asan_test.cc revision 4fd95f141f78906570c15a8a3b4cf0a7b50a201d
1//===-- asan_test.cc ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22
23#if defined(__i386__) or defined(__x86_64__)
24#include <emmintrin.h>
25#endif
26
27#include "asan_test_config.h"
28#include "asan_test_utils.h"
29
30#ifndef __APPLE__
31#include <malloc.h>
32#endif  // __APPLE__
33
34#ifdef __APPLE__
35static bool APPLE = true;
36#else
37static bool APPLE = false;
38#endif
39
40#if ASAN_HAS_EXCEPTIONS
41# define ASAN_THROW(x) throw (x)
42#else
43# define ASAN_THROW(x)
44#endif
45
46#include <sys/mman.h>
47
48typedef uint8_t   U1;
49typedef uint16_t  U2;
50typedef uint32_t  U4;
51typedef uint64_t  U8;
52
53static const char *progname;
54static const int kPageSize = 4096;
55
56// Simple stand-alone pseudorandom number generator.
57// Current algorithm is ANSI C linear congruential PRNG.
58static inline uint32_t my_rand(uint32_t* state) {
59  return (*state = *state * 1103515245 + 12345) >> 16;
60}
61
62static uint32_t global_seed = 0;
63
64const size_t kLargeMalloc = 1 << 24;
65
66template<class T>
67__attribute__((noinline))
68void asan_write(T *a) {
69  *a = 0;
70}
71
72__attribute__((noinline))
73void asan_write_sized_aligned(uint8_t *p, size_t size) {
74  EXPECT_EQ(0, ((uintptr_t)p % size));
75  if      (size == 1) asan_write((uint8_t*)p);
76  else if (size == 2) asan_write((uint16_t*)p);
77  else if (size == 4) asan_write((uint32_t*)p);
78  else if (size == 8) asan_write((uint64_t*)p);
79}
80
81__attribute__((noinline)) void *malloc_fff(size_t size) {
82  void *res = malloc/**/(size); break_optimization(0); return res;}
83__attribute__((noinline)) void *malloc_eee(size_t size) {
84  void *res = malloc_fff(size); break_optimization(0); return res;}
85__attribute__((noinline)) void *malloc_ddd(size_t size) {
86  void *res = malloc_eee(size); break_optimization(0); return res;}
87__attribute__((noinline)) void *malloc_ccc(size_t size) {
88  void *res = malloc_ddd(size); break_optimization(0); return res;}
89__attribute__((noinline)) void *malloc_bbb(size_t size) {
90  void *res = malloc_ccc(size); break_optimization(0); return res;}
91__attribute__((noinline)) void *malloc_aaa(size_t size) {
92  void *res = malloc_bbb(size); break_optimization(0); return res;}
93
94#ifndef __APPLE__
95__attribute__((noinline)) void *memalign_fff(size_t alignment, size_t size) {
96  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
97__attribute__((noinline)) void *memalign_eee(size_t alignment, size_t size) {
98  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
99__attribute__((noinline)) void *memalign_ddd(size_t alignment, size_t size) {
100  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
101__attribute__((noinline)) void *memalign_ccc(size_t alignment, size_t size) {
102  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
103__attribute__((noinline)) void *memalign_bbb(size_t alignment, size_t size) {
104  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
105__attribute__((noinline)) void *memalign_aaa(size_t alignment, size_t size) {
106  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
107#endif  // __APPLE__
108
109
110__attribute__((noinline))
111  void free_ccc(void *p) { free(p); break_optimization(0);}
112__attribute__((noinline))
113  void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
114__attribute__((noinline))
115  void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
116
117template<class T>
118__attribute__((noinline))
119void oob_test(int size, int off) {
120  char *p = (char*)malloc_aaa(size);
121  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
122  //        sizeof(T), p, p + size, off);
123  asan_write((T*)(p + off));
124  free_aaa(p);
125}
126
127
128template<class T>
129__attribute__((noinline))
130void uaf_test(int size, int off) {
131  char *p = (char *)malloc_aaa(size);
132  free_aaa(p);
133  for (int i = 1; i < 100; i++)
134    free_aaa(malloc_aaa(i));
135  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
136          (long)sizeof(T), p, off);
137  asan_write((T*)(p + off));
138}
139
140TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
141#if defined(__has_feature) && __has_feature(address_sanitizer)
142  bool asan = 1;
143#else
144  bool asan = 0;
145#endif
146  EXPECT_EQ(true, asan);
147}
148
149TEST(AddressSanitizer, SimpleDeathTest) {
150  EXPECT_DEATH(exit(1), "");
151}
152
153TEST(AddressSanitizer, VariousMallocsTest) {
154  // fprintf(stderr, "malloc:\n");
155  int *a = (int*)malloc(100 * sizeof(int));
156  a[50] = 0;
157  free(a);
158
159  // fprintf(stderr, "realloc:\n");
160  int *r = (int*)malloc(10);
161  r = (int*)realloc(r, 2000 * sizeof(int));
162  r[1000] = 0;
163  free(r);
164
165  // fprintf(stderr, "operator new []\n");
166  int *b = new int[100];
167  b[50] = 0;
168  delete [] b;
169
170  // fprintf(stderr, "operator new\n");
171  int *c = new int;
172  *c = 0;
173  delete c;
174
175#if !defined(__APPLE__) && !defined(ANDROID)
176  // fprintf(stderr, "posix_memalign\n");
177  int *pm;
178  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
179  EXPECT_EQ(0, pm_res);
180  free(pm);
181#endif
182
183#if !defined(__APPLE__)
184  int *ma = (int*)memalign(kPageSize, kPageSize);
185  EXPECT_EQ(0, (uintptr_t)ma % kPageSize);
186  ma[123] = 0;
187  free(ma);
188#endif  // __APPLE__
189}
190
191TEST(AddressSanitizer, CallocTest) {
192  int *a = (int*)calloc(100, sizeof(int));
193  EXPECT_EQ(0, a[10]);
194  free(a);
195}
196
197TEST(AddressSanitizer, VallocTest) {
198  void *a = valloc(100);
199  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
200  free(a);
201}
202
203#ifndef __APPLE__
204TEST(AddressSanitizer, PvallocTest) {
205  char *a = (char*)pvalloc(kPageSize + 100);
206  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
207  a[kPageSize + 101] = 1;  // we should not report an error here.
208  free(a);
209
210  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
211  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
212  a[101] = 1;  // we should not report an error here.
213  free(a);
214}
215#endif  // __APPLE__
216
217void NoOpSignalHandler(int unused) {
218  fprintf(stderr, "NoOpSignalHandler (should not happen). Aborting\n");
219  abort();
220}
221
222void NoOpSigaction(int, siginfo_t *siginfo, void *context) {
223  fprintf(stderr, "NoOpSigaction (should not happen). Aborting\n");
224  abort();
225}
226
227TEST(AddressSanitizer, SignalTest) {
228  signal(SIGSEGV, NoOpSignalHandler);
229  signal(SIGILL, NoOpSignalHandler);
230  // If asan did not intercept sigaction NoOpSigaction will fire.
