asan_test.cc revision 7b7b55e99166511ce1e66bf6b79c46ae4aa60d17
1//===-- asan_test.cc ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22
23#if defined(__i386__) or defined(__x86_64__)
24#include <emmintrin.h>
25#endif
26
27#include "asan_test_config.h"
28#include "asan_test_utils.h"
29
30#ifndef __APPLE__
31#include <malloc.h>
32#else
33#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
34#include <CoreFoundation/CFString.h>
35#endif  // __APPLE__
36
37#ifdef __APPLE__
38static bool APPLE = true;
39#else
40static bool APPLE = false;
41#endif
42
43#if ASAN_HAS_EXCEPTIONS
44# define ASAN_THROW(x) throw (x)
45#else
46# define ASAN_THROW(x)
47#endif
48
49#include <sys/mman.h>
50
51typedef uint8_t   U1;
52typedef uint16_t  U2;
53typedef uint32_t  U4;
54typedef uint64_t  U8;
55
56static const char *progname;
57static const int kPageSize = 4096;
58
59// Simple stand-alone pseudorandom number generator.
60// Current algorithm is ANSI C linear congruential PRNG.
61static inline uint32_t my_rand(uint32_t* state) {
62  return (*state = *state * 1103515245 + 12345) >> 16;
63}
64
65static uint32_t global_seed = 0;
66
67const size_t kLargeMalloc = 1 << 24;
68
69template<class T>
70__attribute__((noinline))
71void asan_write(T *a) {
72  *a = 0;
73}
74
75__attribute__((noinline))
76void asan_write_sized_aligned(uint8_t *p, size_t size) {
77  EXPECT_EQ(0, ((uintptr_t)p % size));
78  if      (size == 1) asan_write((uint8_t*)p);
79  else if (size == 2) asan_write((uint16_t*)p);
80  else if (size == 4) asan_write((uint32_t*)p);
81  else if (size == 8) asan_write((uint64_t*)p);
82}
83
84__attribute__((noinline)) void *malloc_fff(size_t size) {
85  void *res = malloc/**/(size); break_optimization(0); return res;}
86__attribute__((noinline)) void *malloc_eee(size_t size) {
87  void *res = malloc_fff(size); break_optimization(0); return res;}
88__attribute__((noinline)) void *malloc_ddd(size_t size) {
89  void *res = malloc_eee(size); break_optimization(0); return res;}
90__attribute__((noinline)) void *malloc_ccc(size_t size) {
91  void *res = malloc_ddd(size); break_optimization(0); return res;}
92__attribute__((noinline)) void *malloc_bbb(size_t size) {
93  void *res = malloc_ccc(size); break_optimization(0); return res;}
94__attribute__((noinline)) void *malloc_aaa(size_t size) {
95  void *res = malloc_bbb(size); break_optimization(0); return res;}
96
97#ifndef __APPLE__
98__attribute__((noinline)) void *memalign_fff(size_t alignment, size_t size) {
99  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
100__attribute__((noinline)) void *memalign_eee(size_t alignment, size_t size) {
101  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
102__attribute__((noinline)) void *memalign_ddd(size_t alignment, size_t size) {
103  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
104__attribute__((noinline)) void *memalign_ccc(size_t alignment, size_t size) {
105  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
106__attribute__((noinline)) void *memalign_bbb(size_t alignment, size_t size) {
107  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
108__attribute__((noinline)) void *memalign_aaa(size_t alignment, size_t size) {
109  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
110#endif  // __APPLE__
111
112
113__attribute__((noinline))
114  void free_ccc(void *p) { free(p); break_optimization(0);}
115__attribute__((noinline))
116  void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
117__attribute__((noinline))
118  void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
119
120template<class T>
121__attribute__((noinline))
122void oob_test(int size, int off) {
123  char *p = (char*)malloc_aaa(size);
124  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
125  //        sizeof(T), p, p + size, off);
126  asan_write((T*)(p + off));
127  free_aaa(p);
128}
129
130
131template<class T>
132__attribute__((noinline))
133void uaf_test(int size, int off) {
134  char *p = (char *)malloc_aaa(size);
135  free_aaa(p);
136  for (int i = 1; i < 100; i++)
137    free_aaa(malloc_aaa(i));
138  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
139          (long)sizeof(T), p, off);
140  asan_write((T*)(p + off));
141}
142
143TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
144#if defined(__has_feature) && __has_feature(address_sanitizer)
145  bool asan = 1;
146#else
147  bool asan = 0;
148#endif
149  EXPECT_EQ(true, asan);
150}
151
152TEST(AddressSanitizer, SimpleDeathTest) {
153  EXPECT_DEATH(exit(1), "");
154}
155
156TEST(AddressSanitizer, VariousMallocsTest) {
157  // fprintf(stderr, "malloc:\n");
158  int *a = (int*)malloc(100 * sizeof(int));
159  a[50] = 0;
160  free(a);
161
162  // fprintf(stderr, "realloc:\n");
163  int *r = (int*)malloc(10);
164  r = (int*)realloc(r, 2000 * sizeof(int));
165  r[1000] = 0;
166  free(r);
167
168  // fprintf(stderr, "operator new []\n");
169  int *b = new int[100];
170  b[50] = 0;
171  delete [] b;
172
173  // fprintf(stderr, "operator new\n");
174  int *c = new int;
175  *c = 0;
176  delete c;
177
178#if !defined(__APPLE__) && !defined(ANDROID)
179  // fprintf(stderr, "posix_memalign\n");
180  int *pm;
181  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
182  EXPECT_EQ(0, pm_res);
183  free(pm);
184#endif
185
186#if !defined(__APPLE__)
187  int *ma = (int*)memalign(kPageSize, kPageSize);
188  EXPECT_EQ(0, (uintptr_t)ma % kPageSize);
189  ma[123] = 0;
190  free(ma);
191#endif  // __APPLE__
192}
193
194TEST(AddressSanitizer, CallocTest) {
195  int *a = (int*)calloc(100, sizeof(int));
196  EXPECT_EQ(0, a[10]);
197  free(a);
198}
199
200TEST(AddressSanitizer, VallocTest) {
201  void *a = valloc(100);
202  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
203  free(a);
204}
205
206#ifndef __APPLE__
207TEST(AddressSanitizer, PvallocTest) {
208  char *a = (char*)pvalloc(kPageSize + 100);
209  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
210  a[kPageSize + 101] = 1;  // we should not report an error here.
