asan_test.cc revision 5b6eab9dc5572a66e3af54ab087255ffa4dd5185
1//===-- asan_test.cc ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22
23#if defined(__i386__) or defined(__x86_64__)
24#include <emmintrin.h>
25#endif
26
27#include "asan_test_config.h"
28#include "asan_test_utils.h"
29
30#ifndef __APPLE__
31#include <malloc.h>
32#else
33#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
34#include <CoreFoundation/CFString.h>
35#endif  // __APPLE__
36
37#ifdef __APPLE__
38static bool APPLE = true;
39#else
40static bool APPLE = false;
41#endif
42
43#if ASAN_HAS_EXCEPTIONS
44# define ASAN_THROW(x) throw (x)
45#else
46# define ASAN_THROW(x)
47#endif
48
49#include <sys/mman.h>
50
51typedef uint8_t   U1;
52typedef uint16_t  U2;
53typedef uint32_t  U4;
54typedef uint64_t  U8;
55
56static const char *progname;
57static const int kPageSize = 4096;
58
59// Simple stand-alone pseudorandom number generator.
60// Current algorithm is ANSI C linear congruential PRNG.
61static inline uint32_t my_rand(uint32_t* state) {
62  return (*state = *state * 1103515245 + 12345) >> 16;
63}
64
65static uint32_t global_seed = 0;
66
67const size_t kLargeMalloc = 1 << 24;
68
69template<class T>
70__attribute__((noinline))
71void asan_write(T *a) {
72  *a = 0;
73}
74
75__attribute__((noinline))
76void asan_write_sized_aligned(uint8_t *p, size_t size) {
77  EXPECT_EQ(0, ((uintptr_t)p % size));
78  if      (size == 1) asan_write((uint8_t*)p);
79  else if (size == 2) asan_write((uint16_t*)p);
80  else if (size == 4) asan_write((uint32_t*)p);
81  else if (size == 8) asan_write((uint64_t*)p);
82}
83
84__attribute__((noinline)) void *malloc_fff(size_t size) {
85  void *res = malloc/**/(size); break_optimization(0); return res;}
86__attribute__((noinline)) void *malloc_eee(size_t size) {
87  void *res = malloc_fff(size); break_optimization(0); return res;}
88__attribute__((noinline)) void *malloc_ddd(size_t size) {
89  void *res = malloc_eee(size); break_optimization(0); return res;}
90__attribute__((noinline)) void *malloc_ccc(size_t size) {
91  void *res = malloc_ddd(size); break_optimization(0); return res;}
92__attribute__((noinline)) void *malloc_bbb(size_t size) {
93  void *res = malloc_ccc(size); break_optimization(0); return res;}
94__attribute__((noinline)) void *malloc_aaa(size_t size) {
95  void *res = malloc_bbb(size); break_optimization(0); return res;}
96
97#ifndef __APPLE__
98__attribute__((noinline)) void *memalign_fff(size_t alignment, size_t size) {
99  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
100__attribute__((noinline)) void *memalign_eee(size_t alignment, size_t size) {
101  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
102__attribute__((noinline)) void *memalign_ddd(size_t alignment, size_t size) {
103  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
104__attribute__((noinline)) void *memalign_ccc(size_t alignment, size_t size) {
105  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
106__attribute__((noinline)) void *memalign_bbb(size_t alignment, size_t size) {
107  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
108__attribute__((noinline)) void *memalign_aaa(size_t alignment, size_t size) {
109  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
110#endif  // __APPLE__
111
112
113__attribute__((noinline))
114  void free_ccc(void *p) { free(p); break_optimization(0);}
115__attribute__((noinline))
116  void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
117__attribute__((noinline))
118  void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
119
120template<class T>
121__attribute__((noinline))
122void oob_test(int size, int off) {
123  char *p = (char*)malloc_aaa(size);
124  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
125  //        sizeof(T), p, p + size, off);
126  asan_write((T*)(p + off));
127  free_aaa(p);
128}
129
130
131template<class T>
132__attribute__((noinline))
133void uaf_test(int size, int off) {
134  char *p = (char *)malloc_aaa(size);
135  free_aaa(p);
136  for (int i = 1; i < 100; i++)
137    free_aaa(malloc_aaa(i));
138  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
139          (long)sizeof(T), p, off);
140  asan_write((T*)(p + off));
141}
142
143TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
144#if defined(__has_feature) && __has_feature(address_sanitizer)
145  bool asan = 1;
146#else
147  bool asan = 0;
148#endif
149  EXPECT_EQ(true, asan);
150}
151
152TEST(AddressSanitizer, SimpleDeathTest) {
153  EXPECT_DEATH(exit(1), "");
154}
155
156TEST(AddressSanitizer, VariousMallocsTest) {
157  // fprintf(stderr, "malloc:\n");
158  int *a = (int*)malloc(100 * sizeof(int));
159  a[50] = 0;
160  free(a);
161
162  // fprintf(stderr, "realloc:\n");
163  int *r = (int*)malloc(10);
164  r = (int*)realloc(r, 2000 * sizeof(int));
165  r[1000] = 0;
166  free(r);
167
168  // fprintf(stderr, "operator new []\n");
169  int *b = new int[100];
170  b[50] = 0;
171  delete [] b;
172
173  // fprintf(stderr, "operator new\n");
174  int *c = new int;
175  *c = 0;
176  delete c;
177
178#if !defined(__APPLE__) && !defined(ANDROID)
179  // fprintf(stderr, "posix_memalign\n");
180  int *pm;
181  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
182  EXPECT_EQ(0, pm_res);
183  free(pm);
184#endif
185
186#if !defined(__APPLE__)
187  int *ma = (int*)memalign(kPageSize, kPageSize);
188  EXPECT_EQ(0, (uintptr_t)ma % kPageSize);
189  ma[123] = 0;
190  free(ma);
191#endif  // __APPLE__
192}
193
194TEST(AddressSanitizer, CallocTest) {
195  int *a = (int*)calloc(100, sizeof(int));
196  EXPECT_EQ(0, a[10]);
197  free(a);
198}
199
200TEST(AddressSanitizer, VallocTest) {
201  void *a = valloc(100);
202  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
203  free(a);
204}
205
206#ifndef __APPLE__
207TEST(AddressSanitizer, PvallocTest) {
208  char *a = (char*)pvalloc(kPageSize + 100);
209  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
210  a[kPageSize + 101] = 1;  // we should not report an error here.
211  free(a);
212
213  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
214  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
215  a[101] = 1;  // we should not report an error here.
216  free(a);
217}
218#endif  // __APPLE__
219
220void NoOpSignalHandler(int unused) {
221  fprintf(stderr, "NoOpSignalHandler (should not happen). Aborting\n");
222  abort();
223}
224
225void NoOpSigaction(int, siginfo_t *siginfo, void *context) {
226  fprintf(stderr, "NoOpSigaction (should not happen). Aborting\n");
227  abort();
228}
229
230TEST(AddressSanitizer, SignalTest) {
231  signal(SIGSEGV, NoOpSignalHandler);
232  signal(SIGILL, NoOpSignalHandler);
233  // If asan did not intercept sigaction NoOpSigaction will fire.
234  char *x = Ident((char*)malloc(5));
235  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
236  free(Ident(x));
237}
238
239TEST(AddressSanitizer, SigactionTest) {
240  {
241    struct sigaction sigact;
242    memset(&sigact, 0, sizeof(sigact));
243    sigact.sa_sigaction = NoOpSigaction;;
244    sigact.sa_flags = SA_SIGINFO;
245    sigaction(SIGSEGV, &sigact, 0);
246  }
247
248  {
249    struct sigaction sigact;
250    memset(&sigact, 0, sizeof(sigact));
251    sigact.sa_sigaction = NoOpSigaction;;
252    sigact.sa_flags = SA_SIGINFO;
253    sigaction(SIGILL, &sigact, 0);
254  }
255
256  // If asan did not intercept sigaction NoOpSigaction will fire.