231  char *x = Ident((char*)malloc(5));
232  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
233  free(Ident(x));
234}
235
236TEST(AddressSanitizer, SigactionTest) {
237  {
238    struct sigaction sigact;
239    memset(&sigact, 0, sizeof(sigact));
240    sigact.sa_sigaction = NoOpSigaction;;
241    sigact.sa_flags = SA_SIGINFO;
242    sigaction(SIGSEGV, &sigact, 0);
243  }
244
245  {
246    struct sigaction sigact;
247    memset(&sigact, 0, sizeof(sigact));
248    sigact.sa_sigaction = NoOpSigaction;;
249    sigact.sa_flags = SA_SIGINFO;
250    sigaction(SIGILL, &sigact, 0);
251  }
252
253  // If asan did not intercept sigaction NoOpSigaction will fire.
254  char *x = Ident((char*)malloc(5));
255  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
256  free(Ident(x));
257}
258
259void *TSDWorker(void *test_key) {
260  if (test_key) {
261    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
262  }
263  return NULL;
264}
265
266void TSDDestructor(void *tsd) {
267  // Spawning a thread will check that the current thread id is not -1.
268  pthread_t th;
269  pthread_create(&th, NULL, TSDWorker, NULL);
270  pthread_join(th, NULL);
271}
272
273// This tests triggers the thread-specific data destruction fiasco which occurs
274// if we don't manage the TSD destructors ourselves. We create a new pthread
275// key with a non-NULL destructor which is likely to be put after the destructor
276// of AsanThread in the list of destructors.
277// In this case the TSD for AsanThread will be destroyed before TSDDestructor
278// is called for the child thread, and a CHECK will fail when we call
279// pthread_create() to spawn the grandchild.
280TEST(AddressSanitizer, DISABLED_TSDTest) {
281  pthread_t th;
282  pthread_key_t test_key;
283  pthread_key_create(&test_key, TSDDestructor);
284  pthread_create(&th, NULL, TSDWorker, &test_key);
285  pthread_join(th, NULL);
286  pthread_key_delete(test_key);
287}
288
289template<class T>
290void OOBTest() {
291  char expected_str[100];
292  for (int size = sizeof(T); size < 20; size += 5) {
293    for (int i = -5; i < 0; i++) {
294      const char *str =
295          "is located.*%d byte.*to the left";
296      sprintf(expected_str, str, abs(i));
297      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
298    }
299
300    for (int i = 0; i < size - sizeof(T) + 1; i++)
301      oob_test<T>(size, i);
302
303    for (int i = size - sizeof(T) + 1; i <= size + 3 * sizeof(T); i++) {
304      const char *str =
305          "is located.*%d byte.*to the right";
306      int off = i >= size ? (i - size) : 0;
307      // we don't catch unaligned partially OOB accesses.
308      if (i % sizeof(T)) continue;
309      sprintf(expected_str, str, off);
310      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
311    }
312  }
313
314  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
315          "is located.*1 byte.*to the left");
316  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
317          "is located.*0 byte.*to the right");
318}
319
320// TODO(glider): the following tests are EXTREMELY slow on Darwin:
321//   AddressSanitizer.OOB_char (125503 ms)
322//   AddressSanitizer.OOB_int (126890 ms)
323//   AddressSanitizer.OOBRightTest (315605 ms)
324//   AddressSanitizer.SimpleStackTest (366559 ms)
325
326TEST(AddressSanitizer, OOB_char) {
327  OOBTest<U1>();
328}
329
330TEST(AddressSanitizer, OOB_int) {
331  OOBTest<U4>();
332}
333
334TEST(AddressSanitizer, OOBRightTest) {
335  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
336    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
337      for (size_t offset = 0; offset <= 8; offset += access_size) {
338        void *p = malloc(alloc_size);
339        // allocated: [p, p + alloc_size)
340        // accessed:  [p + offset, p + offset + access_size)
341        uint8_t *addr = (uint8_t*)p + offset;
342        if (offset + access_size <= alloc_size) {
343          asan_write_sized_aligned(addr, access_size);
344        } else {
345          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
346          const char *str =
347              "is located.%d *byte.*to the right";
348          char expected_str[100];
349          sprintf(expected_str, str, outside_bytes);
350          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
351                       expected_str);
352        }
353        free(p);
354      }
355    }
356  }
357}
358
359TEST(AddressSanitizer, UAF_char) {
360  const char *uaf_string = "AddressSanitizer.*heap-use-after-free";
361  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
362  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
363  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
364  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
365  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
366}
367
368#if ASAN_HAS_BLACKLIST
369TEST(AddressSanitizer, IgnoreTest) {
370  int *x = Ident(new int);
371  delete Ident(x);
372  *x = 0;
373}
374#endif  // ASAN_HAS_BLACKLIST
375
376struct StructWithBitField {
377  int bf1:1;
378  int bf2:1;
379  int bf3:1;
380  int bf4:29;
381};
382
383TEST(AddressSanitizer, BitFieldPositiveTest) {
384  StructWithBitField *x = new StructWithBitField;
385  delete Ident(x);
386  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
387  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
388  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
389  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
390};
391
392struct StructWithBitFields_8_24 {
393  int a:8;
394  int b:24;
395};
396
397TEST(AddressSanitizer, BitFieldNegativeTest) {
398  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
399  x->a = 0;
400  x->b = 0;
401  delete Ident(x);
402}
403
404TEST(AddressSanitizer, OutOfMemoryTest) {
405  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
406  EXPECT_EQ(0, realloc(0, size));
407  EXPECT_EQ(0, realloc(0, ~Ident(0)));
408  EXPECT_EQ(0, malloc(size));
409  EXPECT_EQ(0, malloc(~Ident(0)));
410  EXPECT_EQ(0, calloc(1, size));
411  EXPECT_EQ(0, calloc(1, ~Ident(0)));
412}
413
414#if ASAN_NEEDS_SEGV
415TEST(AddressSanitizer, WildAddressTest) {
416  char *c = (char*)0x123;
417  EXPECT_DEATH(*c = 0, "AddressSanitizer crashed on unknown address");
418}
419#endif
420
421static void MallocStress(size_t n) {
422  uint32_t seed = my_rand(&global_seed);
423  for (size_t iter = 0; iter < 10; iter++) {
424    vector<void *> vec;
425    for (size_t i = 0; i < n; i++) {
426      if ((i % 3) == 0) {
427        if (vec.empty()) continue;
428        size_t idx = my_rand(&seed) % vec.size();
429        void *ptr = vec[idx];
430        vec[idx] = vec.back();
431        vec.pop_back();
432        free_aaa(ptr);
433      } else {
434        size_t size = my_rand(&seed) % 1000 + 1;
435#ifndef __APPLE__
436        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
437        char *ptr = (char*)memalign_aaa(alignment, size);
438#else
439        char *ptr = (char*) malloc_aaa(size);
440#endif
441        vec.push_back(ptr);
442        ptr[0] = 0;
443        ptr[size-1] = 0;
444        ptr[size/2] = 0;
445      }
446    }
447    for (size_t i = 0; i < vec.size(); i++)
448      free_aaa(vec[i]);
449  }
450}
451
452TEST(AddressSanitizer, MallocStressTest) {
453  MallocStress(200000);
454}
455
456static void TestLargeMalloc(size_t size) {
457  char buff[1024];
458  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
459  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
460}
461
462TEST(AddressSanitizer, LargeMallocTest) {
463  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
464    TestLargeMalloc(i);
465  }
466}
467
468TEST(AddressSanitizer, HugeMallocTest) {
469#ifdef __APPLE__
470  // It was empirically found out that 1215 megabytes is the maximum amount of
471  // memory available to the process under AddressSanitizer on Darwin.
472  // (the libSystem malloc() allows allocating up to 2300 megabytes without
473  // ASan).
