asan_test.cc revision 6a3e6fd72e1e2322d28ced9d9c2adbd720e7fabf
1//===-- asan_test.cc ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22
23#if defined(__i386__) or defined(__x86_64__)
24#include <emmintrin.h>
25#endif
26
27#include "asan_test_config.h"
28#include "asan_test_utils.h"
29
30#ifndef __APPLE__
31#include <malloc.h>
32#else
33#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
34#include <CoreFoundation/CFString.h>
35#endif  // __APPLE__
36
37#ifdef __APPLE__
38static bool APPLE = true;
39#else
40static bool APPLE = false;
41#endif
42
43#if ASAN_HAS_EXCEPTIONS
44# define ASAN_THROW(x) throw (x)
45#else
46# define ASAN_THROW(x)
47#endif
48
49#include <sys/mman.h>
50
51typedef uint8_t   U1;
52typedef uint16_t  U2;
53typedef uint32_t  U4;
54typedef uint64_t  U8;
55
56static const char *progname;
57static const int kPageSize = 4096;
58
59// Simple stand-alone pseudorandom number generator.
60// Current algorithm is ANSI C linear congruential PRNG.
61static inline uint32_t my_rand(uint32_t* state) {
62  return (*state = *state * 1103515245 + 12345) >> 16;
63}
64
65static uint32_t global_seed = 0;
66
67const size_t kLargeMalloc = 1 << 24;
68
69template<class T>
70__attribute__((noinline))
71void asan_write(T *a) {
72  *a = 0;
73}
74
75__attribute__((noinline))
76void asan_write_sized_aligned(uint8_t *p, size_t size) {
77  EXPECT_EQ(0, ((uintptr_t)p % size));
78  if      (size == 1) asan_write((uint8_t*)p);
79  else if (size == 2) asan_write((uint16_t*)p);
80  else if (size == 4) asan_write((uint32_t*)p);
81  else if (size == 8) asan_write((uint64_t*)p);
82}
83
84__attribute__((noinline)) void *malloc_fff(size_t size) {
85  void *res = malloc/**/(size); break_optimization(0); return res;}
86__attribute__((noinline)) void *malloc_eee(size_t size) {
87  void *res = malloc_fff(size); break_optimization(0); return res;}
88__attribute__((noinline)) void *malloc_ddd(size_t size) {
89  void *res = malloc_eee(size); break_optimization(0); return res;}
90__attribute__((noinline)) void *malloc_ccc(size_t size) {
91  void *res = malloc_ddd(size); break_optimization(0); return res;}
92__attribute__((noinline)) void *malloc_bbb(size_t size) {
93  void *res = malloc_ccc(size); break_optimization(0); return res;}
94__attribute__((noinline)) void *malloc_aaa(size_t size) {
95  void *res = malloc_bbb(size); break_optimization(0); return res;}
96
97#ifndef __APPLE__
98__attribute__((noinline)) void *memalign_fff(size_t alignment, size_t size) {
99  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
100__attribute__((noinline)) void *memalign_eee(size_t alignment, size_t size) {
101  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
102__attribute__((noinline)) void *memalign_ddd(size_t alignment, size_t size) {
103  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
104__attribute__((noinline)) void *memalign_ccc(size_t alignment, size_t size) {
105  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
106__attribute__((noinline)) void *memalign_bbb(size_t alignment, size_t size) {
107  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
108__attribute__((noinline)) void *memalign_aaa(size_t alignment, size_t size) {
109  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
110#endif  // __APPLE__
111
112
113__attribute__((noinline))
114  void free_ccc(void *p) { free(p); break_optimization(0);}
115__attribute__((noinline))
116  void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
117__attribute__((noinline))
118  void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
119
120template<class T>
121__attribute__((noinline))
122void oob_test(int size, int off) {
123  char *p = (char*)malloc_aaa(size);
124  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
125  //        sizeof(T), p, p + size, off);
126  asan_write((T*)(p + off));
127  free_aaa(p);
128}
129
130
131template<class T>
132__attribute__((noinline))
133void uaf_test(int size, int off) {
134  char *p = (char *)malloc_aaa(size);
135  free_aaa(p);
136  for (int i = 1; i < 100; i++)
137    free_aaa(malloc_aaa(i));
138  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
139          (long)sizeof(T), p, off);
140  asan_write((T*)(p + off));
141}
142
143TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
144#if defined(__has_feature) && __has_feature(address_sanitizer)
145  bool asan = 1;
146#else
147  bool asan = 0;
148#endif
149  EXPECT_EQ(true, asan);
150}
151
152TEST(AddressSanitizer, SimpleDeathTest) {
153  EXPECT_DEATH(exit(1), "");
154}
155
156TEST(AddressSanitizer, VariousMallocsTest) {
157  // fprintf(stderr, "malloc:\n");
158  int *a = (int*)malloc(100 * sizeof(int));
159  a[50] = 0;
160  free(a);
161
162  // fprintf(stderr, "realloc:\n");
163  int *r = (int*)malloc(10);
164  r = (int*)realloc(r, 2000 * sizeof(int));
165  r[1000] = 0;
166  free(r);
167
168  // fprintf(stderr, "operator new []\n");
169  int *b = new int[100];
170  b[50] = 0;
171  delete [] b;
172
173  // fprintf(stderr, "operator new\n");
174  int *c = new int;
175  *c = 0;
176  delete c;
177
178#if !defined(__APPLE__) && !defined(ANDROID)
179  // fprintf(stderr, "posix_memalign\n");
180  int *pm;
181  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
182  EXPECT_EQ(0, pm_res);
183  free(pm);
184#endif
185
186#if !defined(__APPLE__)
187  int *ma = (int*)memalign(kPageSize, kPageSize);
188  EXPECT_EQ(0, (uintptr_t)ma % kPageSize);
189  ma[123] = 0;
190  free(ma);
191#endif  // __APPLE__
192}
193
194TEST(AddressSanitizer, CallocTest) {
195  int *a = (int*)calloc(100, sizeof(int));
196  EXPECT_EQ(0, a[10]);
197  free(a);
198}
199
200TEST(AddressSanitizer, VallocTest) {
201  void *a = valloc(100);
202  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
203  free(a);
204}
205
206#ifndef __APPLE__
207TEST(AddressSanitizer, PvallocTest) {
208  char *a = (char*)pvalloc(kPageSize + 100);
209  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
210  a[kPageSize + 101] = 1;  // we should not report an error here.
211  free(a);
212
213  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
214  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
215  a[101] = 1;  // we should not report an error here.
216  free(a);
217}
218#endif  // __APPLE__
219
220void NoOpSignalHandler(int unused) {
221  fprintf(stderr, "NoOpSignalHandler (should not happen). Aborting\n");
222  abort();
223}
224
225void NoOpSigaction(int, siginfo_t *siginfo, void *context) {
226  fprintf(stderr, "NoOpSigaction (should not happen). Aborting\n");
227  abort();
228}
229
230TEST(AddressSanitizer, SignalTest) {
231  signal(SIGSEGV, NoOpSignalHandler);
232  signal(SIGILL, NoOpSignalHandler);
233  // If asan did not intercept sigaction NoOpSigaction will fire.
234  char *x = Ident((char*)malloc(5));
235  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
236  free(Ident(x));
237}
238
239TEST(AddressSanitizer, SigactionTest) {
240  {
241    struct sigaction sigact;
242    memset(&sigact, 0, sizeof(sigact));
243    sigact.sa_sigaction = NoOpSigaction;;
244    sigact.sa_flags = SA_SIGINFO;
245    sigaction(SIGSEGV, &sigact, 0);
246  }
247
248  {
249    struct sigaction sigact;
250    memset(&sigact, 0, sizeof(sigact));
251    sigact.sa_sigaction = NoOpSigaction;;
252    sigact.sa_flags = SA_SIGINFO;
253    sigaction(SIGILL, &sigact, 0);
254  }
255
256  // If asan did not intercept sigaction NoOpSigaction will fire.