257  char *x = Ident((char*)malloc(5));
258  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
259  free(Ident(x));
260}
261
262void *TSDWorker(void *test_key) {
263  if (test_key) {
264    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
265  }
266  return NULL;
267}
268
269void TSDDestructor(void *tsd) {
270  // Spawning a thread will check that the current thread id is not -1.
271  pthread_t th;
272  pthread_create(&th, NULL, TSDWorker, NULL);
273  pthread_join(th, NULL);
274}
275
276// This tests triggers the thread-specific data destruction fiasco which occurs
277// if we don't manage the TSD destructors ourselves. We create a new pthread
278// key with a non-NULL destructor which is likely to be put after the destructor
279// of AsanThread in the list of destructors.
280// In this case the TSD for AsanThread will be destroyed before TSDDestructor
281// is called for the child thread, and a CHECK will fail when we call
282// pthread_create() to spawn the grandchild.
283TEST(AddressSanitizer, DISABLED_TSDTest) {
284  pthread_t th;
285  pthread_key_t test_key;
286  pthread_key_create(&test_key, TSDDestructor);
287  pthread_create(&th, NULL, TSDWorker, &test_key);
288  pthread_join(th, NULL);
289  pthread_key_delete(test_key);
290}
291
292template<class T>
293void OOBTest() {
294  char expected_str[100];
295  for (int size = sizeof(T); size < 20; size += 5) {
296    for (int i = -5; i < 0; i++) {
297      const char *str =
298          "is located.*%d byte.*to the left";
299      sprintf(expected_str, str, abs(i));
300      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
301    }
302
303    for (int i = 0; i < size - sizeof(T) + 1; i++)
304      oob_test<T>(size, i);
305
306    for (int i = size - sizeof(T) + 1; i <= size + 3 * sizeof(T); i++) {
307      const char *str =
308          "is located.*%d byte.*to the right";
309      int off = i >= size ? (i - size) : 0;
310      // we don't catch unaligned partially OOB accesses.
311      if (i % sizeof(T)) continue;
312      sprintf(expected_str, str, off);
313      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
314    }
315  }
316
317  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
318          "is located.*1 byte.*to the left");
319  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
320          "is located.*0 byte.*to the right");
321}
322
323// TODO(glider): the following tests are EXTREMELY slow on Darwin:
324//   AddressSanitizer.OOB_char (125503 ms)
325//   AddressSanitizer.OOB_int (126890 ms)
326//   AddressSanitizer.OOBRightTest (315605 ms)
327//   AddressSanitizer.SimpleStackTest (366559 ms)
328
329TEST(AddressSanitizer, OOB_char) {
330  OOBTest<U1>();
331}
332
333TEST(AddressSanitizer, OOB_int) {
334  OOBTest<U4>();
335}
336
337TEST(AddressSanitizer, OOBRightTest) {
338  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
339    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
340      for (size_t offset = 0; offset <= 8; offset += access_size) {
341        void *p = malloc(alloc_size);
342        // allocated: [p, p + alloc_size)
343        // accessed:  [p + offset, p + offset + access_size)
344        uint8_t *addr = (uint8_t*)p + offset;
345        if (offset + access_size <= alloc_size) {
346          asan_write_sized_aligned(addr, access_size);
347        } else {
348          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
349          const char *str =
350              "is located.%d *byte.*to the right";
351          char expected_str[100];
352          sprintf(expected_str, str, outside_bytes);
353          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
354                       expected_str);
355        }
356        free(p);
357      }
358    }
359  }
360}
361
362TEST(AddressSanitizer, UAF_char) {
363  const char *uaf_string = "AddressSanitizer.*heap-use-after-free";
364  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
365  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
366  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
367  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
368  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
369}
370
371#if ASAN_HAS_BLACKLIST
372TEST(AddressSanitizer, IgnoreTest) {
373  int *x = Ident(new int);
374  delete Ident(x);
375  *x = 0;
376}
377#endif  // ASAN_HAS_BLACKLIST
378
379struct StructWithBitField {
380  int bf1:1;
381  int bf2:1;
382  int bf3:1;
383  int bf4:29;
384};
385
386TEST(AddressSanitizer, BitFieldPositiveTest) {
387  StructWithBitField *x = new StructWithBitField;
388  delete Ident(x);
389  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
390  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
391  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
392  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
393};
394
395struct StructWithBitFields_8_24 {
396  int a:8;
397  int b:24;
398};
399
400TEST(AddressSanitizer, BitFieldNegativeTest) {
401  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
402  x->a = 0;
403  x->b = 0;
404  delete Ident(x);
405}
406
407TEST(AddressSanitizer, OutOfMemoryTest) {
408  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
409  EXPECT_EQ(0, realloc(0, size));
410  EXPECT_EQ(0, realloc(0, ~Ident(0)));
411  EXPECT_EQ(0, malloc(size));
412  EXPECT_EQ(0, malloc(~Ident(0)));
413  EXPECT_EQ(0, calloc(1, size));
414  EXPECT_EQ(0, calloc(1, ~Ident(0)));
415}
416
417#if ASAN_NEEDS_SEGV
418TEST(AddressSanitizer, WildAddressTest) {
419  char *c = (char*)0x123;
420  EXPECT_DEATH(*c = 0, "AddressSanitizer crashed on unknown address");
421}
422#endif
423
424static void MallocStress(size_t n) {
425  uint32_t seed = my_rand(&global_seed);
426  for (size_t iter = 0; iter < 10; iter++) {
427    vector<void *> vec;
428    for (size_t i = 0; i < n; i++) {
429      if ((i % 3) == 0) {
430        if (vec.empty()) continue;
431        size_t idx = my_rand(&seed) % vec.size();
432        void *ptr = vec[idx];
433        vec[idx] = vec.back();
434        vec.pop_back();
435        free_aaa(ptr);
436      } else {
437        size_t size = my_rand(&seed) % 1000 + 1;
438#ifndef __APPLE__
439        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
440        char *ptr = (char*)memalign_aaa(alignment, size);
441#else
442        char *ptr = (char*) malloc_aaa(size);
443#endif
444        vec.push_back(ptr);
445        ptr[0] = 0;
446        ptr[size-1] = 0;
447        ptr[size/2] = 0;
448      }
449    }
450    for (size_t i = 0; i < vec.size(); i++)
451      free_aaa(vec[i]);
452  }
453}
454
455TEST(AddressSanitizer, MallocStressTest) {
456  MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
457}
458
459static void TestLargeMalloc(size_t size) {
460  char buff[1024];
461  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
462  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
463}
464
465TEST(AddressSanitizer, LargeMallocTest) {
466  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
467    TestLargeMalloc(i);
468  }
469}
470
471#if ASAN_LOW_MEMORY != 1
472TEST(AddressSanitizer, HugeMallocTest) {
473#ifdef __APPLE__
474  // It was empirically found out that 1215 megabytes is the maximum amount of
475  // memory available to the process under AddressSanitizer on Darwin.
476  // (the libSystem malloc() allows allocating up to 2300 megabytes without
477  // ASan).