474  size_t n_megs = __WORDSIZE == 32 ? 1200 : 4100;
475#else
476  size_t n_megs = __WORDSIZE == 32 ? 2600 : 4100;
477#endif
478  TestLargeMalloc(n_megs << 20);
479}
480
481TEST(AddressSanitizer, ThreadedMallocStressTest) {
482  const int kNumThreads = 4;
483  pthread_t t[kNumThreads];
484  for (int i = 0; i < kNumThreads; i++) {
485    pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress, (void*)100000);
486  }
487  for (int i = 0; i < kNumThreads; i++) {
488    pthread_join(t[i], 0);
489  }
490}
491
492void *ManyThreadsWorker(void *a) {
493  for (int iter = 0; iter < 100; iter++) {
494    for (size_t size = 100; size < 2000; size *= 2) {
495      free(Ident(malloc(size)));
496    }
497  }
498  return 0;
499}
500
501TEST(AddressSanitizer, ManyThreadsTest) {
502  const size_t kNumThreads = __WORDSIZE == 32 ? 30 : 1000;
503  pthread_t t[kNumThreads];
504  for (size_t i = 0; i < kNumThreads; i++) {
505    pthread_create(&t[i], 0, (void* (*)(void *x))ManyThreadsWorker, (void*)i);
506  }
507  for (size_t i = 0; i < kNumThreads; i++) {
508    pthread_join(t[i], 0);
509  }
510}
511
512TEST(AddressSanitizer, ReallocTest) {
513  const int kMinElem = 5;
514  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
515  ptr[3] = 3;
516  for (int i = 0; i < 10000; i++) {
517    ptr = (int*)realloc(ptr,
518        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
519    EXPECT_EQ(3, ptr[3]);
520  }
521}
522
523#ifndef __APPLE__
524static const char *kMallocUsableSizeErrorMsg =
525  "AddressSanitizer attempting to call malloc_usable_size()";
526
527TEST(AddressSanitizer, MallocUsableSizeTest) {
528  const size_t kArraySize = 100;
529  char *array = Ident((char*)malloc(kArraySize));
530  int *int_ptr = Ident(new int);
531  EXPECT_EQ(0, malloc_usable_size(NULL));
532  EXPECT_EQ(kArraySize, malloc_usable_size(array));
533  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
534  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
535  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
536               kMallocUsableSizeErrorMsg);
537  free(array);
538  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
539}
540#endif
541
542void WrongFree() {
543  int *x = (int*)malloc(100 * sizeof(int));
544  // Use the allocated memory, otherwise Clang will optimize it out.
545  Ident(x);
546  free(x + 1);
547}
548
549TEST(AddressSanitizer, WrongFreeTest) {
550  EXPECT_DEATH(WrongFree(),
551               "ERROR: AddressSanitizer attempting free.*not malloc");
552}
553
554void DoubleFree() {
555  int *x = (int*)malloc(100 * sizeof(int));
556  fprintf(stderr, "DoubleFree: x=%p\n", x);
557  free(x);
558  free(x);
559  fprintf(stderr, "should have failed in the second free(%p)\n", x);
560  abort();
561}
562
563TEST(AddressSanitizer, DoubleFreeTest) {
564  EXPECT_DEATH(DoubleFree(), "ERROR: AddressSanitizer attempting double-free");
565}
566
567template<int kSize>
568__attribute__((noinline))
569void SizedStackTest() {
570  char a[kSize];
571  char  *A = Ident((char*)&a);
572  for (size_t i = 0; i < kSize; i++)
573    A[i] = i;
574  EXPECT_DEATH(A[-1] = 0, "");
575  EXPECT_DEATH(A[-20] = 0, "");
576  EXPECT_DEATH(A[-31] = 0, "");
577  EXPECT_DEATH(A[kSize] = 0, "");
578  EXPECT_DEATH(A[kSize + 1] = 0, "");
579  EXPECT_DEATH(A[kSize + 10] = 0, "");
580  EXPECT_DEATH(A[kSize + 31] = 0, "");
581}
582
583TEST(AddressSanitizer, SimpleStackTest) {
584  SizedStackTest<1>();
585  SizedStackTest<2>();
586  SizedStackTest<3>();
587  SizedStackTest<4>();
588  SizedStackTest<5>();
589  SizedStackTest<6>();
590  SizedStackTest<7>();
591  SizedStackTest<16>();
592  SizedStackTest<25>();
593  SizedStackTest<34>();
594  SizedStackTest<43>();
595  SizedStackTest<51>();
596  SizedStackTest<62>();
597  SizedStackTest<64>();
598  SizedStackTest<128>();
599}
600
601TEST(AddressSanitizer, ManyStackObjectsTest) {
602  char XXX[10];
603  char YYY[20];
604  char ZZZ[30];
605  Ident(XXX);
606  Ident(YYY);
607  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
608}
609
610__attribute__((noinline))
611static void Frame0(int frame, char *a, char *b, char *c) {
612  char d[4] = {0};
613  char *D = Ident(d);
614  switch (frame) {
615    case 3: a[5]++; break;
616    case 2: b[5]++; break;
617    case 1: c[5]++; break;
618    case 0: D[5]++; break;
619  }
620}
621__attribute__((noinline)) static void Frame1(int frame, char *a, char *b) {
622  char c[4] = {0}; Frame0(frame, a, b, c);
623  break_optimization(0);
624}
625__attribute__((noinline)) static void Frame2(int frame, char *a) {
626  char b[4] = {0}; Frame1(frame, a, b);
627  break_optimization(0);
628}
629__attribute__((noinline)) static void Frame3(int frame) {
630  char a[4] = {0}; Frame2(frame, a);
631  break_optimization(0);
632}
633
634TEST(AddressSanitizer, GuiltyStackFrame0Test) {
635  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
636}
637TEST(AddressSanitizer, GuiltyStackFrame1Test) {
638  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
639}
640TEST(AddressSanitizer, GuiltyStackFrame2Test) {
641  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
642}
643TEST(AddressSanitizer, GuiltyStackFrame3Test) {
644  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
645}
646
647__attribute__((noinline))
648void LongJmpFunc1(jmp_buf buf) {
649  // create three red zones for these two stack objects.
650  int a;
651  int b;
652
653  int *A = Ident(&a);
654  int *B = Ident(&b);
655  *A = *B;
656  longjmp(buf, 1);
657}
658
659__attribute__((noinline))
660void UnderscopeLongJmpFunc1(jmp_buf buf) {
661  // create three red zones for these two stack objects.
662  int a;
663  int b;
664
665  int *A = Ident(&a);
666  int *B = Ident(&b);
667  *A = *B;
668  _longjmp(buf, 1);
669}
670
671__attribute__((noinline))
672void SigLongJmpFunc1(sigjmp_buf buf) {
673  // create three red zones for these two stack objects.
674  int a;
675  int b;
676
677  int *A = Ident(&a);
678  int *B = Ident(&b);
679  *A = *B;
680  siglongjmp(buf, 1);
681}
682
683
684__attribute__((noinline))
685void TouchStackFunc() {
686  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
687  int *A = Ident(a);
688  for (int i = 0; i < 100; i++)
689    A[i] = i*i;
690}
691
692// Test that we handle longjmp and do not report fals positives on stack.