257  char *x = Ident((char*)malloc(5));
258  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
259  free(Ident(x));
260}
261
262void *TSDWorker(void *test_key) {
263  if (test_key) {
264    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
265  }
266  return NULL;
267}
268
269void TSDDestructor(void *tsd) {
270  // Spawning a thread will check that the current thread id is not -1.
271  pthread_t th;
272  pthread_create(&th, NULL, TSDWorker, NULL);
273  pthread_join(th, NULL);
274}
275
276// This tests triggers the thread-specific data destruction fiasco which occurs
277// if we don't manage the TSD destructors ourselves. We create a new pthread
278// key with a non-NULL destructor which is likely to be put after the destructor
279// of AsanThread in the list of destructors.
280// In this case the TSD for AsanThread will be destroyed before TSDDestructor
281// is called for the child thread, and a CHECK will fail when we call
282// pthread_create() to spawn the grandchild.
283TEST(AddressSanitizer, DISABLED_TSDTest) {
284  pthread_t th;
285  pthread_key_t test_key;
286  pthread_key_create(&test_key, TSDDestructor);
287  pthread_create(&th, NULL, TSDWorker, &test_key);
288  pthread_join(th, NULL);
289  pthread_key_delete(test_key);
290}
291
292template<class T>
293void OOBTest() {
294  char expected_str[100];
295  for (int size = sizeof(T); size < 20; size += 5) {
296    for (int i = -5; i < 0; i++) {
297      const char *str =
298          "is located.*%d byte.*to the left";
299      sprintf(expected_str, str, abs(i));
300      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
301    }
302
303    for (int i = 0; i < size - sizeof(T) + 1; i++)
304      oob_test<T>(size, i);
305
306    for (int i = size - sizeof(T) + 1; i <= size + 3 * sizeof(T); i++) {
307      const char *str =
308          "is located.*%d byte.*to the right";
309      int off = i >= size ? (i - size) : 0;
310      // we don't catch unaligned partially OOB accesses.
311      if (i % sizeof(T)) continue;
312      sprintf(expected_str, str, off);
313      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
314    }
315  }
316
317  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
318          "is located.*1 byte.*to the left");
319  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
320          "is located.*0 byte.*to the right");
321}
322
323// TODO(glider): the following tests are EXTREMELY slow on Darwin:
324//   AddressSanitizer.OOB_char (125503 ms)
325//   AddressSanitizer.OOB_int (126890 ms)
326//   AddressSanitizer.OOBRightTest (315605 ms)
327//   AddressSanitizer.SimpleStackTest (366559 ms)
328
329TEST(AddressSanitizer, OOB_char) {
330  OOBTest<U1>();
331}
332
333TEST(AddressSanitizer, OOB_int) {
334  OOBTest<U4>();
335}
336
337TEST(AddressSanitizer, OOBRightTest) {
338  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
339    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
340      for (size_t offset = 0; offset <= 8; offset += access_size) {
341        void *p = malloc(alloc_size);
342        // allocated: [p, p + alloc_size)
343        // accessed:  [p + offset, p + offset + access_size)
344        uint8_t *addr = (uint8_t*)p + offset;
345        if (offset + access_size <= alloc_size) {
346          asan_write_sized_aligned(addr, access_size);
347        } else {
348          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
349          const char *str =
350              "is located.%d *byte.*to the right";
351          char expected_str[100];
352          sprintf(expected_str, str, outside_bytes);
353          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
354                       expected_str);
355        }
356        free(p);
357      }
358    }
359  }
360}
361
362TEST(AddressSanitizer, UAF_char) {
363  const char *uaf_string = "AddressSanitizer.*heap-use-after-free";
364  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
365  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
366  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
367  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
368  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
369}
370
371#if ASAN_HAS_BLACKLIST
372TEST(AddressSanitizer, IgnoreTest) {
373  int *x = Ident(new int);
374  delete Ident(x);
375  *x = 0;
376}
377#endif  // ASAN_HAS_BLACKLIST
378
379struct StructWithBitField {
380  int bf1:1;
381  int bf2:1;
382  int bf3:1;
383  int bf4:29;
384};
385
386TEST(AddressSanitizer, BitFieldPositiveTest) {
387  StructWithBitField *x = new StructWithBitField;
388  delete Ident(x);
389  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
390  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
391  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
392  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
393};
394
395struct StructWithBitFields_8_24 {
396  int a:8;
397  int b:24;
398};
399
400TEST(AddressSanitizer, BitFieldNegativeTest) {
401  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
402  x->a = 0;
403  x->b = 0;
404  delete Ident(x);
405}
406
407TEST(AddressSanitizer, OutOfMemoryTest) {
408  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
409  EXPECT_EQ(0, realloc(0, size));
410  EXPECT_EQ(0, realloc(0, ~Ident(0)));
411  EXPECT_EQ(0, malloc(size));
412  EXPECT_EQ(0, malloc(~Ident(0)));
413  EXPECT_EQ(0, calloc(1, size));
414  EXPECT_EQ(0, calloc(1, ~Ident(0)));
415}
416
417#if ASAN_NEEDS_SEGV
418TEST(AddressSanitizer, WildAddressTest) {
419  char *c = (char*)0x123;
420  EXPECT_DEATH(*c = 0, "AddressSanitizer crashed on unknown address");
421}
422#endif
423
424static void MallocStress(size_t n) {
425  uint32_t seed = my_rand(&global_seed);
426  for (size_t iter = 0; iter < 10; iter++) {
427    vector<void *> vec;
428    for (size_t i = 0; i < n; i++) {
429      if ((i % 3) == 0) {
430        if (vec.empty()) continue;
431        size_t idx = my_rand(&seed) % vec.size();
432        void *ptr = vec[idx];
433        vec[idx] = vec.back();
434        vec.pop_back();
435        free_aaa(ptr);
436      } else {
437        size_t size = my_rand(&seed) % 1000 + 1;
438#ifndef __APPLE__
439        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
440        char *ptr = (char*)memalign_aaa(alignment, size);
441#else
442        char *ptr = (char*) malloc_aaa(size);
443#endif
444        vec.push_back(ptr);
445        ptr[0] = 0;
446        ptr[size-1] = 0;
447        ptr[size/2] = 0;
448      }
449    }
450    for (size_t i = 0; i < vec.size(); i++)
451      free_aaa(vec[i]);
452  }
453}
454
455TEST(AddressSanitizer, MallocStressTest) {
456#if ASAN_LOW_MEMORY == 1
457  MallocStress(20000);
458#else
459  MallocStress(200000);
460#endif
461}
462
463static void TestLargeMalloc(size_t size) {
464  char buff[1024];
465  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
466  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
467}
468
469TEST(AddressSanitizer, LargeMallocTest) {
470  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
471    TestLargeMalloc(i);
472  }
473}
474
475#if ASAN_LOW_MEMORY != 1
476TEST(AddressSanitizer, HugeMallocTest) {
477#ifdef __APPLE__
478  // It was empirically found out that 1215 megabytes is the maximum amount of
479  // memory available to the process under AddressSanitizer on Darwin.
480  // (the libSystem malloc() allows allocating up to 2300 megabytes without
481  // ASan).