478  size_t n_megs = __WORDSIZE == 32 ? 1200 : 4100;
479#else
480  size_t n_megs = __WORDSIZE == 32 ? 2600 : 4100;
481#endif
482  TestLargeMalloc(n_megs << 20);
483}
484#endif
485
486TEST(AddressSanitizer, ThreadedMallocStressTest) {
487  const int kNumThreads = 4;
488  const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
489  pthread_t t[kNumThreads];
490  for (int i = 0; i < kNumThreads; i++) {
491    pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress,
492        (void*)kNumIterations);
493  }
494  for (int i = 0; i < kNumThreads; i++) {
495    pthread_join(t[i], 0);
496  }
497}
498
499void *ManyThreadsWorker(void *a) {
500  for (int iter = 0; iter < 100; iter++) {
501    for (size_t size = 100; size < 2000; size *= 2) {
502      free(Ident(malloc(size)));
503    }
504  }
505  return 0;
506}
507
508TEST(AddressSanitizer, ManyThreadsTest) {
509  const size_t kNumThreads = __WORDSIZE == 32 ? 30 : 1000;
510  pthread_t t[kNumThreads];
511  for (size_t i = 0; i < kNumThreads; i++) {
512    pthread_create(&t[i], 0, (void* (*)(void *x))ManyThreadsWorker, (void*)i);
513  }
514  for (size_t i = 0; i < kNumThreads; i++) {
515    pthread_join(t[i], 0);
516  }
517}
518
519TEST(AddressSanitizer, ReallocTest) {
520  const int kMinElem = 5;
521  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
522  ptr[3] = 3;
523  for (int i = 0; i < 10000; i++) {
524    ptr = (int*)realloc(ptr,
525        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
526    EXPECT_EQ(3, ptr[3]);
527  }
528}
529
530#ifndef __APPLE__
531static const char *kMallocUsableSizeErrorMsg =
532  "AddressSanitizer attempting to call malloc_usable_size()";
533
534TEST(AddressSanitizer, MallocUsableSizeTest) {
535  const size_t kArraySize = 100;
536  char *array = Ident((char*)malloc(kArraySize));
537  int *int_ptr = Ident(new int);
538  EXPECT_EQ(0, malloc_usable_size(NULL));
539  EXPECT_EQ(kArraySize, malloc_usable_size(array));
540  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
541  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
542  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
543               kMallocUsableSizeErrorMsg);
544  free(array);
545  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
546}
547#endif
548
549void WrongFree() {
550  int *x = (int*)malloc(100 * sizeof(int));
551  // Use the allocated memory, otherwise Clang will optimize it out.
552  Ident(x);
553  free(x + 1);
554}
555
556TEST(AddressSanitizer, WrongFreeTest) {
557  EXPECT_DEATH(WrongFree(),
558               "ERROR: AddressSanitizer attempting free.*not malloc");
559}
560
561void DoubleFree() {
562  int *x = (int*)malloc(100 * sizeof(int));
563  fprintf(stderr, "DoubleFree: x=%p\n", x);
564  free(x);
565  free(x);
566  fprintf(stderr, "should have failed in the second free(%p)\n", x);
567  abort();
568}
569
570TEST(AddressSanitizer, DoubleFreeTest) {
571  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
572               "ERROR: AddressSanitizer attempting double-free"
573               ".*is located 0 bytes inside of 400-byte region"
574               ".*freed by thread T0 here"
575               ".*previously allocated by thread T0 here");
576}
577
578template<int kSize>
579__attribute__((noinline))
580void SizedStackTest() {
581  char a[kSize];
582  char  *A = Ident((char*)&a);
583  for (size_t i = 0; i < kSize; i++)
584    A[i] = i;
585  EXPECT_DEATH(A[-1] = 0, "");
586  EXPECT_DEATH(A[-20] = 0, "");
587  EXPECT_DEATH(A[-31] = 0, "");
588  EXPECT_DEATH(A[kSize] = 0, "");
589  EXPECT_DEATH(A[kSize + 1] = 0, "");
590  EXPECT_DEATH(A[kSize + 10] = 0, "");
591  EXPECT_DEATH(A[kSize + 31] = 0, "");
592}
593
594TEST(AddressSanitizer, SimpleStackTest) {
595  SizedStackTest<1>();
596  SizedStackTest<2>();
597  SizedStackTest<3>();
598  SizedStackTest<4>();
599  SizedStackTest<5>();
600  SizedStackTest<6>();
601  SizedStackTest<7>();
602  SizedStackTest<16>();
603  SizedStackTest<25>();
604  SizedStackTest<34>();
605  SizedStackTest<43>();
606  SizedStackTest<51>();
607  SizedStackTest<62>();
608  SizedStackTest<64>();
609  SizedStackTest<128>();
610}
611
612TEST(AddressSanitizer, ManyStackObjectsTest) {
613  char XXX[10];
614  char YYY[20];
615  char ZZZ[30];
616  Ident(XXX);
617  Ident(YYY);
618  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
619}
620
621__attribute__((noinline))
622static void Frame0(int frame, char *a, char *b, char *c) {
623  char d[4] = {0};
624  char *D = Ident(d);
625  switch (frame) {
626    case 3: a[5]++; break;
627    case 2: b[5]++; break;
628    case 1: c[5]++; break;
629    case 0: D[5]++; break;
630  }
631}
632__attribute__((noinline)) static void Frame1(int frame, char *a, char *b) {
633  char c[4] = {0}; Frame0(frame, a, b, c);
634  break_optimization(0);
635}
636__attribute__((noinline)) static void Frame2(int frame, char *a) {
637  char b[4] = {0}; Frame1(frame, a, b);
638  break_optimization(0);
639}
640__attribute__((noinline)) static void Frame3(int frame) {
641  char a[4] = {0}; Frame2(frame, a);
642  break_optimization(0);
643}
644
645TEST(AddressSanitizer, GuiltyStackFrame0Test) {
646  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
647}
648TEST(AddressSanitizer, GuiltyStackFrame1Test) {
649  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
650}
651TEST(AddressSanitizer, GuiltyStackFrame2Test) {
652  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
653}
654TEST(AddressSanitizer, GuiltyStackFrame3Test) {
655  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
656}
657
658__attribute__((noinline))
659void LongJmpFunc1(jmp_buf buf) {
660  // create three red zones for these two stack objects.
661  int a;
662  int b;
663
664  int *A = Ident(&a);
665  int *B = Ident(&b);
666  *A = *B;
667  longjmp(buf, 1);
668}
669
670__attribute__((noinline))
671void UnderscopeLongJmpFunc1(jmp_buf buf) {
672  // create three red zones for these two stack objects.
673  int a;
674  int b;
675
676  int *A = Ident(&a);
677  int *B = Ident(&b);
678  *A = *B;
679  _longjmp(buf, 1);
680}
681
682__attribute__((noinline))
683void SigLongJmpFunc1(sigjmp_buf buf) {
684  // create three red zones for these two stack objects.
685  int a;
686  int b;
687
688  int *A = Ident(&a);
689  int *B = Ident(&b);
690  *A = *B;
691  siglongjmp(buf, 1);
692}
693
694
695__attribute__((noinline))
696void TouchStackFunc() {
697  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
698  int *A = Ident(a);
699  for (int i = 0; i < 100; i++)
700    A[i] = i*i;
701}
702
703// Test that we handle longjmp and do not report fals positives on stack.
704TEST(AddressSanitizer, LongJmpTest) {
705  static jmp_buf buf;
706  if (!setjmp(buf)) {
707    LongJmpFunc1(buf);
708  } else {
709    TouchStackFunc();
710  }
711}
712
713TEST(AddressSanitizer, UnderscopeLongJmpTest) {
714  static jmp_buf buf;
715  if (!_setjmp(buf)) {
716    UnderscopeLongJmpFunc1(buf);
717  } else {
718    TouchStackFunc();
719  }
720}
721
722TEST(AddressSanitizer, SigLongJmpTest) {
723  static sigjmp_buf buf;
724  if (!sigsetjmp(buf, 1)) {
725    SigLongJmpFunc1(buf);
726  } else {
727    TouchStackFunc();
728  }
729}
730
731#ifdef __EXCEPTIONS
732__attribute__((noinline))
733void ThrowFunc() {
734  // create three red zones for these two stack objects.