211  free(a);
212
213  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
214  EXPECT_EQ(0, (uintptr_t)a % kPageSize);
215  a[101] = 1;  // we should not report an error here.
216  free(a);
217}
218#endif  // __APPLE__
219
220void NoOpSignalHandler(int unused) {
221  fprintf(stderr, "NoOpSignalHandler (should not happen). Aborting\n");
222  abort();
223}
224
225void NoOpSigaction(int, siginfo_t *siginfo, void *context) {
226  fprintf(stderr, "NoOpSigaction (should not happen). Aborting\n");
227  abort();
228}
229
230TEST(AddressSanitizer, SignalTest) {
231  signal(SIGSEGV, NoOpSignalHandler);
232  signal(SIGILL, NoOpSignalHandler);
233  // If asan did not intercept sigaction NoOpSigaction will fire.
234  char *x = Ident((char*)malloc(5));
235  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
236  free(Ident(x));
237}
238
239TEST(AddressSanitizer, SigactionTest) {
240  {
241    struct sigaction sigact;
242    memset(&sigact, 0, sizeof(sigact));
243    sigact.sa_sigaction = NoOpSigaction;;
244    sigact.sa_flags = SA_SIGINFO;
245    sigaction(SIGSEGV, &sigact, 0);
246  }
247
248  {
249    struct sigaction sigact;
250    memset(&sigact, 0, sizeof(sigact));
251    sigact.sa_sigaction = NoOpSigaction;;
252    sigact.sa_flags = SA_SIGINFO;
253    sigaction(SIGILL, &sigact, 0);
254  }
255
256  // If asan did not intercept sigaction NoOpSigaction will fire.
257  char *x = Ident((char*)malloc(5));
258  EXPECT_DEATH(x[6]++, "is located 1 bytes to the right");
259  free(Ident(x));
260}
261
262void *TSDWorker(void *test_key) {
263  if (test_key) {
264    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
265  }
266  return NULL;
267}
268
269void TSDDestructor(void *tsd) {
270  // Spawning a thread will check that the current thread id is not -1.
271  pthread_t th;
272  pthread_create(&th, NULL, TSDWorker, NULL);
273  pthread_join(th, NULL);
274}
275
276// This tests triggers the thread-specific data destruction fiasco which occurs
277// if we don't manage the TSD destructors ourselves. We create a new pthread
278// key with a non-NULL destructor which is likely to be put after the destructor
279// of AsanThread in the list of destructors.
280// In this case the TSD for AsanThread will be destroyed before TSDDestructor
281// is called for the child thread, and a CHECK will fail when we call
282// pthread_create() to spawn the grandchild.
283TEST(AddressSanitizer, DISABLED_TSDTest) {
284  pthread_t th;
285  pthread_key_t test_key;
286  pthread_key_create(&test_key, TSDDestructor);
287  pthread_create(&th, NULL, TSDWorker, &test_key);
288  pthread_join(th, NULL);
289  pthread_key_delete(test_key);
290}
291
292template<class T>
293void OOBTest() {
294  char expected_str[100];
295  for (int size = sizeof(T); size < 20; size += 5) {
296    for (int i = -5; i < 0; i++) {
297      const char *str =
298          "is located.*%d byte.*to the left";
299      sprintf(expected_str, str, abs(i));
300      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
301    }
302
303    for (int i = 0; i < size - sizeof(T) + 1; i++)
304      oob_test<T>(size, i);
305
306    for (int i = size - sizeof(T) + 1; i <= size + 3 * sizeof(T); i++) {
307      const char *str =
308          "is located.*%d byte.*to the right";
309      int off = i >= size ? (i - size) : 0;
310      // we don't catch unaligned partially OOB accesses.
311      if (i % sizeof(T)) continue;
312      sprintf(expected_str, str, off);
313      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
314    }
315  }
316
317  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
318          "is located.*1 byte.*to the left");
319  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
320          "is located.*0 byte.*to the right");
321}
322
323// TODO(glider): the following tests are EXTREMELY slow on Darwin:
324//   AddressSanitizer.OOB_char (125503 ms)
325//   AddressSanitizer.OOB_int (126890 ms)
326//   AddressSanitizer.OOBRightTest (315605 ms)
327//   AddressSanitizer.SimpleStackTest (366559 ms)
328
329TEST(AddressSanitizer, OOB_char) {
330  OOBTest<U1>();
331}
332
333TEST(AddressSanitizer, OOB_int) {
334  OOBTest<U4>();
335}
336
337TEST(AddressSanitizer, OOBRightTest) {
338  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
339    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
340      for (size_t offset = 0; offset <= 8; offset += access_size) {
341        void *p = malloc(alloc_size);
342        // allocated: [p, p + alloc_size)
343        // accessed:  [p + offset, p + offset + access_size)
344        uint8_t *addr = (uint8_t*)p + offset;
345        if (offset + access_size <= alloc_size) {
346          asan_write_sized_aligned(addr, access_size);
347        } else {
348          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
349          const char *str =
350              "is located.%d *byte.*to the right";
351          char expected_str[100];
352          sprintf(expected_str, str, outside_bytes);
353          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
354                       expected_str);
355        }
356        free(p);
357      }
358    }
359  }
360}
361
362TEST(AddressSanitizer, UAF_char) {
363  const char *uaf_string = "AddressSanitizer.*heap-use-after-free";
364  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
365  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
366  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
367  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