482  size_t n_megs = __WORDSIZE == 32 ? 1200 : 4100;
483#else
484  size_t n_megs = __WORDSIZE == 32 ? 2600 : 4100;
485#endif
486  TestLargeMalloc(n_megs << 20);
487}
488#endif
489
490TEST(AddressSanitizer, ThreadedMallocStressTest) {
491  const int kNumThreads = 4;
492  pthread_t t[kNumThreads];
493  for (int i = 0; i < kNumThreads; i++) {
494#if ASAN_LOW_MEMORY == 1
495    pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress, (void*)10000);
496#else
497    pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress, (void*)100000);
498#endif
499  }
500  for (int i = 0; i < kNumThreads; i++) {
501    pthread_join(t[i], 0);
502  }
503}
504
505void *ManyThreadsWorker(void *a) {
506  for (int iter = 0; iter < 100; iter++) {
507    for (size_t size = 100; size < 2000; size *= 2) {
508      free(Ident(malloc(size)));
509    }
510  }
511  return 0;
512}
513
514TEST(AddressSanitizer, ManyThreadsTest) {
515  const size_t kNumThreads = __WORDSIZE == 32 ? 30 : 1000;
516  pthread_t t[kNumThreads];
517  for (size_t i = 0; i < kNumThreads; i++) {
518    pthread_create(&t[i], 0, (void* (*)(void *x))ManyThreadsWorker, (void*)i);
519  }
520  for (size_t i = 0; i < kNumThreads; i++) {
521    pthread_join(t[i], 0);
522  }
523}
524
525TEST(AddressSanitizer, ReallocTest) {
526  const int kMinElem = 5;
527  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
528  ptr[3] = 3;
529  for (int i = 0; i < 10000; i++) {
530    ptr = (int*)realloc(ptr,
531        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
532    EXPECT_EQ(3, ptr[3]);
533  }
534}
535
536#ifndef __APPLE__
537static const char *kMallocUsableSizeErrorMsg =
538  "AddressSanitizer attempting to call malloc_usable_size()";
539
540TEST(AddressSanitizer, MallocUsableSizeTest) {
541  const size_t kArraySize = 100;
542  char *array = Ident((char*)malloc(kArraySize));
543  int *int_ptr = Ident(new int);
544  EXPECT_EQ(0, malloc_usable_size(NULL));
545  EXPECT_EQ(kArraySize, malloc_usable_size(array));
546  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
547  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
548  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
549               kMallocUsableSizeErrorMsg);
550  free(array);
551  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
552}
553#endif
554
555void WrongFree() {
556  int *x = (int*)malloc(100 * sizeof(int));
557  // Use the allocated memory, otherwise Clang will optimize it out.
558  Ident(x);
559  free(x + 1);
560}
561
562TEST(AddressSanitizer, WrongFreeTest) {
563  EXPECT_DEATH(WrongFree(),
564               "ERROR: AddressSanitizer attempting free.*not malloc");
565}
566
567void DoubleFree() {
568  int *x = (int*)malloc(100 * sizeof(int));
569  fprintf(stderr, "DoubleFree: x=%p\n", x);
570  free(x);
571  free(x);
572  fprintf(stderr, "should have failed in the second free(%p)\n", x);
573  abort();
574}
575
576TEST(AddressSanitizer, DoubleFreeTest) {
577  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
578               "ERROR: AddressSanitizer attempting double-free"
579               ".*is located 0 bytes inside of 400-byte region"
580               ".*freed by thread T0 here"
581               ".*previously allocated by thread T0 here");
582}
583
584template<int kSize>
585__attribute__((noinline))
586void SizedStackTest() {
587  char a[kSize];
588  char  *A = Ident((char*)&a);
589  for (size_t i = 0; i < kSize; i++)
590    A[i] = i;
591  EXPECT_DEATH(A[-1] = 0, "");
592  EXPECT_DEATH(A[-20] = 0, "");
593  EXPECT_DEATH(A[-31] = 0, "");
594  EXPECT_DEATH(A[kSize] = 0, "");
595  EXPECT_DEATH(A[kSize + 1] = 0, "");
596  EXPECT_DEATH(A[kSize + 10] = 0, "");
597  EXPECT_DEATH(A[kSize + 31] = 0, "");
598}
599
600TEST(AddressSanitizer, SimpleStackTest) {
601  SizedStackTest<1>();
602  SizedStackTest<2>();
603  SizedStackTest<3>();
604  SizedStackTest<4>();
605  SizedStackTest<5>();
606  SizedStackTest<6>();
607  SizedStackTest<7>();
608  SizedStackTest<16>();
609  SizedStackTest<25>();
610  SizedStackTest<34>();
611  SizedStackTest<43>();
612  SizedStackTest<51>();
613  SizedStackTest<62>();
614  SizedStackTest<64>();
615  SizedStackTest<128>();
616}
617
618TEST(AddressSanitizer, ManyStackObjectsTest) {
619  char XXX[10];
620  char YYY[20];
621  char ZZZ[30];
622  Ident(XXX);
623  Ident(YYY);
624  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
625}
626
627__attribute__((noinline))
628static void Frame0(int frame, char *a, char *b, char *c) {
629  char d[4] = {0};
630  char *D = Ident(d);
631  switch (frame) {
632    case 3: a[5]++; break;
633    case 2: b[5]++; break;
634    case 1: c[5]++; break;
635    case 0: D[5]++; break;
636  }
637}
638__attribute__((noinline)) static void Frame1(int frame, char *a, char *b) {
639  char c[4] = {0}; Frame0(frame, a, b, c);
640  break_optimization(0);
641}
642__attribute__((noinline)) static void Frame2(int frame, char *a) {
643  char b[4] = {0}; Frame1(frame, a, b);
644  break_optimization(0);
645}
646__attribute__((noinline)) static void Frame3(int frame) {
647  char a[4] = {0}; Frame2(frame, a);
648  break_optimization(0);
649}
650
651TEST(AddressSanitizer, GuiltyStackFrame0Test) {
652  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
653}
654TEST(AddressSanitizer, GuiltyStackFrame1Test) {
655  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
656}
657TEST(AddressSanitizer, GuiltyStackFrame2Test) {
658  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
659}
660TEST(AddressSanitizer, GuiltyStackFrame3Test) {
661  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
662}
663
664__attribute__((noinline))
665void LongJmpFunc1(jmp_buf buf) {
666  // create three red zones for these two stack objects.
667  int a;
668  int b;
669
670  int *A = Ident(&a);
671  int *B = Ident(&b);
672  *A = *B;
673  longjmp(buf, 1);
674}
675
676__attribute__((noinline))
677void UnderscopeLongJmpFunc1(jmp_buf buf) {
678  // create three red zones for these two stack objects.
679  int a;
680  int b;
681
682  int *A = Ident(&a);
683  int *B = Ident(&b);
684  *A = *B;
685  _longjmp(buf, 1);
686}
687
688__attribute__((noinline))
689void SigLongJmpFunc1(sigjmp_buf buf) {
690  // create three red zones for these two stack objects.
691  int a;
692  int b;
693
694  int *A = Ident(&a);
695  int *B = Ident(&b);
696  *A = *B;
697  siglongjmp(buf, 1);
698}
699
700
701__attribute__((noinline))
702void TouchStackFunc() {
703  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
704  int *A = Ident(a);
705  for (int i = 0; i < 100; i++)
706    A[i] = i*i;
707}
708
709// Test that we handle longjmp and do not report fals positives on stack.
710TEST(AddressSanitizer, LongJmpTest) {
711  static jmp_buf buf;
712  if (!setjmp(buf)) {
713    LongJmpFunc1(buf);
714  } else {
715    TouchStackFunc();
716  }
717}
718
719TEST(AddressSanitizer, UnderscopeLongJmpTest) {
720  static jmp_buf buf;
721  if (!_setjmp(buf)) {
722    UnderscopeLongJmpFunc1(buf);
723  } else {
724    TouchStackFunc();
725  }
726}
727
728TEST(AddressSanitizer, SigLongJmpTest) {
729  static sigjmp_buf buf;
730  if (!sigsetjmp(buf, 1)) {
731    SigLongJmpFunc1(buf);
732  } else {
733    TouchStackFunc();
734  }
735}
736
737#ifdef __EXCEPTIONS
738__attribute__((noinline))
739void ThrowFunc() {
740  // create three red zones for these two stack objects.