693TEST(AddressSanitizer, LongJmpTest) {
694  static jmp_buf buf;
695  if (!setjmp(buf)) {
696    LongJmpFunc1(buf);
697  } else {
698    TouchStackFunc();
699  }
700}
701
702TEST(AddressSanitizer, UnderscopeLongJmpTest) {
703  static jmp_buf buf;
704  if (!_setjmp(buf)) {
705    UnderscopeLongJmpFunc1(buf);
706  } else {
707    TouchStackFunc();
708  }
709}
710
711TEST(AddressSanitizer, SigLongJmpTest) {
712  static sigjmp_buf buf;
713  if (!sigsetjmp(buf, 1)) {
714    SigLongJmpFunc1(buf);
715  } else {
716    TouchStackFunc();
717  }
718}
719
720#ifdef __EXCEPTIONS
721__attribute__((noinline))
722void ThrowFunc() {
723  // create three red zones for these two stack objects.
724  int a;
725  int b;
726
727  int *A = Ident(&a);
728  int *B = Ident(&b);
729  *A = *B;
730  ASAN_THROW(1);
731}
732
733TEST(AddressSanitizer, CxxExceptionTest) {
734  if (ASAN_UAR) return;
735  // TODO(kcc): this test crashes on 32-bit for some reason...
736  if (__WORDSIZE == 32) return;
737  try {
738    ThrowFunc();
739  } catch(...) {}
740  TouchStackFunc();
741}
742#endif
743
744void *ThreadStackReuseFunc1(void *unused) {
745  // create three red zones for these two stack objects.
746  int a;
747  int b;
748
749  int *A = Ident(&a);
750  int *B = Ident(&b);
751  *A = *B;
752  pthread_exit(0);
753  return 0;
754}
755
756void *ThreadStackReuseFunc2(void *unused) {
757  TouchStackFunc();
758  return 0;
759}
760
761TEST(AddressSanitizer, ThreadStackReuseTest) {
762  pthread_t t;
763  pthread_create(&t, 0, ThreadStackReuseFunc1, 0);
764  pthread_join(t, 0);
765  pthread_create(&t, 0, ThreadStackReuseFunc2, 0);
766  pthread_join(t, 0);
767}
768
769#if defined(__i386__) or defined(__x86_64__)
770TEST(AddressSanitizer, Store128Test) {
771  char *a = Ident((char*)malloc(Ident(12)));
772  char *p = a;
773  if (((uintptr_t)a % 16) != 0)
774    p = a + 8;
775  assert(((uintptr_t)p % 16) == 0);
776  __m128i value_wide = _mm_set1_epi16(0x1234);
777  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
778               "AddressSanitizer heap-buffer-overflow");
779  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
780               "WRITE of size 16");
781  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
782               "located 0 bytes to the right of 12-byte");
783  free(a);
784}
785#endif
786
787static string RightOOBErrorMessage(int oob_distance) {
788  assert(oob_distance >= 0);
789  char expected_str[100];
790  sprintf(expected_str, "located %d bytes to the right", oob_distance);
791  return string(expected_str);
792}
793
794static string LeftOOBErrorMessage(int oob_distance) {
795  assert(oob_distance > 0);
796  char expected_str[100];
797  sprintf(expected_str, "located %d bytes to the left", oob_distance);
798  return string(expected_str);
799}
800
801template<class T>
802void MemSetOOBTestTemplate(size_t length) {
803  if (length == 0) return;
804  size_t size = Ident(sizeof(T) * length);
805  T *array = Ident((T*)malloc(size));
806  int element = Ident(42);
807  int zero = Ident(0);
808  // memset interval inside array
809  memset(array, element, size);
810  memset(array, element, size - 1);
811  memset(array + length - 1, element, sizeof(T));
812  memset(array, element, 1);
813
814  // memset 0 bytes
815  memset(array - 10, element, zero);
816  memset(array - 1, element, zero);
817  memset(array, element, zero);
818  memset(array + length, 0, zero);
819  memset(array + length + 1, 0, zero);
820
821  // try to memset bytes to the right of array
822  EXPECT_DEATH(memset(array, 0, size + 1),
823               RightOOBErrorMessage(0));
824  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
825               RightOOBErrorMessage(4));
826  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
827               RightOOBErrorMessage(2 * sizeof(T) - 1));
828  // whole interval is to the right
829  EXPECT_DEATH(memset(array + length + 1, 0, 10),
830               RightOOBErrorMessage(sizeof(T)));
831
832  // try to memset bytes to the left of array
833  EXPECT_DEATH(memset((char*)array - 1, element, size),
834               LeftOOBErrorMessage(1));
835  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
836               LeftOOBErrorMessage(5));
837  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
838               LeftOOBErrorMessage(5 * sizeof(T)));
839  // whole interval is to the left
840  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
841               LeftOOBErrorMessage(2 * sizeof(T)));
842
843  // try to memset bytes both to the left & to the right
844  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
845               LeftOOBErrorMessage(2));
846
847  free(array);
848}
849
850TEST(AddressSanitizer, MemSetOOBTest) {
851  MemSetOOBTestTemplate<char>(100);
852  MemSetOOBTestTemplate<int>(5);
853  MemSetOOBTestTemplate<double>(256);
854  // We can test arrays of structres/classes here, but what for?
855}
856
857// Same test for memcpy and memmove functions
858template <class T, class M>
859void MemTransferOOBTestTemplate(size_t length) {
860  if (length == 0) return;
861  size_t size = Ident(sizeof(T) * length);
862  T *src = Ident((T*)malloc(size));
863  T *dest = Ident((T*)malloc(size));
864  int zero = Ident(0);
865
866  // valid transfer of bytes between arrays
867  M::transfer(dest, src, size);
868  M::transfer(dest + 1, src, size - sizeof(T));
869  M::transfer(dest, src + length - 1, sizeof(T));
870  M::transfer(dest, src, 1);
871
872  // transfer zero bytes
873  M::transfer(dest - 1, src, 0);
874  M::transfer(dest + length, src, zero);
875  M::transfer(dest, src - 1, zero);
876  M::transfer(dest, src, zero);
877
878  // try to change mem to the right of dest
879  EXPECT_DEATH(M::transfer(dest + 1, src, size),
880               RightOOBErrorMessage(sizeof(T) - 1));
881  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
882               RightOOBErrorMessage(3));
883
884  // try to change mem to the left of dest
885  EXPECT_DEATH(M::transfer(dest - 2, src, size),
886               LeftOOBErrorMessage(2 * sizeof(T)));
887  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
888               LeftOOBErrorMessage(3));
889
890  // try to access mem to the right of src
891  EXPECT_DEATH(M::transfer(dest, src + 2, size),
892               RightOOBErrorMessage(2 * sizeof(T) - 1));
893  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
894               RightOOBErrorMessage(2));
895
896  // try to access mem to the left of src
897  EXPECT_DEATH(M::transfer(dest, src - 1, size),
898               LeftOOBErrorMessage(sizeof(T)));
899  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
900               LeftOOBErrorMessage(6));
901
902  // Generally we don't need to test cases where both accessing src and writing
903  // to dest address to poisoned memory.