368  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
369}
370
371#if ASAN_HAS_BLACKLIST
372TEST(AddressSanitizer, IgnoreTest) {
373  int *x = Ident(new int);
374  delete Ident(x);
375  *x = 0;
376}
377#endif  // ASAN_HAS_BLACKLIST
378
379struct StructWithBitField {
380  int bf1:1;
381  int bf2:1;
382  int bf3:1;
383  int bf4:29;
384};
385
386TEST(AddressSanitizer, BitFieldPositiveTest) {
387  StructWithBitField *x = new StructWithBitField;
388  delete Ident(x);
389  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
390  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
391  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
392  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
393};
394
395struct StructWithBitFields_8_24 {
396  int a:8;
397  int b:24;
398};
399
400TEST(AddressSanitizer, BitFieldNegativeTest) {
401  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
402  x->a = 0;
403  x->b = 0;
404  delete Ident(x);
405}
406
407TEST(AddressSanitizer, OutOfMemoryTest) {
408  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
409  EXPECT_EQ(0, realloc(0, size));
410  EXPECT_EQ(0, realloc(0, ~Ident(0)));
411  EXPECT_EQ(0, malloc(size));
412  EXPECT_EQ(0, malloc(~Ident(0)));
413  EXPECT_EQ(0, calloc(1, size));
414  EXPECT_EQ(0, calloc(1, ~Ident(0)));
415}
416
417#if ASAN_NEEDS_SEGV
418TEST(AddressSanitizer, WildAddressTest) {
419  char *c = (char*)0x123;
420  EXPECT_DEATH(*c = 0, "AddressSanitizer crashed on unknown address");
421}
422#endif
423
424static void MallocStress(size_t n) {
425  uint32_t seed = my_rand(&global_seed);
426  for (size_t iter = 0; iter < 10; iter++) {
427    vector<void *> vec;
428    for (size_t i = 0; i < n; i++) {
429      if ((i % 3) == 0) {
430        if (vec.empty()) continue;
431        size_t idx = my_rand(&seed) % vec.size();
432        void *ptr = vec[idx];
433        vec[idx] = vec.back();
434        vec.pop_back();
435        free_aaa(ptr);
436      } else {
437        size_t size = my_rand(&seed) % 1000 + 1;
438#ifndef __APPLE__
439        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
440        char *ptr = (char*)memalign_aaa(alignment, size);
441#else
442        char *ptr = (char*) malloc_aaa(size);
443#endif
444        vec.push_back(ptr);
445        ptr[0] = 0;
446        ptr[size-1] = 0;
447        ptr[size/2] = 0;
448      }
449    }
450    for (size_t i = 0; i < vec.size(); i++)
451      free_aaa(vec[i]);
452  }
453}
454
455TEST(AddressSanitizer, MallocStressTest) {
456  MallocStress(200000);
457}
458
459static void TestLargeMalloc(size_t size) {
460  char buff[1024];
461  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
462  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
463}
464
465TEST(AddressSanitizer, LargeMallocTest) {
466  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
467    TestLargeMalloc(i);
468  }
469}
470
471TEST(AddressSanitizer, HugeMallocTest) {
472#ifdef __APPLE__
473  // It was empirically found out that 1215 megabytes is the maximum amount of
474  // memory available to the process under AddressSanitizer on Darwin.
475  // (the libSystem malloc() allows allocating up to 2300 megabytes without
476  // ASan).
477  size_t n_megs = __WORDSIZE == 32 ? 1200 : 4100;
478#else
479  size_t n_megs = __WORDSIZE == 32 ? 2600 : 4100;
480#endif
481  TestLargeMalloc(n_megs << 20);
482}
483
484TEST(AddressSanitizer, ThreadedMallocStressTest) {
485  const int kNumThreads = 4;
486  pthread_t t[kNumThreads];
487  for (int i = 0; i < kNumThreads; i++) {
488    pthread_create(&t[i], 0, (void* (*)(void *x))MallocStress, (void*)100000);
489  }
490  for (int i = 0; i < kNumThreads; i++) {
491    pthread_join(t[i], 0);
492  }
493}
494
495void *ManyThreadsWorker(void *a) {
496  for (int iter = 0; iter < 100; iter++) {
497    for (size_t size = 100; size < 2000; size *= 2) {
498      free(Ident(malloc(size)));
499    }
500  }
501  return 0;
502}
503
504TEST(AddressSanitizer, ManyThreadsTest) {
505  const size_t kNumThreads = __WORDSIZE == 32 ? 30 : 1000;
506  pthread_t t[kNumThreads];
507  for (size_t i = 0; i < kNumThreads; i++) {
508    pthread_create(&t[i], 0, (void* (*)(void *x))ManyThreadsWorker, (void*)i);
509  }
510  for (size_t i = 0; i < kNumThreads; i++) {
511    pthread_join(t[i], 0);
512  }
513}
514
515TEST(AddressSanitizer, ReallocTest) {
516  const int kMinElem = 5;
517  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
518  ptr[3] = 3;
519  for (int i = 0; i < 10000; i++) {
520    ptr = (int*)realloc(ptr,
521        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
522    EXPECT_EQ(3, ptr[3]);
523  }
524}
525
526#ifndef __APPLE__
527static const char *kMallocUsableSizeErrorMsg =
528  "AddressSanitizer attempting to call malloc_usable_size()";
529
530TEST(AddressSanitizer, MallocUsableSizeTest) {
531  const size_t kArraySize = 100;
532  char *array = Ident((char*)malloc(kArraySize));
533  int *int_ptr = Ident(new int);
534  EXPECT_EQ(0, malloc_usable_size(NULL));
535  EXPECT_EQ(kArraySize, malloc_usable_size(array));
536  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
537  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
538  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
539               kMallocUsableSizeErrorMsg);
540  free(array);
541  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
542}
543#endif
544
545void WrongFree() {
546  int *x = (int*)malloc(100 * sizeof(int));
547  // Use the allocated memory, otherwise Clang will optimize it out.