741  int a;
742  int b;
743
744  int *A = Ident(&a);
745  int *B = Ident(&b);
746  *A = *B;
747  ASAN_THROW(1);
748}
749
750TEST(AddressSanitizer, CxxExceptionTest) {
751  if (ASAN_UAR) return;
752  // TODO(kcc): this test crashes on 32-bit for some reason...
753  if (__WORDSIZE == 32) return;
754  try {
755    ThrowFunc();
756  } catch(...) {}
757  TouchStackFunc();
758}
759#endif
760
761void *ThreadStackReuseFunc1(void *unused) {
762  // create three red zones for these two stack objects.
763  int a;
764  int b;
765
766  int *A = Ident(&a);
767  int *B = Ident(&b);
768  *A = *B;
769  pthread_exit(0);
770  return 0;
771}
772
773void *ThreadStackReuseFunc2(void *unused) {
774  TouchStackFunc();
775  return 0;
776}
777
778TEST(AddressSanitizer, ThreadStackReuseTest) {
779  pthread_t t;
780  pthread_create(&t, 0, ThreadStackReuseFunc1, 0);
781  pthread_join(t, 0);
782  pthread_create(&t, 0, ThreadStackReuseFunc2, 0);
783  pthread_join(t, 0);
784}
785
786#if defined(__i386__) or defined(__x86_64__)
787TEST(AddressSanitizer, Store128Test) {
788  char *a = Ident((char*)malloc(Ident(12)));
789  char *p = a;
790  if (((uintptr_t)a % 16) != 0)
791    p = a + 8;
792  assert(((uintptr_t)p % 16) == 0);
793  __m128i value_wide = _mm_set1_epi16(0x1234);
794  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
795               "AddressSanitizer heap-buffer-overflow");
796  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
797               "WRITE of size 16");
798  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
799               "located 0 bytes to the right of 12-byte");
800  free(a);
801}
802#endif
803
804static string RightOOBErrorMessage(int oob_distance) {
805  assert(oob_distance >= 0);
806  char expected_str[100];
807  sprintf(expected_str, "located %d bytes to the right", oob_distance);
808  return string(expected_str);
809}
810
811static string LeftOOBErrorMessage(int oob_distance) {
812  assert(oob_distance > 0);
813  char expected_str[100];
814  sprintf(expected_str, "located %d bytes to the left", oob_distance);
815  return string(expected_str);
816}
817
818template<class T>
819void MemSetOOBTestTemplate(size_t length) {
820  if (length == 0) return;
821  size_t size = Ident(sizeof(T) * length);
822  T *array = Ident((T*)malloc(size));
823  int element = Ident(42);
824  int zero = Ident(0);
825  // memset interval inside array
826  memset(array, element, size);
827  memset(array, element, size - 1);
828  memset(array + length - 1, element, sizeof(T));
829  memset(array, element, 1);
830
831  // memset 0 bytes
832  memset(array - 10, element, zero);
833  memset(array - 1, element, zero);
834  memset(array, element, zero);
835  memset(array + length, 0, zero);
836  memset(array + length + 1, 0, zero);
837
838  // try to memset bytes to the right of array
839  EXPECT_DEATH(memset(array, 0, size + 1),
840               RightOOBErrorMessage(0));
841  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
842               RightOOBErrorMessage(4));
843  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
844               RightOOBErrorMessage(2 * sizeof(T) - 1));
845  // whole interval is to the right
846  EXPECT_DEATH(memset(array + length + 1, 0, 10),
847               RightOOBErrorMessage(sizeof(T)));
848
849  // try to memset bytes to the left of array
850  EXPECT_DEATH(memset((char*)array - 1, element, size),
851               LeftOOBErrorMessage(1));
852  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
853               LeftOOBErrorMessage(5));
854  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
855               LeftOOBErrorMessage(5 * sizeof(T)));
856  // whole interval is to the left
857  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
858               LeftOOBErrorMessage(2 * sizeof(T)));
859
860  // try to memset bytes both to the left & to the right
861  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
862               LeftOOBErrorMessage(2));
863
864  free(array);
865}
866
867TEST(AddressSanitizer, MemSetOOBTest) {
868  MemSetOOBTestTemplate<char>(100);
869  MemSetOOBTestTemplate<int>(5);
870  MemSetOOBTestTemplate<double>(256);
871  // We can test arrays of structres/classes here, but what for?
872}
873
874// Same test for memcpy and memmove functions
875template <class T, class M>
876void MemTransferOOBTestTemplate(size_t length) {
877  if (length == 0) return;
878  size_t size = Ident(sizeof(T) * length);
879  T *src = Ident((T*)malloc(size));
880  T *dest = Ident((T*)malloc(size));
881  int zero = Ident(0);
882
883  // valid transfer of bytes between arrays
884  M::transfer(dest, src, size);
885  M::transfer(dest + 1, src, size - sizeof(T));
886  M::transfer(dest, src + length - 1, sizeof(T));
887  M::transfer(dest, src, 1);
888
889  // transfer zero bytes
890  M::transfer(dest - 1, src, 0);
891  M::transfer(dest + length, src, zero);
892  M::transfer(dest, src - 1, zero);
893  M::transfer(dest, src, zero);
894
895  // try to change mem to the right of dest
896  EXPECT_DEATH(M::transfer(dest + 1, src, size),
897               RightOOBErrorMessage(sizeof(T) - 1));
898  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
899               RightOOBErrorMessage(3));
900
901  // try to change mem to the left of dest
902  EXPECT_DEATH(M::transfer(dest - 2, src, size),
903               LeftOOBErrorMessage(2 * sizeof(T)));
904  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
905               LeftOOBErrorMessage(3));
906
907  // try to access mem to the right of src
908  EXPECT_DEATH(M::transfer(dest, src + 2, size),
909               RightOOBErrorMessage(2 * sizeof(T) - 1));
910  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
911               RightOOBErrorMessage(2));
912
913  // try to access mem to the left of src
914  EXPECT_DEATH(M::transfer(dest, src - 1, size),
915               LeftOOBErrorMessage(sizeof(T)));
916  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
917               LeftOOBErrorMessage(6));
918
919  // Generally we don't need to test cases where both accessing src and writing
920  // to dest address to poisoned memory.