735  int a;
736  int b;
737
738  int *A = Ident(&a);
739  int *B = Ident(&b);
740  *A = *B;
741  ASAN_THROW(1);
742}
743
744TEST(AddressSanitizer, CxxExceptionTest) {
745  if (ASAN_UAR) return;
746  // TODO(kcc): this test crashes on 32-bit for some reason...
747  if (__WORDSIZE == 32) return;
748  try {
749    ThrowFunc();
750  } catch(...) {}
751  TouchStackFunc();
752}
753#endif
754
755void *ThreadStackReuseFunc1(void *unused) {
756  // create three red zones for these two stack objects.
757  int a;
758  int b;
759
760  int *A = Ident(&a);
761  int *B = Ident(&b);
762  *A = *B;
763  pthread_exit(0);
764  return 0;
765}
766
767void *ThreadStackReuseFunc2(void *unused) {
768  TouchStackFunc();
769  return 0;
770}
771
772TEST(AddressSanitizer, ThreadStackReuseTest) {
773  pthread_t t;
774  pthread_create(&t, 0, ThreadStackReuseFunc1, 0);
775  pthread_join(t, 0);
776  pthread_create(&t, 0, ThreadStackReuseFunc2, 0);
777  pthread_join(t, 0);
778}
779
780#if defined(__i386__) or defined(__x86_64__)
781TEST(AddressSanitizer, Store128Test) {
782  char *a = Ident((char*)malloc(Ident(12)));
783  char *p = a;
784  if (((uintptr_t)a % 16) != 0)
785    p = a + 8;
786  assert(((uintptr_t)p % 16) == 0);
787  __m128i value_wide = _mm_set1_epi16(0x1234);
788  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
789               "AddressSanitizer heap-buffer-overflow");
790  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
791               "WRITE of size 16");
792  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
793               "located 0 bytes to the right of 12-byte");
794  free(a);
795}
796#endif
797
798static string RightOOBErrorMessage(int oob_distance) {
799  assert(oob_distance >= 0);
800  char expected_str[100];
801  sprintf(expected_str, "located %d bytes to the right", oob_distance);
802  return string(expected_str);
803}
804
805static string LeftOOBErrorMessage(int oob_distance) {
806  assert(oob_distance > 0);
807  char expected_str[100];
808  sprintf(expected_str, "located %d bytes to the left", oob_distance);
809  return string(expected_str);
810}
811
812template<class T>
813void MemSetOOBTestTemplate(size_t length) {
814  if (length == 0) return;
815  size_t size = Ident(sizeof(T) * length);
816  T *array = Ident((T*)malloc(size));
817  int element = Ident(42);
818  int zero = Ident(0);
819  // memset interval inside array
820  memset(array, element, size);
821  memset(array, element, size - 1);
822  memset(array + length - 1, element, sizeof(T));
823  memset(array, element, 1);
824
825  // memset 0 bytes
826  memset(array - 10, element, zero);
827  memset(array - 1, element, zero);
828  memset(array, element, zero);
829  memset(array + length, 0, zero);
830  memset(array + length + 1, 0, zero);
831
832  // try to memset bytes to the right of array
833  EXPECT_DEATH(memset(array, 0, size + 1),
834               RightOOBErrorMessage(0));
835  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
836               RightOOBErrorMessage(4));
837  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
838               RightOOBErrorMessage(2 * sizeof(T) - 1));
839  // whole interval is to the right
840  EXPECT_DEATH(memset(array + length + 1, 0, 10),
841               RightOOBErrorMessage(sizeof(T)));
842
843  // try to memset bytes to the left of array
844  EXPECT_DEATH(memset((char*)array - 1, element, size),
845               LeftOOBErrorMessage(1));
846  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
847               LeftOOBErrorMessage(5));
848  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
849               LeftOOBErrorMessage(5 * sizeof(T)));
850  // whole interval is to the left
851  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
852               LeftOOBErrorMessage(2 * sizeof(T)));
853
854  // try to memset bytes both to the left & to the right
855  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
856               LeftOOBErrorMessage(2));
857
858  free(array);
859}
860
861TEST(AddressSanitizer, MemSetOOBTest) {
862  MemSetOOBTestTemplate<char>(100);
863  MemSetOOBTestTemplate<int>(5);
864  MemSetOOBTestTemplate<double>(256);
865  // We can test arrays of structres/classes here, but what for?
866}
867
868// Same test for memcpy and memmove functions
869template <class T, class M>
870void MemTransferOOBTestTemplate(size_t length) {
871  if (length == 0) return;
872  size_t size = Ident(sizeof(T) * length);
873  T *src = Ident((T*)malloc(size));
874  T *dest = Ident((T*)malloc(size));
875  int zero = Ident(0);
876
877  // valid transfer of bytes between arrays
878  M::transfer(dest, src, size);
879  M::transfer(dest + 1, src, size - sizeof(T));
880  M::transfer(dest, src + length - 1, sizeof(T));
881  M::transfer(dest, src, 1);
882
883  // transfer zero bytes
884  M::transfer(dest - 1, src, 0);
885  M::transfer(dest + length, src, zero);
886  M::transfer(dest, src - 1, zero);
887  M::transfer(dest, src, zero);
888
889  // try to change mem to the right of dest
890  EXPECT_DEATH(M::transfer(dest + 1, src, size),
891               RightOOBErrorMessage(sizeof(T) - 1));
892  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
893               RightOOBErrorMessage(3));
894
895  // try to change mem to the left of dest
896  EXPECT_DEATH(M::transfer(dest - 2, src, size),
897               LeftOOBErrorMessage(2 * sizeof(T)));
898  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
899               LeftOOBErrorMessage(3));
900
901  // try to access mem to the right of src
902  EXPECT_DEATH(M::transfer(dest, src + 2, size),
903               RightOOBErrorMessage(2 * sizeof(T) - 1));
904  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
905               RightOOBErrorMessage(2));
906
907  // try to access mem to the left of src
908  EXPECT_DEATH(M::transfer(dest, src - 1, size),
909               LeftOOBErrorMessage(sizeof(T)));
910  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
911               LeftOOBErrorMessage(6));
912
913  // Generally we don't need to test cases where both accessing src and writing
914  // to dest address to poisoned memory.
915
916  T *big_src = Ident((T*)malloc(size * 2));
917  T *big_dest = Ident((T*)malloc(size * 2));
918  // try to change mem to both sides of dest
919  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
920               LeftOOBErrorMessage(sizeof(T)));
921  // try to access mem to both sides of src
922  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
923               LeftOOBErrorMessage(2 * sizeof(T)));
924
925  free(src);
926  free(dest);
927  free(big_src);
928  free(big_dest);
929}
930
931class MemCpyWrapper {
932 public:
933  static void* transfer(void *to, const void *from, size_t size) {
934    return memcpy(to, from, size);
935  }
936};
937TEST(AddressSanitizer, MemCpyOOBTest) {
938  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
939  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
940}
941
942class MemMoveWrapper {
943 public:
944  static void* transfer(void *to, const void *from, size_t size) {
945    return memmove(to, from, size);
946  }
947};
948TEST(AddressSanitizer, MemMoveOOBTest) {
949  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
950  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
951}
952
953// Tests for string functions
954
955// Used for string functions tests
956static char global_string[] = "global";
957static size_t global_string_length = 6;
958
959// Input to a test is a zero-terminated string str with given length
960// Accesses to the bytes to the left and to the right of str
961// are presumed to produce OOB errors
962void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
963  // Normal strlen calls
964  EXPECT_EQ(strlen(str), length);
965  if (length > 0) {
966    EXPECT_EQ(strlen(str + 1), length - 1);
967    EXPECT_EQ(strlen(str + length), 0);
968  }
969  // Arg of strlen is not malloced, OOB access
970  if (!is_global) {
971    // We don't insert RedZones to the left of global variables
972    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
973    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
974  }
975  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
976  // Overwrite terminator
977  str[length] = 'a';
978  // String is not zero-terminated, strlen will lead to OOB access
979  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
980  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
981  // Restore terminator
982  str[length] = 0;
983}
984TEST(AddressSanitizer, StrLenOOBTest) {
985  // Check heap-allocated string
986  size_t length = Ident(10);
987  char *heap_string = Ident((char*)malloc(length + 1));
988  char stack_string[10 + 1];
989  for (int i = 0; i < length; i++) {
990    heap_string[i] = 'a';
991    stack_string[i] = 'b';
992  }
993  heap_string[length] = 0;
994  stack_string[length] = 0;
995  StrLenOOBTestTemplate(heap_string, length, false);
996  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
997  //      make test for stack_string work. Or move it to output tests.