548  Ident(x);
549  free(x + 1);
550}
551
552TEST(AddressSanitizer, WrongFreeTest) {
553  EXPECT_DEATH(WrongFree(),
554               "ERROR: AddressSanitizer attempting free.*not malloc");
555}
556
557void DoubleFree() {
558  int *x = (int*)malloc(100 * sizeof(int));
559  fprintf(stderr, "DoubleFree: x=%p\n", x);
560  free(x);
561  free(x);
562  fprintf(stderr, "should have failed in the second free(%p)\n", x);
563  abort();
564}
565
566TEST(AddressSanitizer, DoubleFreeTest) {
567  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
568               "ERROR: AddressSanitizer attempting double-free"
569               ".*is located 0 bytes inside of 400-byte region"
570               ".*freed by thread T0 here"
571               ".*previously allocated by thread T0 here");
572}
573
574template<int kSize>
575__attribute__((noinline))
576void SizedStackTest() {
577  char a[kSize];
578  char  *A = Ident((char*)&a);
579  for (size_t i = 0; i < kSize; i++)
580    A[i] = i;
581  EXPECT_DEATH(A[-1] = 0, "");
582  EXPECT_DEATH(A[-20] = 0, "");
583  EXPECT_DEATH(A[-31] = 0, "");
584  EXPECT_DEATH(A[kSize] = 0, "");
585  EXPECT_DEATH(A[kSize + 1] = 0, "");
586  EXPECT_DEATH(A[kSize + 10] = 0, "");
587  EXPECT_DEATH(A[kSize + 31] = 0, "");
588}
589
590TEST(AddressSanitizer, SimpleStackTest) {
591  SizedStackTest<1>();
592  SizedStackTest<2>();
593  SizedStackTest<3>();
594  SizedStackTest<4>();
595  SizedStackTest<5>();
596  SizedStackTest<6>();
597  SizedStackTest<7>();
598  SizedStackTest<16>();
599  SizedStackTest<25>();
600  SizedStackTest<34>();
601  SizedStackTest<43>();
602  SizedStackTest<51>();
603  SizedStackTest<62>();
604  SizedStackTest<64>();
605  SizedStackTest<128>();
606}
607
608TEST(AddressSanitizer, ManyStackObjectsTest) {
609  char XXX[10];
610  char YYY[20];
611  char ZZZ[30];
612  Ident(XXX);
613  Ident(YYY);
614  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
615}
616
617__attribute__((noinline))
618static void Frame0(int frame, char *a, char *b, char *c) {
619  char d[4] = {0};
620  char *D = Ident(d);
621  switch (frame) {
622    case 3: a[5]++; break;
623    case 2: b[5]++; break;
624    case 1: c[5]++; break;
625    case 0: D[5]++; break;
626  }
627}
628__attribute__((noinline)) static void Frame1(int frame, char *a, char *b) {
629  char c[4] = {0}; Frame0(frame, a, b, c);
630  break_optimization(0);
631}
632__attribute__((noinline)) static void Frame2(int frame, char *a) {
633  char b[4] = {0}; Frame1(frame, a, b);
634  break_optimization(0);
635}
636__attribute__((noinline)) static void Frame3(int frame) {
637  char a[4] = {0}; Frame2(frame, a);
638  break_optimization(0);
639}
640
641TEST(AddressSanitizer, GuiltyStackFrame0Test) {
642  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
643}
644TEST(AddressSanitizer, GuiltyStackFrame1Test) {
645  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
646}
647TEST(AddressSanitizer, GuiltyStackFrame2Test) {
648  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
649}
650TEST(AddressSanitizer, GuiltyStackFrame3Test) {
651  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
652}
653
654__attribute__((noinline))
655void LongJmpFunc1(jmp_buf buf) {
656  // create three red zones for these two stack objects.
657  int a;
658  int b;
659
660  int *A = Ident(&a);
661  int *B = Ident(&b);
662  *A = *B;
663  longjmp(buf, 1);
664}
665
666__attribute__((noinline))
667void UnderscopeLongJmpFunc1(jmp_buf buf) {
668  // create three red zones for these two stack objects.
669  int a;
670  int b;
671
672  int *A = Ident(&a);
673  int *B = Ident(&b);
674  *A = *B;
675  _longjmp(buf, 1);
676}
677
678__attribute__((noinline))
679void SigLongJmpFunc1(sigjmp_buf buf) {
680  // create three red zones for these two stack objects.
681  int a;
682  int b;
683
684  int *A = Ident(&a);
685  int *B = Ident(&b);
686  *A = *B;
687  siglongjmp(buf, 1);
688}
689
690
691__attribute__((noinline))
692void TouchStackFunc() {
693  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
694  int *A = Ident(a);
695  for (int i = 0; i < 100; i++)
696    A[i] = i*i;
697}
698
699// Test that we handle longjmp and do not report fals positives on stack.
700TEST(AddressSanitizer, LongJmpTest) {
701  static jmp_buf buf;
702  if (!setjmp(buf)) {
703    LongJmpFunc1(buf);
704  } else {
705    TouchStackFunc();
706  }
707}
708
709TEST(AddressSanitizer, UnderscopeLongJmpTest) {
710  static jmp_buf buf;
711  if (!_setjmp(buf)) {
712    UnderscopeLongJmpFunc1(buf);
713  } else {
714    TouchStackFunc();
715  }
716}
717
718TEST(AddressSanitizer, SigLongJmpTest) {
719  static sigjmp_buf buf;
720  if (!sigsetjmp(buf, 1)) {
721    SigLongJmpFunc1(buf);
722  } else {
723    TouchStackFunc();
724  }
725}
726
727#ifdef __EXCEPTIONS
728__attribute__((noinline))
729void ThrowFunc() {
730  // create three red zones for these two stack objects.
731  int a;
732  int b;
733
734  int *A = Ident(&a);
735  int *B = Ident(&b);
736  *A = *B;
737  ASAN_THROW(1);
738}
739
740TEST(AddressSanitizer, CxxExceptionTest) {
741  if (ASAN_UAR) return;
742  // TODO(kcc): this test crashes on 32-bit for some reason...
743  if (__WORDSIZE == 32) return;
744  try {
745    ThrowFunc();
746  } catch(...) {}
747  TouchStackFunc();
748}
749#endif
750
751void *ThreadStackReuseFunc1(void *unused) {
752  // create three red zones for these two stack objects.