921
922  T *big_src = Ident((T*)malloc(size * 2));
923  T *big_dest = Ident((T*)malloc(size * 2));
924  // try to change mem to both sides of dest
925  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
926               LeftOOBErrorMessage(sizeof(T)));
927  // try to access mem to both sides of src
928  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
929               LeftOOBErrorMessage(2 * sizeof(T)));
930
931  free(src);
932  free(dest);
933  free(big_src);
934  free(big_dest);
935}
936
937class MemCpyWrapper {
938 public:
939  static void* transfer(void *to, const void *from, size_t size) {
940    return memcpy(to, from, size);
941  }
942};
943TEST(AddressSanitizer, MemCpyOOBTest) {
944  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
945  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
946}
947
948class MemMoveWrapper {
949 public:
950  static void* transfer(void *to, const void *from, size_t size) {
951    return memmove(to, from, size);
952  }
953};
954TEST(AddressSanitizer, MemMoveOOBTest) {
955  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
956  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
957}
958
959// Tests for string functions
960
961// Used for string functions tests
962static char global_string[] = "global";
963static size_t global_string_length = 6;
964
965// Input to a test is a zero-terminated string str with given length
966// Accesses to the bytes to the left and to the right of str
967// are presumed to produce OOB errors
968void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
969  // Normal strlen calls
970  EXPECT_EQ(strlen(str), length);
971  if (length > 0) {
972    EXPECT_EQ(strlen(str + 1), length - 1);
973    EXPECT_EQ(strlen(str + length), 0);
974  }
975  // Arg of strlen is not malloced, OOB access
976  if (!is_global) {
977    // We don't insert RedZones to the left of global variables
978    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
979    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
980  }
981  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
982  // Overwrite terminator
983  str[length] = 'a';
984  // String is not zero-terminated, strlen will lead to OOB access
985  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
986  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
987  // Restore terminator
988  str[length] = 0;
989}
990TEST(AddressSanitizer, StrLenOOBTest) {
991  // Check heap-allocated string
992  size_t length = Ident(10);
993  char *heap_string = Ident((char*)malloc(length + 1));
994  char stack_string[10 + 1];
995  for (int i = 0; i < length; i++) {
996    heap_string[i] = 'a';
997    stack_string[i] = 'b';
998  }
999  heap_string[length] = 0;
1000  stack_string[length] = 0;
1001  StrLenOOBTestTemplate(heap_string, length, false);
1002  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
1003  //      make test for stack_string work. Or move it to output tests.
1004  // StrLenOOBTestTemplate(stack_string, length, false);
1005  StrLenOOBTestTemplate(global_string, global_string_length, true);
1006  free(heap_string);
1007}
1008
1009static inline char* MallocAndMemsetString(size_t size) {
1010  char *s = Ident((char*)malloc(size));
1011  memset(s, 'z', size);
1012  return s;
1013}
1014
1015#ifndef __APPLE__
1016TEST(AddressSanitizer, StrNLenOOBTest) {
1017  size_t size = Ident(123);
1018  char *str = MallocAndMemsetString(size);
1019  // Normal strnlen calls.
1020  Ident(strnlen(str - 1, 0));
1021  Ident(strnlen(str, size));
1022  Ident(strnlen(str + size - 1, 1));
1023  str[size - 1] = '\0';
1024  Ident(strnlen(str, 2 * size));
1025  // Argument points to not allocated memory.
1026  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
1027  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
1028  // Overwrite the terminating '\0' and hit unallocated memory.
1029  str[size - 1] = 'z';
1030  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
1031  free(str);
1032}
1033#endif
1034
1035TEST(AddressSanitizer, StrDupOOBTest) {
1036  size_t size = Ident(42);
1037  char *str = MallocAndMemsetString(size);
1038  char *new_str;
1039  // Normal strdup calls.
1040  str[size - 1] = '\0';
1041  new_str = strdup(str);
1042  free(new_str);
1043  new_str = strdup(str + size - 1);
1044  free(new_str);
1045  // Argument points to not allocated memory.
1046  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
1047  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
1048  // Overwrite the terminating '\0' and hit unallocated memory.
1049  str[size - 1] = 'z';
1050  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
1051  free(str);
1052}
1053
1054TEST(AddressSanitizer, StrCpyOOBTest) {
1055  size_t to_size = Ident(30);
1056  size_t from_size = Ident(6);  // less than to_size
1057  char *to = Ident((char*)malloc(to_size));
1058  char *from = Ident((char*)malloc(from_size));
1059  // Normal strcpy calls.
1060  strcpy(from, "hello");
1061  strcpy(to, from);
1062  strcpy(to + to_size - from_size, from);
1063  // Length of "from" is too small.
1064  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1065  // "to" or "from" points to not allocated memory.
1066  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1067  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1068  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1069  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1070  // Overwrite the terminating '\0' character and hit unallocated memory.
1071  from[from_size - 1] = '!';
1072  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1073  free(to);
1074  free(from);
1075}
1076
1077TEST(AddressSanitizer, StrNCpyOOBTest) {
1078  size_t to_size = Ident(20);
1079  size_t from_size = Ident(6);  // less than to_size
1080  char *to = Ident((char*)malloc(to_size));
1081  // From is a zero-terminated string "hello\0" of length 6
1082  char *from = Ident((char*)malloc(from_size));
1083  strcpy(from, "hello");
1084  // copy 0 bytes
1085  strncpy(to, from, 0);
1086  strncpy(to - 1, from - 1, 0);
1087  // normal strncpy calls
1088  strncpy(to, from, from_size);
1089  strncpy(to, from, to_size);
1090  strncpy(to, from + from_size - 1, to_size);
1091  strncpy(to + to_size - 1, from, 1);
1092  // One of {to, from} points to not allocated memory
1093  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1094               LeftOOBErrorMessage(1));
1095  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1096               LeftOOBErrorMessage(1));
1097  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1098               RightOOBErrorMessage(0));
1099  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1100               RightOOBErrorMessage(0));
1101  // Length of "to" is too small
1102  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1103               RightOOBErrorMessage(0));
1104  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1105               RightOOBErrorMessage(0));
1106  // Overwrite terminator in from
1107  from[from_size - 1] = '!';
1108  // normal strncpy call
1109  strncpy(to, from, from_size);
1110  // Length of "from" is too small
1111  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1112               RightOOBErrorMessage(0));
1113  free(to);
1114  free(from);
1115}
1116
1117typedef char*(*PointerToStrChr)(const char*, int);
1118void RunStrChrTest(PointerToStrChr StrChr) {
1119  size_t size = Ident(100);
1120  char *str = MallocAndMemsetString(size);
1121  str[10] = 'q';
1122  str[11] = '\0';
1123  EXPECT_EQ(str, StrChr(str, 'z'));
1124  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1125  EXPECT_EQ(NULL, StrChr(str, 'a'));
1126  // StrChr argument points to not allocated memory.
1127  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1128  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1129  // Overwrite the terminator and hit not allocated memory.
1130  str[11] = 'z';
1131  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1132  free(str);
1133}
1134TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1135  RunStrChrTest(&strchr);
1136  RunStrChrTest(&index);
1137}
1138
1139TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1140  // strcmp
1141  EXPECT_EQ(0, strcmp("", ""));
1142  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1143  EXPECT_GT(0, strcmp("ab", "ac"));
1144  EXPECT_GT(0, strcmp("abc", "abcd"));
1145  EXPECT_LT(0, strcmp("acc", "abc"));
1146  EXPECT_LT(0, strcmp("abcd", "abc"));
1147
1148  // strncmp
1149  EXPECT_EQ(0, strncmp("a", "b", 0));
1150  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1151  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1152  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1153  EXPECT_GT(0, strncmp("a", "b", 5));
1154  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1155  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1156  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1157  EXPECT_LT(0, strncmp("zyx", "", 2));
1158
1159  // strcasecmp
1160  EXPECT_EQ(0, strcasecmp("", ""));
1161  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1162  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1163  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1164  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1165  EXPECT_LT(0, strcasecmp("acc", "abc"));
1166  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1167
1168  // strncasecmp
1169  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1170  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1171  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1172  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1173  EXPECT_GT(0, strncasecmp("a", "B", 5));
1174  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1175  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1176  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1177  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1178
1179  // memcmp
1180  EXPECT_EQ(0, memcmp("a", "b", 0));
1181  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1182  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1183  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1184  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1185  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1186}
1187
1188typedef int(*PointerToStrCmp)(const char*, const char*);
1189void RunStrCmpTest(PointerToStrCmp StrCmp) {
1190  size_t size = Ident(100);
1191  char *s1 = MallocAndMemsetString(size);
1192  char *s2 = MallocAndMemsetString(size);
1193  s1[size - 1] = '\0';
1194  s2[size - 1] = '\0';
1195  // Normal StrCmp calls
1196  Ident(StrCmp(s1, s2));
1197  Ident(StrCmp(s1, s2 + size - 1));
1198  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1199  s1[size - 1] = 'z';
1200  s2[size - 1] = 'x';
1201  Ident(StrCmp(s1, s2));
1202  // One of arguments points to not allocated memory.