998  // StrLenOOBTestTemplate(stack_string, length, false);
999  StrLenOOBTestTemplate(global_string, global_string_length, true);
1000  free(heap_string);
1001}
1002
1003static inline char* MallocAndMemsetString(size_t size) {
1004  char *s = Ident((char*)malloc(size));
1005  memset(s, 'z', size);
1006  return s;
1007}
1008
1009#ifndef __APPLE__
1010TEST(AddressSanitizer, StrNLenOOBTest) {
1011  size_t size = Ident(123);
1012  char *str = MallocAndMemsetString(size);
1013  // Normal strnlen calls.
1014  Ident(strnlen(str - 1, 0));
1015  Ident(strnlen(str, size));
1016  Ident(strnlen(str + size - 1, 1));
1017  str[size - 1] = '\0';
1018  Ident(strnlen(str, 2 * size));
1019  // Argument points to not allocated memory.
1020  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
1021  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
1022  // Overwrite the terminating '\0' and hit unallocated memory.
1023  str[size - 1] = 'z';
1024  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
1025  free(str);
1026}
1027#endif
1028
1029TEST(AddressSanitizer, StrDupOOBTest) {
1030  size_t size = Ident(42);
1031  char *str = MallocAndMemsetString(size);
1032  char *new_str;
1033  // Normal strdup calls.
1034  str[size - 1] = '\0';
1035  new_str = strdup(str);
1036  free(new_str);
1037  new_str = strdup(str + size - 1);
1038  free(new_str);
1039  // Argument points to not allocated memory.
1040  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
1041  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
1042  // Overwrite the terminating '\0' and hit unallocated memory.
1043  str[size - 1] = 'z';
1044  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
1045  free(str);
1046}
1047
1048TEST(AddressSanitizer, StrCpyOOBTest) {
1049  size_t to_size = Ident(30);
1050  size_t from_size = Ident(6);  // less than to_size
1051  char *to = Ident((char*)malloc(to_size));
1052  char *from = Ident((char*)malloc(from_size));
1053  // Normal strcpy calls.
1054  strcpy(from, "hello");
1055  strcpy(to, from);
1056  strcpy(to + to_size - from_size, from);
1057  // Length of "from" is too small.
1058  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1059  // "to" or "from" points to not allocated memory.
1060  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1061  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1062  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1063  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1064  // Overwrite the terminating '\0' character and hit unallocated memory.
1065  from[from_size - 1] = '!';
1066  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1067  free(to);
1068  free(from);
1069}
1070
1071TEST(AddressSanitizer, StrNCpyOOBTest) {
1072  size_t to_size = Ident(20);
1073  size_t from_size = Ident(6);  // less than to_size
1074  char *to = Ident((char*)malloc(to_size));
1075  // From is a zero-terminated string "hello\0" of length 6
1076  char *from = Ident((char*)malloc(from_size));
1077  strcpy(from, "hello");
1078  // copy 0 bytes
1079  strncpy(to, from, 0);
1080  strncpy(to - 1, from - 1, 0);
1081  // normal strncpy calls
1082  strncpy(to, from, from_size);
1083  strncpy(to, from, to_size);
1084  strncpy(to, from + from_size - 1, to_size);
1085  strncpy(to + to_size - 1, from, 1);
1086  // One of {to, from} points to not allocated memory
1087  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1088               LeftOOBErrorMessage(1));
1089  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1090               LeftOOBErrorMessage(1));
1091  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1092               RightOOBErrorMessage(0));
1093  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1094               RightOOBErrorMessage(0));
1095  // Length of "to" is too small
1096  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1097               RightOOBErrorMessage(0));
1098  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1099               RightOOBErrorMessage(0));
1100  // Overwrite terminator in from
1101  from[from_size - 1] = '!';
1102  // normal strncpy call
1103  strncpy(to, from, from_size);
1104  // Length of "from" is too small
1105  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1106               RightOOBErrorMessage(0));
1107  free(to);
1108  free(from);
1109}
1110
1111typedef char*(*PointerToStrChr)(const char*, int);
1112void RunStrChrTest(PointerToStrChr StrChr) {
1113  size_t size = Ident(100);
1114  char *str = MallocAndMemsetString(size);
1115  str[10] = 'q';
1116  str[11] = '\0';
1117  EXPECT_EQ(str, StrChr(str, 'z'));
1118  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1119  EXPECT_EQ(NULL, StrChr(str, 'a'));
1120  // StrChr argument points to not allocated memory.
1121  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1122  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1123  // Overwrite the terminator and hit not allocated memory.
1124  str[11] = 'z';
1125  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1126  free(str);
1127}
1128TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1129  RunStrChrTest(&strchr);
1130  RunStrChrTest(&index);
1131}
1132
1133TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1134  // strcmp
1135  EXPECT_EQ(0, strcmp("", ""));
1136  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1137  EXPECT_GT(0, strcmp("ab", "ac"));
1138  EXPECT_GT(0, strcmp("abc", "abcd"));
1139  EXPECT_LT(0, strcmp("acc", "abc"));
1140  EXPECT_LT(0, strcmp("abcd", "abc"));
1141
1142  // strncmp
1143  EXPECT_EQ(0, strncmp("a", "b", 0));
1144  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1145  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1146  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1147  EXPECT_GT(0, strncmp("a", "b", 5));
1148  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1149  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1150  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1151  EXPECT_LT(0, strncmp("zyx", "", 2));
1152
1153  // strcasecmp
1154  EXPECT_EQ(0, strcasecmp("", ""));
1155  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1156  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1157  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1158  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1159  EXPECT_LT(0, strcasecmp("acc", "abc"));
1160  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1161
1162  // strncasecmp
1163  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1164  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1165  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1166  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1167  EXPECT_GT(0, strncasecmp("a", "B", 5));
1168  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1169  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1170  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1171  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1172
1173  // memcmp
1174  EXPECT_EQ(0, memcmp("a", "b", 0));
1175  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1176  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1177  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1178  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1179  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1180}
1181
1182typedef int(*PointerToStrCmp)(const char*, const char*);
1183void RunStrCmpTest(PointerToStrCmp StrCmp) {
1184  size_t size = Ident(100);
1185  char *s1 = MallocAndMemsetString(size);
1186  char *s2 = MallocAndMemsetString(size);
1187  s1[size - 1] = '\0';
1188  s2[size - 1] = '\0';
1189  // Normal StrCmp calls
1190  Ident(StrCmp(s1, s2));
1191  Ident(StrCmp(s1, s2 + size - 1));
1192  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1193  s1[size - 1] = 'z';
1194  s2[size - 1] = 'x';
1195  Ident(StrCmp(s1, s2));
1196  // One of arguments points to not allocated memory.