904
905  T *big_src = Ident((T*)malloc(size * 2));
906  T *big_dest = Ident((T*)malloc(size * 2));
907  // try to change mem to both sides of dest
908  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
909               LeftOOBErrorMessage(sizeof(T)));
910  // try to access mem to both sides of src
911  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
912               LeftOOBErrorMessage(2 * sizeof(T)));
913
914  free(src);
915  free(dest);
916  free(big_src);
917  free(big_dest);
918}
919
920class MemCpyWrapper {
921 public:
922  static void* transfer(void *to, const void *from, size_t size) {
923    return memcpy(to, from, size);
924  }
925};
926TEST(AddressSanitizer, MemCpyOOBTest) {
927  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
928  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
929}
930
931class MemMoveWrapper {
932 public:
933  static void* transfer(void *to, const void *from, size_t size) {
934    return memmove(to, from, size);
935  }
936};
937TEST(AddressSanitizer, MemMoveOOBTest) {
938  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
939  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
940}
941
942// Tests for string functions
943
944// Used for string functions tests
945static char global_string[] = "global";
946static size_t global_string_length = 6;
947
948// Input to a test is a zero-terminated string str with given length
949// Accesses to the bytes to the left and to the right of str
950// are presumed to produce OOB errors
951void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
952  // Normal strlen calls
953  EXPECT_EQ(strlen(str), length);
954  if (length > 0) {
955    EXPECT_EQ(strlen(str + 1), length - 1);
956    EXPECT_EQ(strlen(str + length), 0);
957  }
958  // Arg of strlen is not malloced, OOB access
959  if (!is_global) {
960    // We don't insert RedZones to the left of global variables
961    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
962    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
963  }
964  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
965  // Overwrite terminator
966  str[length] = 'a';
967  // String is not zero-terminated, strlen will lead to OOB access
968  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
969  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
970  // Restore terminator
971  str[length] = 0;
972}
973TEST(AddressSanitizer, StrLenOOBTest) {
974  // Check heap-allocated string
975  size_t length = Ident(10);
976  char *heap_string = Ident((char*)malloc(length + 1));
977  char stack_string[10 + 1];
978  for (int i = 0; i < length; i++) {
979    heap_string[i] = 'a';
980    stack_string[i] = 'b';
981  }
982  heap_string[length] = 0;
983  stack_string[length] = 0;
984  StrLenOOBTestTemplate(heap_string, length, false);
985  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
986  //      make test for stack_string work. Or move it to output tests.
987  // StrLenOOBTestTemplate(stack_string, length, false);
988  StrLenOOBTestTemplate(global_string, global_string_length, true);
989  free(heap_string);
990}
991
992static inline char* MallocAndMemsetString(size_t size) {
993  char *s = Ident((char*)malloc(size));
994  memset(s, 'z', size);
995  return s;
996}
997
998#ifndef __APPLE__
999TEST(AddressSanitizer, StrNLenOOBTest) {
1000  size_t size = Ident(123);
1001  char *str = MallocAndMemsetString(size);
1002  // Normal strnlen calls.
1003  Ident(strnlen(str - 1, 0));
1004  Ident(strnlen(str, size));
1005  Ident(strnlen(str + size - 1, 1));
1006  str[size - 1] = '\0';
1007  Ident(strnlen(str, 2 * size));
1008  // Argument points to not allocated memory.
1009  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
1010  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
1011  // Overwrite the terminating '\0' and hit unallocated memory.
1012  str[size - 1] = 'z';
1013  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
1014  free(str);
1015}
1016#endif
1017
1018TEST(AddressSanitizer, StrDupOOBTest) {
1019  size_t size = Ident(42);
1020  char *str = MallocAndMemsetString(size);
1021  char *new_str;
1022  // Normal strdup calls.
1023  str[size - 1] = '\0';
1024  new_str = strdup(str);
1025  free(new_str);
1026  new_str = strdup(str + size - 1);
1027  free(new_str);
1028  // Argument points to not allocated memory.
1029  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
1030  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
1031  // Overwrite the terminating '\0' and hit unallocated memory.
1032  str[size - 1] = 'z';
1033  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
1034  free(str);
1035}
1036
1037TEST(AddressSanitizer, StrCpyOOBTest) {
1038  size_t to_size = Ident(30);
1039  size_t from_size = Ident(6);  // less than to_size
1040  char *to = Ident((char*)malloc(to_size));
1041  char *from = Ident((char*)malloc(from_size));
1042  // Normal strcpy calls.
1043  strcpy(from, "hello");
1044  strcpy(to, from);
1045  strcpy(to + to_size - from_size, from);
1046  // Length of "from" is too small.
1047  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1048  // "to" or "from" points to not allocated memory.
1049  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1050  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1051  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1052  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1053  // Overwrite the terminating '\0' character and hit unallocated memory.
1054  from[from_size - 1] = '!';
1055  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1056  free(to);
1057  free(from);
1058}
1059
1060TEST(AddressSanitizer, StrNCpyOOBTest) {
1061  size_t to_size = Ident(20);
1062  size_t from_size = Ident(6);  // less than to_size
1063  char *to = Ident((char*)malloc(to_size));
1064  // From is a zero-terminated string "hello\0" of length 6
1065  char *from = Ident((char*)malloc(from_size));
1066  strcpy(from, "hello");
1067  // copy 0 bytes
1068  strncpy(to, from, 0);
1069  strncpy(to - 1, from - 1, 0);
1070  // normal strncpy calls
1071  strncpy(to, from, from_size);
1072  strncpy(to, from, to_size);
1073  strncpy(to, from + from_size - 1, to_size);
1074  strncpy(to + to_size - 1, from, 1);
1075  // One of {to, from} points to not allocated memory
1076  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1077               LeftOOBErrorMessage(1));
1078  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1079               LeftOOBErrorMessage(1));
1080  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1081               RightOOBErrorMessage(0));
1082  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1083               RightOOBErrorMessage(0));
1084  // Length of "to" is too small
1085  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1086               RightOOBErrorMessage(0));
1087  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1088               RightOOBErrorMessage(0));
1089  // Overwrite terminator in from
1090  from[from_size - 1] = '!';
1091  // normal strncpy call
1092  strncpy(to, from, from_size);
1093  // Length of "from" is too small
1094  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1095               RightOOBErrorMessage(0));
1096  free(to);
1097  free(from);
1098}
1099
1100typedef char*(*PointerToStrChr)(const char*, int);
1101void RunStrChrTest(PointerToStrChr StrChr) {
1102  size_t size = Ident(100);
1103  char *str = MallocAndMemsetString(size);
1104  str[10] = 'q';
1105  str[11] = '\0';
1106  EXPECT_EQ(str, StrChr(str, 'z'));
1107  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1108  EXPECT_EQ(NULL, StrChr(str, 'a'));
1109  // StrChr argument points to not allocated memory.
1110  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1111  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1112  // Overwrite the terminator and hit not allocated memory.