1203  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1204  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1205  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1206  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1207  // Hit unallocated memory and die.
1208  s2[size - 1] = 'z';
1209  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1210  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1211  free(s1);
1212  free(s2);
1213}
1214
1215TEST(AddressSanitizer, StrCmpOOBTest) {
1216  RunStrCmpTest(&strcmp);
1217}
1218
1219TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1220  RunStrCmpTest(&strcasecmp);
1221}
1222
1223typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1224void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1225  size_t size = Ident(100);
1226  char *s1 = MallocAndMemsetString(size);
1227  char *s2 = MallocAndMemsetString(size);
1228  s1[size - 1] = '\0';
1229  s2[size - 1] = '\0';
1230  // Normal StrNCmp calls
1231  Ident(StrNCmp(s1, s2, size + 2));
1232  s1[size - 1] = 'z';
1233  s2[size - 1] = 'x';
1234  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1235  s2[size - 1] = 'z';
1236  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1237  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1238  // One of arguments points to not allocated memory.
1239  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1240  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1241  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1242  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1243  // Hit unallocated memory and die.
1244  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1245  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1246  free(s1);
1247  free(s2);
1248}
1249
1250TEST(AddressSanitizer, StrNCmpOOBTest) {
1251  RunStrNCmpTest(&strncmp);
1252}
1253
1254TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1255  RunStrNCmpTest(&strncasecmp);
1256}
1257
1258TEST(AddressSanitizer, MemCmpOOBTest) {
1259  size_t size = Ident(100);
1260  char *s1 = MallocAndMemsetString(size);
1261  char *s2 = MallocAndMemsetString(size);
1262  // Normal memcmp calls.
1263  Ident(memcmp(s1, s2, size));
1264  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1265  Ident(memcmp(s1 - 1, s2 - 1, 0));
1266  // One of arguments points to not allocated memory.
1267  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1268  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1269  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1270  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1271  // Hit unallocated memory and die.
1272  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1273  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1274  // Zero bytes are not terminators and don't prevent from OOB.
1275  s1[size - 1] = '\0';
1276  s2[size - 1] = '\0';
1277  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1278  free(s1);
1279  free(s2);
1280}
1281
1282TEST(AddressSanitizer, StrCatOOBTest) {
1283  size_t to_size = Ident(100);
1284  char *to = MallocAndMemsetString(to_size);
1285  to[0] = '\0';
1286  size_t from_size = Ident(20);
1287  char *from = MallocAndMemsetString(from_size);
1288  from[from_size - 1] = '\0';
1289  // Normal strcat calls.
1290  strcat(to, from);
1291  strcat(to, from);
1292  strcat(to + from_size, from + from_size - 2);
1293  // Catenate empty string is not always an error.
1294  strcat(to - 1, from + from_size - 1);
1295  // One of arguments points to not allocated memory.
1296  EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1297  EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1298  EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1299  EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1300
1301  // "from" is not zero-terminated.
1302  from[from_size - 1] = 'z';
1303  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1304  from[from_size - 1] = '\0';
1305  // "to" is not zero-terminated.
1306  memset(to, 'z', to_size);
1307  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1308  // "to" is too short to fit "from".
1309  to[to_size - from_size + 1] = '\0';
1310  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1311  // length of "to" is just enough.
1312  strcat(to, from + 1);
1313}
1314
1315static string OverlapErrorMessage(const string &func) {
1316  return func + "-param-overlap";
1317}
1318
1319TEST(AddressSanitizer, StrArgsOverlapTest) {
1320  size_t size = Ident(100);
1321  char *str = Ident((char*)malloc(size));
1322
1323// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1324// memmove().
1325#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1326    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1327  // Check "memcpy". Use Ident() to avoid inlining.
1328  memset(str, 'z', size);
1329  Ident(memcpy)(str + 1, str + 11, 10);
1330  Ident(memcpy)(str, str, 0);
1331  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1332  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1333#endif
1334
1335  // We do not treat memcpy with to==from as a bug.
1336  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1337  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1338  //              OverlapErrorMessage("memcpy"));
1339
1340  // Check "strcpy".
1341  memset(str, 'z', size);
1342  str[9] = '\0';
1343  strcpy(str + 10, str);
1344  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1345  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1346  strcpy(str, str + 5);
1347
1348  // Check "strncpy".
1349  memset(str, 'z', size);
1350  strncpy(str, str + 10, 10);
1351  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1352  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1353  str[10] = '\0';
1354  strncpy(str + 11, str, 20);
1355  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1356
1357  // Check "strcat".
1358  memset(str, 'z', size);
1359  str[10] = '\0';
1360  str[20] = '\0';
1361  strcat(str, str + 10);
1362  strcat(str, str + 11);
1363  str[10] = '\0';
1364  strcat(str + 11, str);
1365  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1366  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1367  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1368
1369  free(str);
1370}
1371
1372// At the moment we instrument memcpy/memove/memset calls at compile time so we
1373// can't handle OOB error if these functions are called by pointer, see disabled
1374// MemIntrinsicCallByPointerTest below
1375typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1376typedef void*(*PointerToMemSet)(void*, int, size_t);
1377
1378void CallMemSetByPointer(PointerToMemSet MemSet) {
1379  size_t size = Ident(100);
1380  char *array = Ident((char*)malloc(size));
1381  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1382  free(array);
1383}
1384
1385void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1386  size_t size = Ident(100);
1387  char *src = Ident((char*)malloc(size));
1388  char *dst = Ident((char*)malloc(size));
1389  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1390  free(src);
1391  free(dst);
1392}
1393
1394TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1395  CallMemSetByPointer(&memset);
1396  CallMemTransferByPointer(&memcpy);
1397  CallMemTransferByPointer(&memmove);
1398}
1399
1400// This test case fails
1401// Clang optimizes memcpy/memset calls which lead to unaligned access
1402TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1403  int size = Ident(4096);
1404  char *s = Ident((char*)malloc(size));
1405  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1406  free(s);
1407}
1408
1409// TODO(samsonov): Add a test with malloc(0)
1410// TODO(samsonov): Add tests for str* and mem* functions.
1411
1412__attribute__((noinline))
1413static int LargeFunction(bool do_bad_access) {
1414  int *x = new int[100];
1415  x[0]++;
1416  x[1]++;
1417  x[2]++;
1418  x[3]++;
1419  x[4]++;
1420  x[5]++;
1421  x[6]++;
1422  x[7]++;
1423  x[8]++;
1424  x[9]++;
1425
1426  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1427
1428  x[10]++;
1429  x[11]++;
1430  x[12]++;
1431  x[13]++;
1432  x[14]++;
1433  x[15]++;
1434  x[16]++;
1435  x[17]++;
1436  x[18]++;
1437  x[19]++;
1438
1439  delete x;
1440  return res;
1441}
1442
1443// Test the we have correct debug info for the failing instruction.
1444// This test requires the in-process symbolizer to be enabled by default.
1445TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1446  int failing_line = LargeFunction(false);
1447  char expected_warning[128];
1448  sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1449  EXPECT_DEATH(LargeFunction(true), expected_warning);
1450}
1451
1452// Check that we unwind and symbolize correctly.