1197  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1198  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1199  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1200  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1201  // Hit unallocated memory and die.
1202  s2[size - 1] = 'z';
1203  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1204  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1205  free(s1);
1206  free(s2);
1207}
1208
1209TEST(AddressSanitizer, StrCmpOOBTest) {
1210  RunStrCmpTest(&strcmp);
1211}
1212
1213TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1214  RunStrCmpTest(&strcasecmp);
1215}
1216
1217typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1218void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1219  size_t size = Ident(100);
1220  char *s1 = MallocAndMemsetString(size);
1221  char *s2 = MallocAndMemsetString(size);
1222  s1[size - 1] = '\0';
1223  s2[size - 1] = '\0';
1224  // Normal StrNCmp calls
1225  Ident(StrNCmp(s1, s2, size + 2));
1226  s1[size - 1] = 'z';
1227  s2[size - 1] = 'x';
1228  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1229  s2[size - 1] = 'z';
1230  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1231  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1232  // One of arguments points to not allocated memory.
1233  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1234  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1235  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1236  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1237  // Hit unallocated memory and die.
1238  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1239  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1240  free(s1);
1241  free(s2);
1242}
1243
1244TEST(AddressSanitizer, StrNCmpOOBTest) {
1245  RunStrNCmpTest(&strncmp);
1246}
1247
1248TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1249  RunStrNCmpTest(&strncasecmp);
1250}
1251
1252TEST(AddressSanitizer, MemCmpOOBTest) {
1253  size_t size = Ident(100);
1254  char *s1 = MallocAndMemsetString(size);
1255  char *s2 = MallocAndMemsetString(size);
1256  // Normal memcmp calls.
1257  Ident(memcmp(s1, s2, size));
1258  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1259  Ident(memcmp(s1 - 1, s2 - 1, 0));
1260  // One of arguments points to not allocated memory.
1261  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1262  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1263  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1264  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1265  // Hit unallocated memory and die.
1266  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1267  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1268  // Zero bytes are not terminators and don't prevent from OOB.
1269  s1[size - 1] = '\0';
1270  s2[size - 1] = '\0';
1271  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1272  free(s1);
1273  free(s2);
1274}
1275
1276TEST(AddressSanitizer, StrCatOOBTest) {
1277  size_t to_size = Ident(100);
1278  char *to = MallocAndMemsetString(to_size);
1279  to[0] = '\0';
1280  size_t from_size = Ident(20);
1281  char *from = MallocAndMemsetString(from_size);
1282  from[from_size - 1] = '\0';
1283  // Normal strcat calls.
1284  strcat(to, from);
1285  strcat(to, from);
1286  strcat(to + from_size, from + from_size - 2);
1287  // Catenate empty string is not always an error.
1288  strcat(to - 1, from + from_size - 1);
1289  // One of arguments points to not allocated memory.
1290  EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1291  EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1292  EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1293  EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1294
1295  // "from" is not zero-terminated.
1296  from[from_size - 1] = 'z';
1297  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1298  from[from_size - 1] = '\0';
1299  // "to" is not zero-terminated.
1300  memset(to, 'z', to_size);
1301  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1302  // "to" is too short to fit "from".
1303  to[to_size - from_size + 1] = '\0';
1304  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1305  // length of "to" is just enough.
1306  strcat(to, from + 1);
1307}
1308
1309static string OverlapErrorMessage(const string &func) {
1310  return func + "-param-overlap";
1311}
1312
1313TEST(AddressSanitizer, StrArgsOverlapTest) {
1314  size_t size = Ident(100);
1315  char *str = Ident((char*)malloc(size));
1316
1317// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1318// memmove().
1319#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1320    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1321  // Check "memcpy". Use Ident() to avoid inlining.
1322  memset(str, 'z', size);
1323  Ident(memcpy)(str + 1, str + 11, 10);
1324  Ident(memcpy)(str, str, 0);
1325  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1326  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1327#endif
1328
1329  // We do not treat memcpy with to==from as a bug.
1330  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1331  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1332  //              OverlapErrorMessage("memcpy"));
1333
1334  // Check "strcpy".
1335  memset(str, 'z', size);
1336  str[9] = '\0';
1337  strcpy(str + 10, str);
1338  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1339  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1340  strcpy(str, str + 5);
1341
1342  // Check "strncpy".
1343  memset(str, 'z', size);
1344  strncpy(str, str + 10, 10);
1345  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1346  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1347  str[10] = '\0';
1348  strncpy(str + 11, str, 20);
1349  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1350
1351  // Check "strcat".
1352  memset(str, 'z', size);
1353  str[10] = '\0';
1354  str[20] = '\0';
1355  strcat(str, str + 10);
1356  strcat(str, str + 11);
1357  str[10] = '\0';
1358  strcat(str + 11, str);
1359  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1360  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1361  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1362
1363  free(str);
1364}
1365
1366// At the moment we instrument memcpy/memove/memset calls at compile time so we
1367// can't handle OOB error if these functions are called by pointer, see disabled
1368// MemIntrinsicCallByPointerTest below
1369typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1370typedef void*(*PointerToMemSet)(void*, int, size_t);
1371
1372void CallMemSetByPointer(PointerToMemSet MemSet) {
1373  size_t size = Ident(100);
1374  char *array = Ident((char*)malloc(size));
1375  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1376  free(array);
1377}
1378
1379void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1380  size_t size = Ident(100);
1381  char *src = Ident((char*)malloc(size));
1382  char *dst = Ident((char*)malloc(size));
1383  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1384  free(src);
1385  free(dst);
1386}
1387
1388TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1389  CallMemSetByPointer(&memset);
1390  CallMemTransferByPointer(&memcpy);
1391  CallMemTransferByPointer(&memmove);
1392}
1393
1394// This test case fails
1395// Clang optimizes memcpy/memset calls which lead to unaligned access
1396TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1397  int size = Ident(4096);
1398  char *s = Ident((char*)malloc(size));
1399  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1400  free(s);
1401}
1402
1403// TODO(samsonov): Add a test with malloc(0)
1404// TODO(samsonov): Add tests for str* and mem* functions.
1405
1406__attribute__((noinline))
1407static int LargeFunction(bool do_bad_access) {
1408  int *x = new int[100];
1409  x[0]++;
1410  x[1]++;
1411  x[2]++;
1412  x[3]++;
1413  x[4]++;
1414  x[5]++;
1415  x[6]++;
1416  x[7]++;
1417  x[8]++;
1418  x[9]++;
1419
1420  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1421
1422  x[10]++;
1423  x[11]++;
1424  x[12]++;
1425  x[13]++;
1426  x[14]++;
1427  x[15]++;
1428  x[16]++;
1429  x[17]++;
1430  x[18]++;
1431  x[19]++;
1432
1433  delete x;
1434  return res;
1435}
1436
1437// Test the we have correct debug info for the failing instruction.
1438// This test requires the in-process symbolizer to be enabled by default.
1439TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1440  int failing_line = LargeFunction(false);
1441  char expected_warning[128];
1442  sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1443  EXPECT_DEATH(LargeFunction(true), expected_warning);
1444}
1445
1446// Check that we unwind and symbolize correctly.