753  int a;
754  int b;
755
756  int *A = Ident(&a);
757  int *B = Ident(&b);
758  *A = *B;
759  pthread_exit(0);
760  return 0;
761}
762
763void *ThreadStackReuseFunc2(void *unused) {
764  TouchStackFunc();
765  return 0;
766}
767
768TEST(AddressSanitizer, ThreadStackReuseTest) {
769  pthread_t t;
770  pthread_create(&t, 0, ThreadStackReuseFunc1, 0);
771  pthread_join(t, 0);
772  pthread_create(&t, 0, ThreadStackReuseFunc2, 0);
773  pthread_join(t, 0);
774}
775
776#if defined(__i386__) or defined(__x86_64__)
777TEST(AddressSanitizer, Store128Test) {
778  char *a = Ident((char*)malloc(Ident(12)));
779  char *p = a;
780  if (((uintptr_t)a % 16) != 0)
781    p = a + 8;
782  assert(((uintptr_t)p % 16) == 0);
783  __m128i value_wide = _mm_set1_epi16(0x1234);
784  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
785               "AddressSanitizer heap-buffer-overflow");
786  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
787               "WRITE of size 16");
788  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
789               "located 0 bytes to the right of 12-byte");
790  free(a);
791}
792#endif
793
794static string RightOOBErrorMessage(int oob_distance) {
795  assert(oob_distance >= 0);
796  char expected_str[100];
797  sprintf(expected_str, "located %d bytes to the right", oob_distance);
798  return string(expected_str);
799}
800
801static string LeftOOBErrorMessage(int oob_distance) {
802  assert(oob_distance > 0);
803  char expected_str[100];
804  sprintf(expected_str, "located %d bytes to the left", oob_distance);
805  return string(expected_str);
806}
807
808template<class T>
809void MemSetOOBTestTemplate(size_t length) {
810  if (length == 0) return;
811  size_t size = Ident(sizeof(T) * length);
812  T *array = Ident((T*)malloc(size));
813  int element = Ident(42);
814  int zero = Ident(0);
815  // memset interval inside array
816  memset(array, element, size);
817  memset(array, element, size - 1);
818  memset(array + length - 1, element, sizeof(T));
819  memset(array, element, 1);
820
821  // memset 0 bytes
822  memset(array - 10, element, zero);
823  memset(array - 1, element, zero);
824  memset(array, element, zero);
825  memset(array + length, 0, zero);
826  memset(array + length + 1, 0, zero);
827
828  // try to memset bytes to the right of array
829  EXPECT_DEATH(memset(array, 0, size + 1),
830               RightOOBErrorMessage(0));
831  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
832               RightOOBErrorMessage(4));
833  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
834               RightOOBErrorMessage(2 * sizeof(T) - 1));
835  // whole interval is to the right
836  EXPECT_DEATH(memset(array + length + 1, 0, 10),
837               RightOOBErrorMessage(sizeof(T)));
838
839  // try to memset bytes to the left of array
840  EXPECT_DEATH(memset((char*)array - 1, element, size),
841               LeftOOBErrorMessage(1));
842  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
843               LeftOOBErrorMessage(5));
844  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
845               LeftOOBErrorMessage(5 * sizeof(T)));
846  // whole interval is to the left
847  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
848               LeftOOBErrorMessage(2 * sizeof(T)));
849
850  // try to memset bytes both to the left & to the right
851  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
852               LeftOOBErrorMessage(2));
853
854  free(array);
855}
856
857TEST(AddressSanitizer, MemSetOOBTest) {
858  MemSetOOBTestTemplate<char>(100);
859  MemSetOOBTestTemplate<int>(5);
860  MemSetOOBTestTemplate<double>(256);
861  // We can test arrays of structres/classes here, but what for?
862}
863
864// Same test for memcpy and memmove functions
865template <class T, class M>
866void MemTransferOOBTestTemplate(size_t length) {
867  if (length == 0) return;
868  size_t size = Ident(sizeof(T) * length);
869  T *src = Ident((T*)malloc(size));
870  T *dest = Ident((T*)malloc(size));
871  int zero = Ident(0);
872
873  // valid transfer of bytes between arrays
874  M::transfer(dest, src, size);
875  M::transfer(dest + 1, src, size - sizeof(T));
876  M::transfer(dest, src + length - 1, sizeof(T));
877  M::transfer(dest, src, 1);
878
879  // transfer zero bytes
880  M::transfer(dest - 1, src, 0);
881  M::transfer(dest + length, src, zero);
882  M::transfer(dest, src - 1, zero);
883  M::transfer(dest, src, zero);
884
885  // try to change mem to the right of dest
886  EXPECT_DEATH(M::transfer(dest + 1, src, size),
887               RightOOBErrorMessage(sizeof(T) - 1));
888  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
889               RightOOBErrorMessage(3));
890
891  // try to change mem to the left of dest
892  EXPECT_DEATH(M::transfer(dest - 2, src, size),
893               LeftOOBErrorMessage(2 * sizeof(T)));
894  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
895               LeftOOBErrorMessage(3));
896
897  // try to access mem to the right of src
898  EXPECT_DEATH(M::transfer(dest, src + 2, size),
899               RightOOBErrorMessage(2 * sizeof(T) - 1));
900  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
901               RightOOBErrorMessage(2));
902
903  // try to access mem to the left of src
904  EXPECT_DEATH(M::transfer(dest, src - 1, size),
905               LeftOOBErrorMessage(sizeof(T)));
906  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
907               LeftOOBErrorMessage(6));
908
909  // Generally we don't need to test cases where both accessing src and writing
910  // to dest address to poisoned memory.