1453TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1454  int *a = (int*)malloc_aaa(sizeof(int));
1455  *a = 1;
1456  free_aaa(a);
1457  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1458               "malloc_fff.*malloc_eee.*malloc_ddd");
1459}
1460
1461void *ThreadedTestAlloc(void *a) {
1462  int **p = (int**)a;
1463  *p = new int;
1464  return 0;
1465}
1466
1467void *ThreadedTestFree(void *a) {
1468  int **p = (int**)a;
1469  delete *p;
1470  return 0;
1471}
1472
1473void *ThreadedTestUse(void *a) {
1474  int **p = (int**)a;
1475  **p = 1;
1476  return 0;
1477}
1478
1479void ThreadedTestSpawn() {
1480  pthread_t t;
1481  int *x;
1482  pthread_create(&t, 0, ThreadedTestAlloc, &x);
1483  pthread_join(t, 0);
1484  pthread_create(&t, 0, ThreadedTestFree, &x);
1485  pthread_join(t, 0);
1486  pthread_create(&t, 0, ThreadedTestUse, &x);
1487  pthread_join(t, 0);
1488}
1489
1490TEST(AddressSanitizer, ThreadedTest) {
1491  EXPECT_DEATH(ThreadedTestSpawn(),
1492               ASAN_PCRE_DOTALL
1493               "Thread T.*created"
1494               ".*Thread T.*created"
1495               ".*Thread T.*created");
1496}
1497
1498#if ASAN_NEEDS_SEGV
1499TEST(AddressSanitizer, ShadowGapTest) {
1500#if __WORDSIZE == 32
1501  char *addr = (char*)0x22000000;
1502#else
1503  char *addr = (char*)0x0000100000080000;
1504#endif
1505  EXPECT_DEATH(*addr = 1, "AddressSanitizer crashed on unknown");
1506}
1507#endif  // ASAN_NEEDS_SEGV
1508
1509extern "C" {
1510__attribute__((noinline))
1511static void UseThenFreeThenUse() {
1512  char *x = Ident((char*)malloc(8));
1513  *x = 1;
1514  free_aaa(x);
1515  *x = 2;
1516}
1517}
1518
1519TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1520  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1521}
1522
1523TEST(AddressSanitizer, StrDupTest) {
1524  free(strdup(Ident("123")));
1525}
1526
1527// Currently we create and poison redzone at right of global variables.
1528char glob5[5];
1529static char static110[110];
1530const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1531static const char StaticConstGlob[3] = {9, 8, 7};
1532extern int GlobalsTest(int x);
1533
1534TEST(AddressSanitizer, GlobalTest) {
1535  static char func_static15[15];
1536
1537  static char fs1[10];
1538  static char fs2[10];
1539  static char fs3[10];
1540
1541  glob5[Ident(0)] = 0;
1542  glob5[Ident(1)] = 0;
1543  glob5[Ident(2)] = 0;
1544  glob5[Ident(3)] = 0;
1545  glob5[Ident(4)] = 0;
1546
1547  EXPECT_DEATH(glob5[Ident(5)] = 0,
1548               "0 bytes to the right of global variable.*glob5.* size 5");
1549  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1550               "6 bytes to the right of global variable.*glob5.* size 5");
1551  Ident(static110);  // avoid optimizations
1552  static110[Ident(0)] = 0;
1553  static110[Ident(109)] = 0;
1554  EXPECT_DEATH(static110[Ident(110)] = 0,
1555               "0 bytes to the right of global variable");
1556  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1557               "7 bytes to the right of global variable");
1558
1559  Ident(func_static15);  // avoid optimizations
1560  func_static15[Ident(0)] = 0;
1561  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1562               "0 bytes to the right of global variable");
1563  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1564               "9 bytes to the right of global variable");
1565
1566  Ident(fs1);
1567  Ident(fs2);
1568  Ident(fs3);
1569
1570  // We don't create left redzones, so this is not 100% guaranteed to fail.
1571  // But most likely will.
1572  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1573
1574  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1575               "is located 1 bytes to the right of .*ConstGlob");
1576  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1577               "is located 2 bytes to the right of .*StaticConstGlob");
1578
1579  // call stuff from another file.
1580  GlobalsTest(0);
1581}
1582
1583TEST(AddressSanitizer, GlobalStringConstTest) {
1584  static const char *zoo = "FOOBAR123";
1585  const char *p = Ident(zoo);
1586  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1587}
1588
1589TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1590  static char zoo[10];
1591  const char *p = Ident(zoo);
1592  // The file name should be present in the report.
1593  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1594}
1595
1596int *ReturnsPointerToALocalObject() {
1597  int a = 0;
1598  return Ident(&a);
1599}
1600
1601#if ASAN_UAR == 1
1602TEST(AddressSanitizer, LocalReferenceReturnTest) {
1603  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1604  int *p = f();
1605  // Call 'f' a few more times, 'p' should still be poisoned.
1606  for (int i = 0; i < 32; i++)
1607    f();
1608  EXPECT_DEATH(*p = 1, "AddressSanitizer stack-use-after-return");
1609  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1610}
1611#endif
1612
1613template <int kSize>
1614__attribute__((noinline))
1615static void FuncWithStack() {
1616  char x[kSize];
1617  Ident(x)[0] = 0;
1618  Ident(x)[kSize-1] = 0;
1619}
1620
1621static void LotsOfStackReuse() {
1622  int LargeStack[10000];
1623  Ident(LargeStack)[0] = 0;
1624  for (int i = 0; i < 10000; i++) {
1625    FuncWithStack<128 * 1>();
1626    FuncWithStack<128 * 2>();
1627    FuncWithStack<128 * 4>();
1628    FuncWithStack<128 * 8>();
1629    FuncWithStack<128 * 16>();
1630    FuncWithStack<128 * 32>();
1631    FuncWithStack<128 * 64>();
1632    FuncWithStack<128 * 128>();
1633    FuncWithStack<128 * 256>();
1634    FuncWithStack<128 * 512>();
1635    Ident(LargeStack)[0] = 0;
1636  }
1637}
1638
1639TEST(AddressSanitizer, StressStackReuseTest) {
1640  LotsOfStackReuse();
1641}
1642
1643TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1644  const int kNumThreads = 20;
1645  pthread_t t[kNumThreads];
1646  for (int i = 0; i < kNumThreads; i++) {
1647    pthread_create(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1648  }
1649  for (int i = 0; i < kNumThreads; i++) {
1650    pthread_join(t[i], 0);
1651  }
1652}
1653
1654static void *PthreadExit(void *a) {
1655  pthread_exit(0);
1656  return 0;
1657}
1658
1659TEST(AddressSanitizer, PthreadExitTest) {
1660  pthread_t t;
1661  for (int i = 0; i < 1000; i++) {
1662    pthread_create(&t, 0, PthreadExit, 0);
1663    pthread_join(t, 0);
1664  }
1665}
1666
1667#ifdef __EXCEPTIONS
1668__attribute__((noinline))
1669static void StackReuseAndException() {
1670  int large_stack[1000];
1671  Ident(large_stack);
1672  ASAN_THROW(1);
1673}
1674
1675// TODO(kcc): support exceptions with use-after-return.
1676TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1677  for (int i = 0; i < 10000; i++) {
1678    try {
1679    StackReuseAndException();
1680    } catch(...) {
1681    }
1682  }
1683}
1684#endif
1685
1686TEST(AddressSanitizer, MlockTest) {
1687  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1688  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1689  EXPECT_EQ(0, munlockall());
1690  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1691}
1692
1693struct LargeStruct {
1694  int foo[100];
1695};
1696
1697// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
1698// Struct copy should not cause asan warning even if lhs == rhs.