1447TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1448  int *a = (int*)malloc_aaa(sizeof(int));
1449  *a = 1;
1450  free_aaa(a);
1451  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1452               "malloc_fff.*malloc_eee.*malloc_ddd");
1453}
1454
1455void *ThreadedTestAlloc(void *a) {
1456  int **p = (int**)a;
1457  *p = new int;
1458  return 0;
1459}
1460
1461void *ThreadedTestFree(void *a) {
1462  int **p = (int**)a;
1463  delete *p;
1464  return 0;
1465}
1466
1467void *ThreadedTestUse(void *a) {
1468  int **p = (int**)a;
1469  **p = 1;
1470  return 0;
1471}
1472
1473void ThreadedTestSpawn() {
1474  pthread_t t;
1475  int *x;
1476  pthread_create(&t, 0, ThreadedTestAlloc, &x);
1477  pthread_join(t, 0);
1478  pthread_create(&t, 0, ThreadedTestFree, &x);
1479  pthread_join(t, 0);
1480  pthread_create(&t, 0, ThreadedTestUse, &x);
1481  pthread_join(t, 0);
1482}
1483
1484TEST(AddressSanitizer, ThreadedTest) {
1485  EXPECT_DEATH(ThreadedTestSpawn(),
1486               ASAN_PCRE_DOTALL
1487               "Thread T.*created"
1488               ".*Thread T.*created"
1489               ".*Thread T.*created");
1490}
1491
1492#if ASAN_NEEDS_SEGV
1493TEST(AddressSanitizer, ShadowGapTest) {
1494#if __WORDSIZE == 32
1495  char *addr = (char*)0x22000000;
1496#else
1497  char *addr = (char*)0x0000100000080000;
1498#endif
1499  EXPECT_DEATH(*addr = 1, "AddressSanitizer crashed on unknown");
1500}
1501#endif  // ASAN_NEEDS_SEGV
1502
1503extern "C" {
1504__attribute__((noinline))
1505static void UseThenFreeThenUse() {
1506  char *x = Ident((char*)malloc(8));
1507  *x = 1;
1508  free_aaa(x);
1509  *x = 2;
1510}
1511}
1512
1513TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1514  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1515}
1516
1517TEST(AddressSanitizer, StrDupTest) {
1518  free(strdup(Ident("123")));
1519}
1520
1521// Currently we create and poison redzone at right of global variables.
1522char glob5[5];
1523static char static110[110];
1524const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1525static const char StaticConstGlob[3] = {9, 8, 7};
1526extern int GlobalsTest(int x);
1527
1528TEST(AddressSanitizer, GlobalTest) {
1529  static char func_static15[15];
1530
1531  static char fs1[10];
1532  static char fs2[10];
1533  static char fs3[10];
1534
1535  glob5[Ident(0)] = 0;
1536  glob5[Ident(1)] = 0;
1537  glob5[Ident(2)] = 0;
1538  glob5[Ident(3)] = 0;
1539  glob5[Ident(4)] = 0;
1540
1541  EXPECT_DEATH(glob5[Ident(5)] = 0,
1542               "0 bytes to the right of global variable.*glob5.* size 5");
1543  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1544               "6 bytes to the right of global variable.*glob5.* size 5");
1545  Ident(static110);  // avoid optimizations
1546  static110[Ident(0)] = 0;
1547  static110[Ident(109)] = 0;
1548  EXPECT_DEATH(static110[Ident(110)] = 0,
1549               "0 bytes to the right of global variable");
1550  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1551               "7 bytes to the right of global variable");
1552
1553  Ident(func_static15);  // avoid optimizations
1554  func_static15[Ident(0)] = 0;
1555  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1556               "0 bytes to the right of global variable");
1557  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1558               "9 bytes to the right of global variable");
1559
1560  Ident(fs1);
1561  Ident(fs2);
1562  Ident(fs3);
1563
1564  // We don't create left redzones, so this is not 100% guaranteed to fail.
1565  // But most likely will.
1566  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1567
1568  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1569               "is located 1 bytes to the right of .*ConstGlob");
1570  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1571               "is located 2 bytes to the right of .*StaticConstGlob");
1572
1573  // call stuff from another file.
1574  GlobalsTest(0);
1575}
1576
1577TEST(AddressSanitizer, GlobalStringConstTest) {
1578  static const char *zoo = "FOOBAR123";
1579  const char *p = Ident(zoo);
1580  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1581}
1582
1583TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1584  static char zoo[10];
1585  const char *p = Ident(zoo);
1586  // The file name should be present in the report.
1587  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1588}
1589
1590int *ReturnsPointerToALocalObject() {
1591  int a = 0;
1592  return Ident(&a);
1593}
1594
1595#if ASAN_UAR == 1
1596TEST(AddressSanitizer, LocalReferenceReturnTest) {
1597  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1598  int *p = f();
1599  // Call 'f' a few more times, 'p' should still be poisoned.
1600  for (int i = 0; i < 32; i++)
1601    f();
1602  EXPECT_DEATH(*p = 1, "AddressSanitizer stack-use-after-return");
1603  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1604}
1605#endif
1606
1607template <int kSize>
1608__attribute__((noinline))
1609static void FuncWithStack() {
1610  char x[kSize];
1611  Ident(x)[0] = 0;
1612  Ident(x)[kSize-1] = 0;
1613}
1614
1615static void LotsOfStackReuse() {
1616  int LargeStack[10000];
1617  Ident(LargeStack)[0] = 0;
1618  for (int i = 0; i < 10000; i++) {
1619    FuncWithStack<128 * 1>();
1620    FuncWithStack<128 * 2>();
1621    FuncWithStack<128 * 4>();
1622    FuncWithStack<128 * 8>();
1623    FuncWithStack<128 * 16>();
1624    FuncWithStack<128 * 32>();
1625    FuncWithStack<128 * 64>();
1626    FuncWithStack<128 * 128>();
1627    FuncWithStack<128 * 256>();
1628    FuncWithStack<128 * 512>();
1629    Ident(LargeStack)[0] = 0;
1630  }
1631}
1632
1633TEST(AddressSanitizer, StressStackReuseTest) {
1634  LotsOfStackReuse();
1635}
1636
1637TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1638  const int kNumThreads = 20;
1639  pthread_t t[kNumThreads];
1640  for (int i = 0; i < kNumThreads; i++) {
1641    pthread_create(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1642  }
1643  for (int i = 0; i < kNumThreads; i++) {
1644    pthread_join(t[i], 0);
1645  }
1646}
1647
1648static void *PthreadExit(void *a) {
1649  pthread_exit(0);
1650  return 0;
1651}
1652
1653TEST(AddressSanitizer, PthreadExitTest) {
1654  pthread_t t;
1655  for (int i = 0; i < 1000; i++) {
1656    pthread_create(&t, 0, PthreadExit, 0);
1657    pthread_join(t, 0);
1658  }
1659}
1660
1661#ifdef __EXCEPTIONS
1662__attribute__((noinline))
1663static void StackReuseAndException() {
1664  int large_stack[1000];
1665  Ident(large_stack);
1666  ASAN_THROW(1);
1667}
1668
1669// TODO(kcc): support exceptions with use-after-return.
1670TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1671  for (int i = 0; i < 10000; i++) {
1672    try {
1673    StackReuseAndException();
1674    } catch(...) {
1675    }
1676  }
1677}
1678#endif
1679
1680TEST(AddressSanitizer, MlockTest) {
1681  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1682  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1683  EXPECT_EQ(0, munlockall());
1684  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1685}
1686
1687struct LargeStruct {
1688  int foo[100];
1689};
1690
1691// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
1692// Struct copy should not cause asan warning even if lhs == rhs.