1113  str[11] = 'z';
1114  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1115  free(str);
1116}
1117TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1118  RunStrChrTest(&strchr);
1119  RunStrChrTest(&index);
1120}
1121
1122TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1123  // strcmp
1124  EXPECT_EQ(0, strcmp("", ""));
1125  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1126  EXPECT_GT(0, strcmp("ab", "ac"));
1127  EXPECT_GT(0, strcmp("abc", "abcd"));
1128  EXPECT_LT(0, strcmp("acc", "abc"));
1129  EXPECT_LT(0, strcmp("abcd", "abc"));
1130
1131  // strncmp
1132  EXPECT_EQ(0, strncmp("a", "b", 0));
1133  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1134  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1135  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1136  EXPECT_GT(0, strncmp("a", "b", 5));
1137  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1138  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1139  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1140  EXPECT_LT(0, strncmp("zyx", "", 2));
1141
1142  // strcasecmp
1143  EXPECT_EQ(0, strcasecmp("", ""));
1144  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1145  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1146  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1147  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1148  EXPECT_LT(0, strcasecmp("acc", "abc"));
1149  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1150
1151  // strncasecmp
1152  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1153  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1154  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1155  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1156  EXPECT_GT(0, strncasecmp("a", "B", 5));
1157  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1158  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1159  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1160  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1161
1162  // memcmp
1163  EXPECT_EQ(0, memcmp("a", "b", 0));
1164  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1165  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1166  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1167  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1168  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1169}
1170
1171typedef int(*PointerToStrCmp)(const char*, const char*);
1172void RunStrCmpTest(PointerToStrCmp StrCmp) {
1173  size_t size = Ident(100);
1174  char *s1 = MallocAndMemsetString(size);
1175  char *s2 = MallocAndMemsetString(size);
1176  s1[size - 1] = '\0';
1177  s2[size - 1] = '\0';
1178  // Normal StrCmp calls
1179  Ident(StrCmp(s1, s2));
1180  Ident(StrCmp(s1, s2 + size - 1));
1181  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1182  s1[size - 1] = 'z';
1183  s2[size - 1] = 'x';
1184  Ident(StrCmp(s1, s2));
1185  // One of arguments points to not allocated memory.
1186  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1187  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1188  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1189  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1190  // Hit unallocated memory and die.
1191  s2[size - 1] = 'z';
1192  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1193  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1194  free(s1);
1195  free(s2);
1196}
1197
1198TEST(AddressSanitizer, StrCmpOOBTest) {
1199  RunStrCmpTest(&strcmp);
1200}
1201
1202TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1203  RunStrCmpTest(&strcasecmp);
1204}
1205
1206typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1207void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1208  size_t size = Ident(100);
1209  char *s1 = MallocAndMemsetString(size);
1210  char *s2 = MallocAndMemsetString(size);
1211  s1[size - 1] = '\0';
1212  s2[size - 1] = '\0';
1213  // Normal StrNCmp calls
1214  Ident(StrNCmp(s1, s2, size + 2));
1215  s1[size - 1] = 'z';
1216  s2[size - 1] = 'x';
1217  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1218  s2[size - 1] = 'z';
1219  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1220  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1221  // One of arguments points to not allocated memory.
1222  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1223  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1224  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1225  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1226  // Hit unallocated memory and die.
1227  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1228  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1229  free(s1);
1230  free(s2);
1231}
1232
1233TEST(AddressSanitizer, StrNCmpOOBTest) {
1234  RunStrNCmpTest(&strncmp);
1235}
1236
1237TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1238  RunStrNCmpTest(&strncasecmp);
1239}
1240
1241TEST(AddressSanitizer, MemCmpOOBTest) {
1242  size_t size = Ident(100);
1243  char *s1 = MallocAndMemsetString(size);
1244  char *s2 = MallocAndMemsetString(size);
1245  // Normal memcmp calls.
1246  Ident(memcmp(s1, s2, size));
1247  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1248  Ident(memcmp(s1 - 1, s2 - 1, 0));
1249  // One of arguments points to not allocated memory.
1250  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1251  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1252  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1253  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1254  // Hit unallocated memory and die.
1255  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1256  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1257  // Zero bytes are not terminators and don't prevent from OOB.
1258  s1[size - 1] = '\0';
1259  s2[size - 1] = '\0';
1260  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1261  free(s1);
1262  free(s2);
1263}
1264
1265TEST(AddressSanitizer, StrCatOOBTest) {
1266  size_t to_size = Ident(100);
1267  char *to = MallocAndMemsetString(to_size);
1268  to[0] = '\0';
1269  size_t from_size = Ident(20);
1270  char *from = MallocAndMemsetString(from_size);
1271  from[from_size - 1] = '\0';
1272  // Normal strcat calls.
1273  strcat(to, from);
1274  strcat(to, from);
1275  strcat(to + from_size, from + from_size - 2);
1276  // Catenate empty string is not always an error.
1277  strcat(to - 1, from + from_size - 1);
1278  // One of arguments points to not allocated memory.
1279  EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1280  EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1281  EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1282  EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1283
1284  // "from" is not zero-terminated.
1285  from[from_size - 1] = 'z';
1286  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1287  from[from_size - 1] = '\0';
1288  // "to" is not zero-terminated.
1289  memset(to, 'z', to_size);
1290  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1291  // "to" is too short to fit "from".
1292  to[to_size - from_size + 1] = '\0';
1293  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1294  // length of "to" is just enough.
1295  strcat(to, from + 1);
1296}
1297
1298static string OverlapErrorMessage(const string &func) {
1299  return func + "-param-overlap";
1300}
1301
1302TEST(AddressSanitizer, StrArgsOverlapTest) {
1303  size_t size = Ident(100);
1304  char *str = Ident((char*)malloc(size));
1305
1306  // Check "memcpy". Use Ident() to avoid inlining.
1307  memset(str, 'z', size);
1308  Ident(memcpy)(str + 1, str + 11, 10);
1309  Ident(memcpy)(str, str, 0);
1310  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1311  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1312  EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1313               OverlapErrorMessage("memcpy"));
1314
1315  // Check "strcpy".
1316  memset(str, 'z', size);
1317  str[9] = '\0';
1318  strcpy(str + 10, str);
1319  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1320  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1321  strcpy(str, str + 5);
1322
1323  // Check "strncpy".
1324  memset(str, 'z', size);
1325  strncpy(str, str + 10, 10);
1326  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1327  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1328  str[10] = '\0';
1329  strncpy(str + 11, str, 20);
1330  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1331
1332  // Check "strcat".
1333  memset(str, 'z', size);
1334  str[10] = '\0';
1335  str[20] = '\0';
1336  strcat(str, str + 10);
1337  strcat(str, str + 11);
1338  str[10] = '\0';
1339  strcat(str + 11, str);
1340  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1341  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1342  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1343
1344  free(str);
1345}
1346
1347// At the moment we instrument memcpy/memove/memset calls at compile time so we
1348// can't handle OOB error if these functions are called by pointer, see disabled
1349// MemIntrinsicCallByPointerTest below
1350typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1351typedef void*(*PointerToMemSet)(void*, int, size_t);
1352
1353void CallMemSetByPointer(PointerToMemSet MemSet) {
1354  size_t size = Ident(100);
1355  char *array = Ident((char*)malloc(size));
1356  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1357  free(array);
1358}
1359
1360void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1361  size_t size = Ident(100);
1362  char *src = Ident((char*)malloc(size));
1363  char *dst = Ident((char*)malloc(size));
1364  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1365  free(src);
1366  free(dst);
1367}
1368
1369TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1370  CallMemSetByPointer(&memset);
1371  CallMemTransferByPointer(&memcpy);
1372  CallMemTransferByPointer(&memmove);
1373}
1374
1375// This test case fails
1376// Clang optimizes memcpy/memset calls which lead to unaligned access
1377TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1378  int size = Ident(4096);
1379  char *s = Ident((char*)malloc(size));
1380  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1381  free(s);
1382}
1383
1384// TODO(samsonov): Add a test with malloc(0)
1385// TODO(samsonov): Add tests for str* and mem* functions.