1699TEST(AddressSanitizer, LargeStructCopyTest) {
1700  LargeStruct a;
1701  *Ident(&a) = *Ident(&a);
1702}
1703
1704__attribute__((no_address_safety_analysis))
1705static void NoAddressSafety() {
1706  char *foo = new char[10];
1707  Ident(foo)[10] = 0;
1708  delete [] foo;
1709}
1710
1711TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
1712  Ident(NoAddressSafety)();
1713}
1714
1715// ------------------ demo tests; run each one-by-one -------------
1716// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1717TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1718  ThreadedTestSpawn();
1719}
1720
1721void *SimpleBugOnSTack(void *x = 0) {
1722  char a[20];
1723  Ident(a)[20] = 0;
1724  return 0;
1725}
1726
1727TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1728  SimpleBugOnSTack();
1729}
1730
1731TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1732  pthread_t t;
1733  pthread_create(&t, 0, SimpleBugOnSTack, 0);
1734  pthread_join(t, 0);
1735}
1736
1737TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1738  uaf_test<U1>(10, 0);
1739}
1740TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1741  uaf_test<U1>(10, -2);
1742}
1743TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1744  uaf_test<U1>(10, 10);
1745}
1746
1747TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1748  uaf_test<U1>(kLargeMalloc, 0);
1749}
1750
1751TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1752  oob_test<U1>(10, -1);
1753}
1754
1755TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1756  oob_test<U1>(kLargeMalloc, -1);
1757}
1758
1759TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1760  oob_test<U1>(10, 10);
1761}
1762
1763TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1764  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1765}
1766
1767TEST(AddressSanitizer, DISABLED_DemoOOM) {
1768  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1769  printf("%p\n", malloc(size));
1770}
1771
1772TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1773  DoubleFree();
1774}
1775
1776TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1777  int *a = 0;
1778  Ident(a)[10] = 0;
1779}
1780
1781TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1782  static char a[100];
1783  static char b[100];
1784  static char c[100];
1785  Ident(a);
1786  Ident(b);
1787  Ident(c);
1788  Ident(a)[5] = 0;
1789  Ident(b)[105] = 0;
1790  Ident(a)[5] = 0;
1791}
1792
1793TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1794  const size_t kAllocSize = (1 << 28) - 1024;
1795  size_t total_size = 0;
1796  while (true) {
1797    char *x = (char*)malloc(kAllocSize);
1798    memset(x, 0, kAllocSize);
1799    total_size += kAllocSize;
1800    fprintf(stderr, "total: %ldM\n", (long)total_size >> 20);
1801  }
1802}
1803
1804#ifdef __APPLE__
1805#include "asan_mac_test.h"
1806// TODO(glider): figure out whether we still need these tests. Is it correct
1807// to intercept CFAllocator?
1808TEST(AddressSanitizerMac, DISABLED_CFAllocatorDefaultDoubleFree) {
1809  EXPECT_DEATH(
1810      CFAllocatorDefaultDoubleFree(),
1811      "attempting double-free");
1812}
1813
1814TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
1815  EXPECT_DEATH(
1816      CFAllocatorSystemDefaultDoubleFree(),
1817      "attempting double-free");
1818}
1819
1820TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocDoubleFree) {
1821  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
1822}
1823
1824TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
1825  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
1826}
1827
1828TEST(AddressSanitizerMac, GCDDispatchAsync) {
1829  // Make sure the whole ASan report is printed, i.e. that we don't die
1830  // on a CHECK.
1831  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
1832}
1833
1834TEST(AddressSanitizerMac, GCDDispatchSync) {
1835  // Make sure the whole ASan report is printed, i.e. that we don't die
1836  // on a CHECK.
1837  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
1838}
1839
1840
1841TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
1842  // Make sure the whole ASan report is printed, i.e. that we don't die
1843  // on a CHECK.
1844  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
1845}
1846
1847TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
1848  // Make sure the whole ASan report is printed, i.e. that we don't die
1849  // on a CHECK.
1850  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
1851}
1852
1853TEST(AddressSanitizerMac, GCDDispatchAfter) {
1854  // Make sure the whole ASan report is printed, i.e. that we don't die
1855  // on a CHECK.
1856  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
1857}
1858
1859TEST(AddressSanitizerMac, GCDSourceEvent) {
1860  // Make sure the whole ASan report is printed, i.e. that we don't die
1861  // on a CHECK.
1862  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
1863}
1864
1865TEST(AddressSanitizerMac, GCDSourceCancel) {
1866  // Make sure the whole ASan report is printed, i.e. that we don't die
1867  // on a CHECK.
1868  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
1869}
1870
1871TEST(AddressSanitizerMac, GCDGroupAsync) {
1872  // Make sure the whole ASan report is printed, i.e. that we don't die
1873  // on a CHECK.
1874  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
1875}
1876
1877void *MallocIntrospectionLockWorker(void *_) {
1878  const int kNumPointers = 100;
1879  int i;
1880  void *pointers[kNumPointers];
1881  for (i = 0; i < kNumPointers; i++) {
1882    pointers[i] = malloc(i + 1);
1883  }
1884  for (i = 0; i < kNumPointers; i++) {
1885    free(pointers[i]);
1886  }
1887
1888  return NULL;
1889}
1890
1891void *MallocIntrospectionLockForker(void *_) {
1892  pid_t result = fork();
1893  if (result == -1) {
1894    perror("fork");
1895  }
1896  assert(result != -1);
1897  if (result == 0) {
1898    // Call malloc in the child process to make sure we won't deadlock.
1899    void *ptr = malloc(42);
1900    free(ptr);
1901    exit(0);
1902  } else {
1903    // Return in the parent process.
1904    return NULL;
1905  }
1906}
1907
1908TEST(AddressSanitizerMac, MallocIntrospectionLock) {
1909  // Incorrect implementation of force_lock and force_unlock in our malloc zone
1910  // will cause forked processes to deadlock.
1911  // TODO(glider): need to detect that none of the child processes deadlocked.
1912  const int kNumWorkers = 5, kNumIterations = 100;
1913  int i, iter;
1914  for (iter = 0; iter < kNumIterations; iter++) {
1915    pthread_t workers[kNumWorkers], forker;
1916    for (i = 0; i < kNumWorkers; i++) {
1917      pthread_create(&workers[i], 0, MallocIntrospectionLockWorker, 0);
1918    }
1919    pthread_create(&forker, 0, MallocIntrospectionLockForker, 0);
1920    for (i = 0; i < kNumWorkers; i++) {
1921      pthread_join(workers[i], 0);
1922    }
1923    pthread_join(forker, 0);
1924  }
1925}
1926
1927void *TSDAllocWorker(void *test_key) {
1928  if (test_key) {
1929    void *mem = malloc(10);
1930    pthread_setspecific(*(pthread_key_t*)test_key, mem);
1931  }
1932  return NULL;
1933}
1934
1935TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
1936  pthread_t th;
1937  pthread_key_t test_key;
1938  pthread_key_create(&test_key, CallFreeOnWorkqueue);
1939  pthread_create(&th, NULL, TSDAllocWorker, &test_key);
1940  pthread_join(th, NULL);
1941  pthread_key_delete(test_key);
1942}
1943
1944// Test that CFStringCreateCopy does not copy constant strings.
1945TEST(AddressSanitizerMac, CFStringCreateCopy) {
1946  CFStringRef str = CFSTR("Hello world!\n");
1947  CFStringRef str2 = CFStringCreateCopy(0, str);
1948  EXPECT_EQ(str, str2);
1949}
1950
1951#endif  // __APPLE__
1952
1953int main(int argc, char **argv) {
1954  progname = argv[0];
1955  testing::GTEST_FLAG(death_test_style) = "threadsafe";
1956  testing::InitGoogleTest(&argc, argv);
1957  return RUN_ALL_TESTS();
1958}
1959