911
912  T *big_src = Ident((T*)malloc(size * 2));
913  T *big_dest = Ident((T*)malloc(size * 2));
914  // try to change mem to both sides of dest
915  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
916               LeftOOBErrorMessage(sizeof(T)));
917  // try to access mem to both sides of src
918  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
919               LeftOOBErrorMessage(2 * sizeof(T)));
920
921  free(src);
922  free(dest);
923  free(big_src);
924  free(big_dest);
925}
926
927class MemCpyWrapper {
928 public:
929  static void* transfer(void *to, const void *from, size_t size) {
930    return memcpy(to, from, size);
931  }
932};
933TEST(AddressSanitizer, MemCpyOOBTest) {
934  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
935  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
936}
937
938class MemMoveWrapper {
939 public:
940  static void* transfer(void *to, const void *from, size_t size) {
941    return memmove(to, from, size);
942  }
943};
944TEST(AddressSanitizer, MemMoveOOBTest) {
945  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
946  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
947}
948
949// Tests for string functions
950
951// Used for string functions tests
952static char global_string[] = "global";
953static size_t global_string_length = 6;
954
955// Input to a test is a zero-terminated string str with given length
956// Accesses to the bytes to the left and to the right of str
957// are presumed to produce OOB errors
958void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
959  // Normal strlen calls
960  EXPECT_EQ(strlen(str), length);
961  if (length > 0) {
962    EXPECT_EQ(strlen(str + 1), length - 1);
963    EXPECT_EQ(strlen(str + length), 0);
964  }
965  // Arg of strlen is not malloced, OOB access
966  if (!is_global) {
967    // We don't insert RedZones to the left of global variables
968    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBErrorMessage(1));
969    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBErrorMessage(5));
970  }
971  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBErrorMessage(0));
972  // Overwrite terminator
973  str[length] = 'a';
974  // String is not zero-terminated, strlen will lead to OOB access
975  EXPECT_DEATH(Ident(strlen(str)), RightOOBErrorMessage(0));
976  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBErrorMessage(0));
977  // Restore terminator
978  str[length] = 0;
979}
980TEST(AddressSanitizer, StrLenOOBTest) {
981  // Check heap-allocated string
982  size_t length = Ident(10);
983  char *heap_string = Ident((char*)malloc(length + 1));
984  char stack_string[10 + 1];
985  for (int i = 0; i < length; i++) {
986    heap_string[i] = 'a';
987    stack_string[i] = 'b';
988  }
989  heap_string[length] = 0;
990  stack_string[length] = 0;
991  StrLenOOBTestTemplate(heap_string, length, false);
992  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
993  //      make test for stack_string work. Or move it to output tests.
994  // StrLenOOBTestTemplate(stack_string, length, false);
995  StrLenOOBTestTemplate(global_string, global_string_length, true);
996  free(heap_string);
997}
998
999static inline char* MallocAndMemsetString(size_t size) {
1000  char *s = Ident((char*)malloc(size));
1001  memset(s, 'z', size);
1002  return s;
1003}
1004
1005#ifndef __APPLE__
1006TEST(AddressSanitizer, StrNLenOOBTest) {
1007  size_t size = Ident(123);
1008  char *str = MallocAndMemsetString(size);
1009  // Normal strnlen calls.
1010  Ident(strnlen(str - 1, 0));
1011  Ident(strnlen(str, size));
1012  Ident(strnlen(str + size - 1, 1));
1013  str[size - 1] = '\0';
1014  Ident(strnlen(str, 2 * size));
1015  // Argument points to not allocated memory.
1016  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBErrorMessage(1));
1017  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBErrorMessage(0));
1018  // Overwrite the terminating '\0' and hit unallocated memory.
1019  str[size - 1] = 'z';
1020  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBErrorMessage(0));
1021  free(str);
1022}
1023#endif
1024
1025TEST(AddressSanitizer, StrDupOOBTest) {
1026  size_t size = Ident(42);
1027  char *str = MallocAndMemsetString(size);
1028  char *new_str;
1029  // Normal strdup calls.
1030  str[size - 1] = '\0';
1031  new_str = strdup(str);
1032  free(new_str);
1033  new_str = strdup(str + size - 1);
1034  free(new_str);
1035  // Argument points to not allocated memory.
1036  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBErrorMessage(1));
1037  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBErrorMessage(0));
1038  // Overwrite the terminating '\0' and hit unallocated memory.
1039  str[size - 1] = 'z';
1040  EXPECT_DEATH(Ident(strdup(str)), RightOOBErrorMessage(0));
1041  free(str);
1042}
1043
1044TEST(AddressSanitizer, StrCpyOOBTest) {
1045  size_t to_size = Ident(30);
1046  size_t from_size = Ident(6);  // less than to_size
1047  char *to = Ident((char*)malloc(to_size));
1048  char *from = Ident((char*)malloc(from_size));
1049  // Normal strcpy calls.
1050  strcpy(from, "hello");
1051  strcpy(to, from);
1052  strcpy(to + to_size - from_size, from);
1053  // Length of "from" is too small.
1054  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBErrorMessage(0));
1055  // "to" or "from" points to not allocated memory.
1056  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBErrorMessage(1));
1057  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBErrorMessage(1));
1058  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBErrorMessage(0));
1059  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBErrorMessage(0));
1060  // Overwrite the terminating '\0' character and hit unallocated memory.
1061  from[from_size - 1] = '!';
1062  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBErrorMessage(0));
1063  free(to);
1064  free(from);
1065}
1066
1067TEST(AddressSanitizer, StrNCpyOOBTest) {
1068  size_t to_size = Ident(20);
1069  size_t from_size = Ident(6);  // less than to_size
1070  char *to = Ident((char*)malloc(to_size));
1071  // From is a zero-terminated string "hello\0" of length 6
1072  char *from = Ident((char*)malloc(from_size));
1073  strcpy(from, "hello");
1074  // copy 0 bytes
1075  strncpy(to, from, 0);
1076  strncpy(to - 1, from - 1, 0);
1077  // normal strncpy calls
1078  strncpy(to, from, from_size);
1079  strncpy(to, from, to_size);
1080  strncpy(to, from + from_size - 1, to_size);
1081  strncpy(to + to_size - 1, from, 1);
1082  // One of {to, from} points to not allocated memory
1083  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1084               LeftOOBErrorMessage(1));
1085  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1086               LeftOOBErrorMessage(1));
1087  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1088               RightOOBErrorMessage(0));
1089  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1090               RightOOBErrorMessage(0));
1091  // Length of "to" is too small
1092  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1093               RightOOBErrorMessage(0));
1094  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1095               RightOOBErrorMessage(0));
1096  // Overwrite terminator in from
1097  from[from_size - 1] = '!';
1098  // normal strncpy call
1099  strncpy(to, from, from_size);
1100  // Length of "from" is too small
1101  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1102               RightOOBErrorMessage(0));
1103  free(to);
1104  free(from);
1105}
1106
1107typedef char*(*PointerToStrChr)(const char*, int);
1108void RunStrChrTest(PointerToStrChr StrChr) {
1109  size_t size = Ident(100);
1110  char *str = MallocAndMemsetString(size);
1111  str[10] = 'q';
1112  str[11] = '\0';
1113  EXPECT_EQ(str, StrChr(str, 'z'));
1114  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1115  EXPECT_EQ(NULL, StrChr(str, 'a'));
1116  // StrChr argument points to not allocated memory.