1386
1387__attribute__((noinline))
1388static int LargeFunction(bool do_bad_access) {
1389  int *x = new int[100];
1390  x[0]++;
1391  x[1]++;
1392  x[2]++;
1393  x[3]++;
1394  x[4]++;
1395  x[5]++;
1396  x[6]++;
1397  x[7]++;
1398  x[8]++;
1399  x[9]++;
1400
1401  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1402
1403  x[10]++;
1404  x[11]++;
1405  x[12]++;
1406  x[13]++;
1407  x[14]++;
1408  x[15]++;
1409  x[16]++;
1410  x[17]++;
1411  x[18]++;
1412  x[19]++;
1413
1414  delete x;
1415  return res;
1416}
1417
1418// Test the we have correct debug info for the failing instruction.
1419// This test requires the in-process symbolizer to be enabled by default.
1420TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1421  int failing_line = LargeFunction(false);
1422  char expected_warning[128];
1423  sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1424  EXPECT_DEATH(LargeFunction(true), expected_warning);
1425}
1426
1427// Check that we unwind and symbolize correctly.
1428TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1429  int *a = (int*)malloc_aaa(sizeof(int));
1430  *a = 1;
1431  free_aaa(a);
1432  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1433               "malloc_fff.*malloc_eee.*malloc_ddd");
1434}
1435
1436void *ThreadedTestAlloc(void *a) {
1437  int **p = (int**)a;
1438  *p = new int;
1439  return 0;
1440}
1441
1442void *ThreadedTestFree(void *a) {
1443  int **p = (int**)a;
1444  delete *p;
1445  return 0;
1446}
1447
1448void *ThreadedTestUse(void *a) {
1449  int **p = (int**)a;
1450  **p = 1;
1451  return 0;
1452}
1453
1454void ThreadedTestSpawn() {
1455  pthread_t t;
1456  int *x;
1457  pthread_create(&t, 0, ThreadedTestAlloc, &x);
1458  pthread_join(t, 0);
1459  pthread_create(&t, 0, ThreadedTestFree, &x);
1460  pthread_join(t, 0);
1461  pthread_create(&t, 0, ThreadedTestUse, &x);
1462  pthread_join(t, 0);
1463}
1464
1465TEST(AddressSanitizer, ThreadedTest) {
1466  EXPECT_DEATH(ThreadedTestSpawn(),
1467               ASAN_PCRE_DOTALL
1468               "Thread T.*created"
1469               ".*Thread T.*created"
1470               ".*Thread T.*created");
1471}
1472
1473#if ASAN_NEEDS_SEGV
1474TEST(AddressSanitizer, ShadowGapTest) {
1475#if __WORDSIZE == 32
1476  char *addr = (char*)0x22000000;
1477#else
1478  char *addr = (char*)0x0000100000080000;
1479#endif
1480  EXPECT_DEATH(*addr = 1, "AddressSanitizer crashed on unknown");
1481}
1482#endif  // ASAN_NEEDS_SEGV
1483
1484extern "C" {
1485__attribute__((noinline))
1486static void UseThenFreeThenUse() {
1487  char *x = Ident((char*)malloc(8));
1488  *x = 1;
1489  free_aaa(x);
1490  *x = 2;
1491}
1492}
1493
1494TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1495  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1496}
1497
1498TEST(AddressSanitizer, StrDupTest) {
1499  free(strdup(Ident("123")));
1500}
1501
1502// Currently we create and poison redzone at right of global variables.
1503char glob5[5];
1504static char static110[110];
1505const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1506static const char StaticConstGlob[3] = {9, 8, 7};
1507extern int GlobalsTest(int x);
1508
1509TEST(AddressSanitizer, GlobalTest) {
1510  static char func_static15[15];
1511
1512  static char fs1[10];
1513  static char fs2[10];
1514  static char fs3[10];
1515
1516  glob5[Ident(0)] = 0;
1517  glob5[Ident(1)] = 0;
1518  glob5[Ident(2)] = 0;
1519  glob5[Ident(3)] = 0;
1520  glob5[Ident(4)] = 0;
1521
1522  EXPECT_DEATH(glob5[Ident(5)] = 0,
1523               "0 bytes to the right of global variable.*glob5.* size 5");
1524  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1525               "6 bytes to the right of global variable.*glob5.* size 5");
1526  Ident(static110);  // avoid optimizations
1527  static110[Ident(0)] = 0;
1528  static110[Ident(109)] = 0;
1529  EXPECT_DEATH(static110[Ident(110)] = 0,
1530               "0 bytes to the right of global variable");
1531  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1532               "7 bytes to the right of global variable");
1533
1534  Ident(func_static15);  // avoid optimizations
1535  func_static15[Ident(0)] = 0;
1536  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1537               "0 bytes to the right of global variable");
1538  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1539               "9 bytes to the right of global variable");
1540
1541  Ident(fs1);
1542  Ident(fs2);
1543  Ident(fs3);
1544
1545  // We don't create left redzones, so this is not 100% guaranteed to fail.
1546  // But most likely will.
1547  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1548
1549  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1550               "is located 1 bytes to the right of .*ConstGlob");
1551  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1552               "is located 2 bytes to the right of .*StaticConstGlob");
1553
1554  // call stuff from another file.
1555  GlobalsTest(0);
1556}
1557
1558TEST(AddressSanitizer, GlobalStringConstTest) {
1559  static const char *zoo = "FOOBAR123";
1560  const char *p = Ident(zoo);
1561  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1562}
1563
1564TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1565  static char zoo[10];
1566  const char *p = Ident(zoo);
1567  // The file name should be present in the report.
1568  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1569}
1570
1571int *ReturnsPointerToALocalObject() {
1572  int a = 0;
1573  return Ident(&a);
1574}
1575
1576#if ASAN_UAR == 1
1577TEST(AddressSanitizer, LocalReferenceReturnTest) {
1578  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1579  int *p = f();
1580  // Call 'f' a few more times, 'p' should still be poisoned.
1581  for (int i = 0; i < 32; i++)
1582    f();
1583  EXPECT_DEATH(*p = 1, "AddressSanitizer stack-use-after-return");
1584  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1585}
1586#endif
1587
1588template <int kSize>
1589__attribute__((noinline))
1590static void FuncWithStack() {
1591  char x[kSize];
1592  Ident(x)[0] = 0;
1593  Ident(x)[kSize-1] = 0;
1594}
1595
1596static void LotsOfStackReuse() {
1597  int LargeStack[10000];
1598  Ident(LargeStack)[0] = 0;
1599  for (int i = 0; i < 10000; i++) {
1600    FuncWithStack<128 * 1>();
1601    FuncWithStack<128 * 2>();
1602    FuncWithStack<128 * 4>();
1603    FuncWithStack<128 * 8>();
1604    FuncWithStack<128 * 16>();
1605    FuncWithStack<128 * 32>();
1606    FuncWithStack<128 * 64>();
1607    FuncWithStack<128 * 128>();
1608    FuncWithStack<128 * 256>();
1609    FuncWithStack<128 * 512>();
1610    Ident(LargeStack)[0] = 0;
1611  }
1612}
1613
1614TEST(AddressSanitizer, StressStackReuseTest) {
1615  LotsOfStackReuse();
1616}
1617
1618TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1619  const int kNumThreads = 20;
1620  pthread_t t[kNumThreads];
1621  for (int i = 0; i < kNumThreads; i++) {
1622    pthread_create(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1623  }
1624  for (int i = 0; i < kNumThreads; i++) {
1625    pthread_join(t[i], 0);
1626  }
1627}
1628
1629#ifdef __EXCEPTIONS
1630__attribute__((noinline))
1631static void StackReuseAndException() {
1632  int large_stack[1000];
1633  Ident(large_stack);
1634  ASAN_THROW(1);
1635}
1636
1637// TODO(kcc): support exceptions with use-after-return.