1693TEST(AddressSanitizer, LargeStructCopyTest) {
1694  LargeStruct a;
1695  *Ident(&a) = *Ident(&a);
1696}
1697
1698__attribute__((no_address_safety_analysis))
1699static void NoAddressSafety() {
1700  char *foo = new char[10];
1701  Ident(foo)[10] = 0;
1702  delete [] foo;
1703}
1704
1705TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
1706  Ident(NoAddressSafety)();
1707}
1708
1709// ------------------ demo tests; run each one-by-one -------------
1710// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1711TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1712  ThreadedTestSpawn();
1713}
1714
1715void *SimpleBugOnSTack(void *x = 0) {
1716  char a[20];
1717  Ident(a)[20] = 0;
1718  return 0;
1719}
1720
1721TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1722  SimpleBugOnSTack();
1723}
1724
1725TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1726  pthread_t t;
1727  pthread_create(&t, 0, SimpleBugOnSTack, 0);
1728  pthread_join(t, 0);
1729}
1730
1731TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1732  uaf_test<U1>(10, 0);
1733}
1734TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1735  uaf_test<U1>(10, -2);
1736}
1737TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1738  uaf_test<U1>(10, 10);
1739}
1740
1741TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1742  uaf_test<U1>(kLargeMalloc, 0);
1743}
1744
1745TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1746  oob_test<U1>(10, -1);
1747}
1748
1749TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1750  oob_test<U1>(kLargeMalloc, -1);
1751}
1752
1753TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1754  oob_test<U1>(10, 10);
1755}
1756
1757TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1758  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1759}
1760
1761TEST(AddressSanitizer, DISABLED_DemoOOM) {
1762  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1763  printf("%p\n", malloc(size));
1764}
1765
1766TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1767  DoubleFree();
1768}
1769
1770TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1771  int *a = 0;
1772  Ident(a)[10] = 0;
1773}
1774
1775TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1776  static char a[100];
1777  static char b[100];
1778  static char c[100];
1779  Ident(a);
1780  Ident(b);
1781  Ident(c);
1782  Ident(a)[5] = 0;
1783  Ident(b)[105] = 0;
1784  Ident(a)[5] = 0;
1785}
1786
1787TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1788  const size_t kAllocSize = (1 << 28) - 1024;
1789  size_t total_size = 0;
1790  while (true) {
1791    char *x = (char*)malloc(kAllocSize);
1792    memset(x, 0, kAllocSize);
1793    total_size += kAllocSize;
1794    fprintf(stderr, "total: %ldM\n", (long)total_size >> 20);
1795  }
1796}
1797
1798#ifdef __APPLE__
1799#include "asan_mac_test.h"
1800// TODO(glider): figure out whether we still need these tests. Is it correct
1801// to intercept CFAllocator?
1802TEST(AddressSanitizerMac, DISABLED_CFAllocatorDefaultDoubleFree) {
1803  EXPECT_DEATH(
1804      CFAllocatorDefaultDoubleFree(),
1805      "attempting double-free");
1806}
1807
1808TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
1809  EXPECT_DEATH(
1810      CFAllocatorSystemDefaultDoubleFree(),
1811      "attempting double-free");
1812}
1813
1814TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocDoubleFree) {
1815  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
1816}
1817
1818TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
1819  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
1820}
1821
1822TEST(AddressSanitizerMac, GCDDispatchAsync) {
1823  // Make sure the whole ASan report is printed, i.e. that we don't die
1824  // on a CHECK.
1825  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
1826}
1827
1828TEST(AddressSanitizerMac, GCDDispatchSync) {
1829  // Make sure the whole ASan report is printed, i.e. that we don't die
1830  // on a CHECK.
1831  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
1832}
1833
1834
1835TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
1836  // Make sure the whole ASan report is printed, i.e. that we don't die
1837  // on a CHECK.
1838  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
1839}
1840
1841TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
1842  // Make sure the whole ASan report is printed, i.e. that we don't die
1843  // on a CHECK.
1844  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
1845}
1846
1847TEST(AddressSanitizerMac, GCDDispatchAfter) {
1848  // Make sure the whole ASan report is printed, i.e. that we don't die
1849  // on a CHECK.
1850  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
1851}
1852
1853TEST(AddressSanitizerMac, GCDSourceEvent) {
1854  // Make sure the whole ASan report is printed, i.e. that we don't die
1855  // on a CHECK.
1856  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
1857}
1858
1859TEST(AddressSanitizerMac, GCDSourceCancel) {
1860  // Make sure the whole ASan report is printed, i.e. that we don't die
1861  // on a CHECK.
1862  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
1863}
1864
1865TEST(AddressSanitizerMac, GCDGroupAsync) {
1866  // Make sure the whole ASan report is printed, i.e. that we don't die
1867  // on a CHECK.
1868  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
1869}
1870
1871void *MallocIntrospectionLockWorker(void *_) {
1872  const int kNumPointers = 100;
1873  int i;
1874  void *pointers[kNumPointers];
1875  for (i = 0; i < kNumPointers; i++) {
1876    pointers[i] = malloc(i + 1);
1877  }
1878  for (i = 0; i < kNumPointers; i++) {
1879    free(pointers[i]);
1880  }
1881
1882  return NULL;
1883}
1884
1885void *MallocIntrospectionLockForker(void *_) {
1886  pid_t result = fork();
1887  if (result == -1) {
1888    perror("fork");
1889  }
1890  assert(result != -1);
1891  if (result == 0) {
1892    // Call malloc in the child process to make sure we won't deadlock.
1893    void *ptr = malloc(42);
1894    free(ptr);
1895    exit(0);
1896  } else {
1897    // Return in the parent process.
1898    return NULL;
1899  }
1900}
1901
1902TEST(AddressSanitizerMac, MallocIntrospectionLock) {
1903  // Incorrect implementation of force_lock and force_unlock in our malloc zone
1904  // will cause forked processes to deadlock.
1905  // TODO(glider): need to detect that none of the child processes deadlocked.
1906  const int kNumWorkers = 5, kNumIterations = 100;
1907  int i, iter;
1908  for (iter = 0; iter < kNumIterations; iter++) {
1909    pthread_t workers[kNumWorkers], forker;
1910    for (i = 0; i < kNumWorkers; i++) {
1911      pthread_create(&workers[i], 0, MallocIntrospectionLockWorker, 0);
1912    }
1913    pthread_create(&forker, 0, MallocIntrospectionLockForker, 0);
1914    for (i = 0; i < kNumWorkers; i++) {
1915      pthread_join(workers[i], 0);
1916    }
1917    pthread_join(forker, 0);
1918  }
1919}
1920
1921void *TSDAllocWorker(void *test_key) {
1922  if (test_key) {
1923    void *mem = malloc(10);
1924    pthread_setspecific(*(pthread_key_t*)test_key, mem);
1925  }
1926  return NULL;
1927}
1928
1929TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
1930  pthread_t th;
1931  pthread_key_t test_key;
1932  pthread_key_create(&test_key, CallFreeOnWorkqueue);
1933  pthread_create(&th, NULL, TSDAllocWorker, &test_key);
1934  pthread_join(th, NULL);
1935  pthread_key_delete(test_key);
1936}
1937
1938// Test that CFStringCreateCopy does not copy constant strings.
1939TEST(AddressSanitizerMac, CFStringCreateCopy) {
1940  CFStringRef str = CFSTR("Hello world!\n");
1941  CFStringRef str2 = CFStringCreateCopy(0, str);
1942  EXPECT_EQ(str, str2);
1943}
1944
1945#endif  // __APPLE__
1946
1947// Test that instrumentation of stack allocations takes into account
1948// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
1949// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
1950TEST(AddressSanitizer, LongDoubleNegativeTest) {
1951  long double a, b;
1952  memcpy(Ident(&a), Ident(&b), sizeof(long double));
1953};
1954
1955int main(int argc, char **argv) {
1956  progname = argv[0];
1957  testing::GTEST_FLAG(death_test_style) = "threadsafe";
1958  testing::InitGoogleTest(&argc, argv);
1959  return RUN_ALL_TESTS();
1960}
1961