);
1743  Ident(c);
1744  Ident(a)[5] = 0;
1745  Ident(b)[105] = 0;
1746  Ident(a)[5] = 0;
1747}
1748
1749TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1750  const size_t kAllocSize = (1 << 28) - 1024;
1751  size_t total_size = 0;
1752  while (true) {
1753    char *x = (char*)malloc(kAllocSize);
1754    memset(x, 0, kAllocSize);
1755    total_size += kAllocSize;
1756    fprintf(stderr, "total: %ldM\n", (long)total_size >> 20);
1757  }
1758}
1759
1760#ifdef __APPLE__
1761#include "asan_mac_test.h"
1762// TODO(glider): figure out whether we still need these tests. Is it correct
1763// to intercept CFAllocator?
1764TEST(AddressSanitizerMac, DISABLED_CFAllocatorDefaultDoubleFree) {
1765  EXPECT_DEATH(
1766      CFAllocatorDefaultDoubleFree(),
1767      "attempting double-free");
1768}
1769
1770TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
1771  EXPECT_DEATH(
1772      CFAllocatorSystemDefaultDoubleFree(),
1773      "attempting double-free");
1774}
1775
1776TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocDoubleFree) {
1777  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
1778}
1779
1780TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
1781  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
1782}
1783
1784TEST(AddressSanitizerMac, GCDDispatchAsync) {
1785  // Make sure the whole ASan report is printed, i.e. that we don't die
1786  // on a CHECK.
1787  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
1788}
1789
1790TEST(AddressSanitizerMac, GCDDispatchSync) {
1791  // Make sure the whole ASan report is printed, i.e. that we don't die
1792  // on a CHECK.
1793  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
1794}
1795
1796
1797TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
1798  // Make sure the whole ASan report is printed, i.e. that we don't die
1799  // on a CHECK.
1800  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
1801}
1802
1803TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
1804  // Make sure the whole ASan report is printed, i.e. that we don't die
1805  // on a CHECK.
1806  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
1807}
1808
1809TEST(AddressSanitizerMac, GCDDispatchAfter) {
1810  // Make sure the whole ASan report is printed, i.e. that we don't die
1811  // on a CHECK.
1812  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
1813}
1814
1815TEST(AddressSanitizerMac, GCDSourceEvent) {
1816  // Make sure the whole ASan report is printed, i.e. that we don't die
1817  // on a CHECK.
1818  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
1819}
1820
1821TEST(AddressSanitizerMac, GCDSourceCancel) {
1822  // Make sure the whole ASan report is printed, i.e. that we don't die
1823  // on a CHECK.
1824  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
1825}
1826
1827TEST(AddressSanitizerMac, GCDGroupAsync) {
1828  // Make sure the whole ASan report is printed, i.e. that we don't die
1829  // on a CHECK.
1830  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
1831}
1832
1833void *MallocIntrospectionLockWorker(void *_) {
1834  const int kNumPointers = 100;
1835  int i;
1836  void *pointers[kNumPointers];
1837  for (i = 0; i < kNumPointers; i++) {
1838    pointers[i] = malloc(i + 1);
1839  }
1840  for (i = 0; i < kNumPointers; i++) {
1841    free(pointers[i]);
1842  }
1843
1844  return NULL;
1845}
1846
1847void *MallocIntrospectionLockForker(void *_) {
1848  pid_t result = fork();
1849  if (result == -1) {
1850    perror("fork");
1851  }
1852  assert(result != -1);
1853  if (result == 0) {
1854    // Call malloc in the child process to make sure we won't deadlock.
1855    void *ptr = malloc(42);
1856    free(ptr);
1857    exit(0);
1858  } else {
1859    // Return in the parent process.
1860    return NULL;
1861  }
1862}
1863
1864TEST(AddressSanitizerMac, MallocIntrospectionLock) {
1865  // Incorrect implementation of force_lock and force_unlock in our malloc zone
1866  // will cause forked processes to deadlock.
1867  // TODO(glider): need to detect that none of the child processes deadlocked.
1868  const int kNumWorkers = 5, kNumIterations = 100;
1869  int i, iter;
1870  for (iter = 0; iter < kNumIterations; iter++) {
1871    pthread_t workers[kNumWorkers], forker;
1872    for (i = 0; i < kNumWorkers; i++) {
1873      pthread_create(&workers[i], 0, MallocIntrospectionLockWorker, 0);
1874    }
1875    pthread_create(&forker, 0, MallocIntrospectionLockForker, 0);
1876    for (i = 0; i < kNumWorkers; i++) {
1877      pthread_join(workers[i], 0);
1878    }
1879    pthread_join(forker, 0);
1880  }
1881}
1882
1883void *TSDAllocWorker(void *test_key) {
1884  if (test_key) {
1885    void *mem = malloc(10);
1886    pthread_setspecific(*(pthread_key_t*)test_key, mem);
1887  }
1888  return NULL;
1889}
1890
1891TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
1892  pthread_t th;
1893  pthread_key_t test_key;
1894  pthread_key_create(&test_key, CallFreeOnWorkqueue);
1895  pthread_create(&th, NULL, TSDAllocWorker, &test_key);
1896  pthread_join(th, NULL);
1897  pthread_key_delete(test_key);
1898}
1899
1900// Test that CFStringCreateCopy does not copy constant strings.
1901TEST(AddressSanitizerMac, CFStringCreateCopy) {
1902  CFStringRef str = CFSTR("Hello world!\n");
1903  CFStringRef str2 = CFStringCreateCopy(0, str);
1904  EXPECT_EQ(str, str2);
1905}
1906
1907#endif  // __APPLE__
1908
1909int main(int argc, char **argv) {
1910  progname = argv[0];
1911  testing::GTEST_FLAG(death_test_style) = "threadsafe";
1912  testing::InitGoogleTest(&argc, argv);
1913  return RUN_ALL_TESTS();
1914}
1915