1638TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1639  for (int i = 0; i < 10000; i++) {
1640    try {
1641    StackReuseAndException();
1642    } catch(...) {
1643    }
1644  }
1645}
1646#endif
1647
1648TEST(AddressSanitizer, MlockTest) {
1649  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1650  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1651  EXPECT_EQ(0, munlockall());
1652  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1653}
1654
1655// ------------------ demo tests; run each one-by-one -------------
1656// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1657TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1658  ThreadedTestSpawn();
1659}
1660
1661void *SimpleBugOnSTack(void *x = 0) {
1662  char a[20];
1663  Ident(a)[20] = 0;
1664  return 0;
1665}
1666
1667TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1668  SimpleBugOnSTack();
1669}
1670
1671TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1672  pthread_t t;
1673  pthread_create(&t, 0, SimpleBugOnSTack, 0);
1674  pthread_join(t, 0);
1675}
1676
1677TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1678  uaf_test<U1>(10, 0);
1679}
1680TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1681  uaf_test<U1>(10, -2);
1682}
1683TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1684  uaf_test<U1>(10, 10);
1685}
1686
1687TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1688  uaf_test<U1>(kLargeMalloc, 0);
1689}
1690
1691TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1692  oob_test<U1>(10, -1);
1693}
1694
1695TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1696  oob_test<U1>(kLargeMalloc, -1);
1697}
1698
1699TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1700  oob_test<U1>(10, 10);
1701}
1702
1703TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1704  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1705}
1706
1707TEST(AddressSanitizer, DISABLED_DemoOOM) {
1708  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1709  printf("%p\n", malloc(size));
1710}
1711
1712TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1713  DoubleFree();
1714}
1715
1716TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1717  int *a = 0;
1718  Ident(a)[10] = 0;
1719}
1720
1721TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1722  static char a[100];
1723  static char b[100];
1724  static char c[100];
1725  Ident(a);
1726  Ident(b);
1727  Ident(c);
1728  Ident(a)[5] = 0;
1729  Ident(b)[105] = 0;
1730  Ident(a)[5] = 0;
1731}
1732
1733TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1734  const size_t kAllocSize = (1 << 28) - 1024;
1735  size_t total_size = 0;
1736  while (true) {
1737    char *x = (char*)malloc(kAllocSize);
1738    memset(x, 0, kAllocSize);
1739    total_size += kAllocSize;
1740    fprintf(stderr, "total: %ldM\n", (long)total_size >> 20);
1741  }
1742}
1743
1744#ifdef __APPLE__
1745#include "asan_mac_test.h"
1746// TODO(glider): figure out whether we still need these tests. Is it correct
1747// to intercept CFAllocator?
1748TEST(AddressSanitizerMac, DISABLED_CFAllocatorDefaultDoubleFree) {
1749  EXPECT_DEATH(
1750      CFAllocatorDefaultDoubleFree(),
1751      "attempting double-free");
1752}
1753
1754TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
1755  EXPECT_DEATH(
1756      CFAllocatorSystemDefaultDoubleFree(),
1757      "attempting double-free");
1758}
1759
1760TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocDoubleFree) {
1761  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
1762}
1763
1764TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
1765  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
1766}
1767
1768TEST(AddressSanitizerMac, GCDDispatchAsync) {
1769  // Make sure the whole ASan report is printed, i.e. that we don't die
1770  // on a CHECK.
1771  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
1772}
1773
1774TEST(AddressSanitizerMac, GCDDispatchSync) {
1775  // Make sure the whole ASan report is printed, i.e. that we don't die
1776  // on a CHECK.
1777  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
1778}
1779
1780
1781TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
1782  // Make sure the whole ASan report is printed, i.e. that we don't die
1783  // on a CHECK.
1784  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
1785}
1786
1787TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
1788  // Make sure the whole ASan report is printed, i.e. that we don't die
1789  // on a CHECK.
1790  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
1791}
1792
1793TEST(AddressSanitizerMac, GCDDispatchAfter) {
1794  // Make sure the whole ASan report is printed, i.e. that we don't die
1795  // on a CHECK.
1796  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
1797}
1798
1799TEST(AddressSanitizerMac, GCDSourceEvent) {
1800  // Make sure the whole ASan report is printed, i.e. that we don't die
1801  // on a CHECK.
1802  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
1803}
1804
1805TEST(AddressSanitizerMac, GCDSourceCancel) {
1806  // Make sure the whole ASan report is printed, i.e. that we don't die
1807  // on a CHECK.
1808  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
1809}
1810
1811TEST(AddressSanitizerMac, GCDGroupAsync) {
1812  // Make sure the whole ASan report is printed, i.e. that we don't die
1813  // on a CHECK.
1814  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
1815}
1816
1817void *MallocIntrospectionLockWorker(void *_) {
1818  const int kNumPointers = 100;
1819  int i;
1820  void *pointers[kNumPointers];
1821  for (i = 0; i < kNumPointers; i++) {
1822    pointers[i] = malloc(i + 1);
1823  }
1824  for (i = 0; i < kNumPointers; i++) {
1825    free(pointers[i]);
1826  }
1827
1828  return NULL;
1829}
1830
1831void *MallocIntrospectionLockForker(void *_) {
1832  pid_t result = fork();
1833  if (result == -1) {
1834    perror("fork");
1835  }
1836  assert(result != -1);
1837  if (result == 0) {
1838    // Call malloc in the child process to make sure we won't deadlock.
1839    void *ptr = malloc(42);
1840    free(ptr);
1841    exit(0);
1842  } else {
1843    // Return in the parent process.
1844    return NULL;
1845  }
1846}
1847
1848TEST(AddressSanitizerMac, MallocIntrospectionLock) {
1849  // Incorrect implementation of force_lock and force_unlock in our malloc zone
1850  // will cause forked processes to deadlock.
1851  // TODO(glider): need to detect that none of the child processes deadlocked.
1852  const int kNumWorkers = 5, kNumIterations = 100;
1853  int i, iter;
1854  for (iter = 0; iter < kNumIterations; iter++) {
1855    pthread_t workers[kNumWorkers], forker;
1856    for (i = 0; i < kNumWorkers; i++) {
1857      pthread_create(&workers[i], 0, MallocIntrospectionLockWorker, 0);
1858    }
1859    pthread_create(&forker, 0, MallocIntrospectionLockForker, 0);
1860    for (i = 0; i < kNumWorkers; i++) {
1861      pthread_join(workers[i], 0);
1862    }
1863    pthread_join(forker, 0);
1864  }
1865}
1866
1867void *TSDAllocWorker(void *test_key) {
1868  if (test_key) {
1869    void *mem = malloc(10);
1870    pthread_setspecific(*(pthread_key_t*)test_key, mem);
1871  }
1872  return NULL;
1873}
1874
1875TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
1876  pthread_t th;
1877  pthread_key_t test_key;
1878  pthread_key_create(&test_key, CallFreeOnWorkqueue);
1879  pthread_create(&th, NULL, TSDAllocWorker, &test_key);
1880  pthread_join(th, NULL);
1881  pthread_key_delete(test_key);
1882}
1883#endif  // __APPLE__
1884
1885int main(int argc, char **argv) {
1886  progname = argv[0];
1887  testing::GTEST_FLAG(death_test_style) = "threadsafe";
1888  testing::InitGoogleTest(&argc, argv);
1889  return RUN_ALL_TESTS();
1890}
1891