1117  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBErrorMessage(1));
1118  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBErrorMessage(0));
1119  // Overwrite the terminator and hit not allocated memory.
1120  str[11] = 'z';
1121  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBErrorMessage(0));
1122  free(str);
1123}
1124TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1125  RunStrChrTest(&strchr);
1126  RunStrChrTest(&index);
1127}
1128
1129TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1130  // strcmp
1131  EXPECT_EQ(0, strcmp("", ""));
1132  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1133  EXPECT_GT(0, strcmp("ab", "ac"));
1134  EXPECT_GT(0, strcmp("abc", "abcd"));
1135  EXPECT_LT(0, strcmp("acc", "abc"));
1136  EXPECT_LT(0, strcmp("abcd", "abc"));
1137
1138  // strncmp
1139  EXPECT_EQ(0, strncmp("a", "b", 0));
1140  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1141  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1142  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1143  EXPECT_GT(0, strncmp("a", "b", 5));
1144  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1145  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1146  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1147  EXPECT_LT(0, strncmp("zyx", "", 2));
1148
1149  // strcasecmp
1150  EXPECT_EQ(0, strcasecmp("", ""));
1151  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1152  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1153  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1154  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1155  EXPECT_LT(0, strcasecmp("acc", "abc"));
1156  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1157
1158  // strncasecmp
1159  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1160  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1161  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1162  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1163  EXPECT_GT(0, strncasecmp("a", "B", 5));
1164  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1165  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1166  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1167  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1168
1169  // memcmp
1170  EXPECT_EQ(0, memcmp("a", "b", 0));
1171  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1172  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1173  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1174  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1175  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1176}
1177
1178typedef int(*PointerToStrCmp)(const char*, const char*);
1179void RunStrCmpTest(PointerToStrCmp StrCmp) {
1180  size_t size = Ident(100);
1181  char *s1 = MallocAndMemsetString(size);
1182  char *s2 = MallocAndMemsetString(size);
1183  s1[size - 1] = '\0';
1184  s2[size - 1] = '\0';
1185  // Normal StrCmp calls
1186  Ident(StrCmp(s1, s2));
1187  Ident(StrCmp(s1, s2 + size - 1));
1188  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1189  s1[size - 1] = 'z';
1190  s2[size - 1] = 'x';
1191  Ident(StrCmp(s1, s2));
1192  // One of arguments points to not allocated memory.
1193  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBErrorMessage(1));
1194  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBErrorMessage(1));
1195  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBErrorMessage(0));
1196  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBErrorMessage(0));
1197  // Hit unallocated memory and die.
1198  s2[size - 1] = 'z';
1199  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBErrorMessage(0));
1200  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBErrorMessage(0));
1201  free(s1);
1202  free(s2);
1203}
1204
1205TEST(AddressSanitizer, StrCmpOOBTest) {
1206  RunStrCmpTest(&strcmp);
1207}
1208
1209TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1210  RunStrCmpTest(&strcasecmp);
1211}
1212
1213typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1214void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1215  size_t size = Ident(100);
1216  char *s1 = MallocAndMemsetString(size);
1217  char *s2 = MallocAndMemsetString(size);
1218  s1[size - 1] = '\0';
1219  s2[size - 1] = '\0';
1220  // Normal StrNCmp calls
1221  Ident(StrNCmp(s1, s2, size + 2));
1222  s1[size - 1] = 'z';
1223  s2[size - 1] = 'x';
1224  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1225  s2[size - 1] = 'z';
1226  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1227  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1228  // One of arguments points to not allocated memory.
1229  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1230  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1231  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1232  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1233  // Hit unallocated memory and die.
1234  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1235  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1236  free(s1);
1237  free(s2);
1238}
1239
1240TEST(AddressSanitizer, StrNCmpOOBTest) {
1241  RunStrNCmpTest(&strncmp);
1242}
1243
1244TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1245  RunStrNCmpTest(&strncasecmp);
1246}
1247
1248TEST(AddressSanitizer, MemCmpOOBTest) {
1249  size_t size = Ident(100);
1250  char *s1 = MallocAndMemsetString(size);
1251  char *s2 = MallocAndMemsetString(size);
1252  // Normal memcmp calls.
1253  Ident(memcmp(s1, s2, size));
1254  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1255  Ident(memcmp(s1 - 1, s2 - 1, 0));
1256  // One of arguments points to not allocated memory.
1257  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBErrorMessage(1));
1258  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBErrorMessage(1));
1259  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBErrorMessage(0));
1260  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBErrorMessage(0));
1261  // Hit unallocated memory and die.
1262  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBErrorMessage(0));
1263  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBErrorMessage(0));
1264  // Zero bytes are not terminators and don't prevent from OOB.
1265  s1[size - 1] = '\0';
1266  s2[size - 1] = '\0';
1267  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBErrorMessage(0));
1268  free(s1);
1269  free(s2);
1270}
1271
1272TEST(AddressSanitizer, StrCatOOBTest) {
1273  size_t to_size = Ident(100);
1274  char *to = MallocAndMemsetString(to_size);
1275  to[0] = '\0';
1276  size_t from_size = Ident(20);
1277  char *from = MallocAndMemsetString(from_size);
1278  from[from_size - 1] = '\0';
1279  // Normal strcat calls.
1280  strcat(to, from);
1281  strcat(to, from);
1282  strcat(to + from_size, from + from_size - 2);
1283  // Catenate empty string is not always an error.
1284  strcat(to - 1, from + from_size - 1);
1285  // One of arguments points to not allocated memory.
1286  EXPECT_DEATH(strcat(to - 1, from), LeftOOBErrorMessage(1));
1287  EXPECT_DEATH(strcat(to, from - 1), LeftOOBErrorMessage(1));
1288  EXPECT_DEATH(strcat(to + to_size, from), RightOOBErrorMessage(0));
1289  EXPECT_DEATH(strcat(to, from + from_size), RightOOBErrorMessage(0));
1290
1291  // "from" is not zero-terminated.
1292  from[from_size - 1] = 'z';
1293  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1294  from[from_size - 1] = '\0';
1295  // "to" is not zero-terminated.
1296  memset(to, 'z', to_size);
1297  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1298  // "to" is too short to fit "from".
1299  to[to_size - from_size + 1] = '\0';
1300  EXPECT_DEATH(strcat(to, from), RightOOBErrorMessage(0));
1301  // length of "to" is just enough.
1302  strcat(to, from + 1);
1303}
1304
1305static string OverlapErrorMessage(const string &func) {
1306  return func + "-param-overlap";
1307}
1308
1309TEST(AddressSanitizer, StrArgsOverlapTest) {
1310  size_t size = Ident(100);
1311  char *str = Ident((char*)malloc(size));
1312
1313// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1314// memmove().
1315#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1316    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1317  // Check "memcpy". Use Ident() to avoid inlining.
1318  memset(str, 'z', size);
1319  Ident(memcpy)(str + 1, str + 11, 10);
1320  Ident(memcpy)(str, str, 0);
1321  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1322  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1323#endif
1324
1325  // We do not treat memcpy with to==from as a bug.
1326  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1327  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1328  //              OverlapErrorMessage("memcpy"));
1329
1330  // Check "strcpy".
1331  memset(str, 'z', size);
1332  str[9] = '\0';
1333  strcpy(str + 10, str);
1334  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1335  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1336  strcpy(str, str + 5);
1337
1338  // Check "strncpy".
1339  memset(str, 'z', size);
1340  strncpy(str, str + 10, 10);
1341  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1342  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1343  str[10] = '\0';
1344  strncpy(str + 11, str, 20);
1345  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1346
1347  // Check "strcat".
1348  memset(str, 'z', size);
1349  str[10] = '\0';
1350  str[20] = '\0';
1351  strcat(str, str + 10);
1352  strcat(str, str + 11);
1353  str[10] = '\0';
1354  strcat(str + 11, str);
1355  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1356  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1357  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1358
1359  free(str);
1360}
1361
1362// At the moment we instrument memcpy/memove/memset calls at compile time so we
1363// can't handle OOB error if these functions are called by pointer, see disabled
1364// MemIntrinsicCallByPointerTest below
1365typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1366typedef void*(*PointerToMemSet)(void*, int, size_t);
1367
1368void CallMemSetByPointer(PointerToMemSet MemSet) {
1369  size_t size = Ident(100);
1370  char *array = Ident((char*)malloc(size));
1371  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBErrorMessage(0));
1372  free(array);
1373}
1374
1375void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1376  size_t size = Ident(100);
1377  char *src = Ident((char*)malloc(size));
1378  char *dst = Ident((char*)malloc(size));
1379  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBErrorMessage(0));
1380  free(src);
1381  free(dst);
1382}
1383
1384TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1385  CallMemSetByPointer(&memset);
1386  CallMemTransferByPointer(&memcpy);
1387  CallMemTransferByPointer(&memmove);
1388}
1389
1390// This test case fails
1391// Clang optimizes memcpy/memset calls which lead to unaligned access
1392TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1393  int size = Ident(4096);
1394  char *s = Ident((char*)malloc(size));
1395  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBErrorMessage(0));
1396  free(s);
1397}
1398
1399// TODO(samsonov): Add a test with malloc(0)
1400// TODO(samsonov): Add tests for str* and mem* functions.
1401
1402__attribute__((noinline))
1403static int LargeFunction(bool do_bad_access) {
1404  int *x = new int[100];
1405  x[0]++;
1406  x[1]++;
1407  x[2]++;
1408  x[3]++;
1409  x[4]++;
1410  x[5]++;
1411  x[6]++;
1412  x[7]++;
1413  x[8]++;
1414  x[9]++;
1415
1416  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1417
1418  x[10]++;
1419  x[11]++;
1420  x[12]++;
1421  x[13]++;
1422  x[14]++;
1423  x[15]++;
1424  x[16]++;
1425  x[17]++;
1426  x[18]++;
1427  x[19]++;
1428
1429  delete x;
1430  return res;
1431}
1432
1433// Test the we have correct debug info for the failing instruction.
1434// This test requires the in-process symbolizer to be enabled by default.
1435TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1436  int failing_line = LargeFunction(false);
1437  char expected_warning[128];
1438  sprintf(expected_warning, "LargeFunction.*asan_test.cc:%d", failing_line);
1439  EXPECT_DEATH(LargeFunction(true), expected_warning);
1440}
1441
1442// Check that we unwind and symbolize correctly.
1443TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1444  int *a = (int*)malloc_aaa(sizeof(int));
1445  *a = 1;
1446  free_aaa(a);
1447  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1448               "malloc_fff.*malloc_eee.*malloc_ddd");
1449}
1450
1451void *ThreadedTestAlloc(void *a) {
1452  int **p = (int**)a;
1453  *p = new int;
1454  return 0;
1455}
1456
1457void *ThreadedTestFree(void *a) {
1458  int **p = (int**)a;
1459  delete *p;
1460  return 0;
1461}
1462
1463void *ThreadedTestUse(void *a) {
1464  int **p = (int**)a;
1465  **p = 1;
1466  return 0;
1467}
1468
1469void ThreadedTestSpawn() {
1470  pthread_t t;
1471  int *x;
1472  pthread_create(&t, 0, ThreadedTestAlloc, &x);
1473  pthread_join(t, 0);
1474  pthread_create(&t, 0, ThreadedTestFree, &x);
1475  pthread_join(t, 0);
1476  pthread_create(&t, 0, ThreadedTestUse, &x);
1477  pthread_join(t, 0);
1478}
1479
1480TEST(AddressSanitizer, ThreadedTest) {
1481  EXPECT_DEATH(ThreadedTestSpawn(),
1482               ASAN_PCRE_DOTALL
1483               "Thread T.*created"
1484               ".*Thread T.*created"
1485               ".*Thread T.*created");
1486}
1487
1488#if ASAN_NEEDS_SEGV
1489TEST(AddressSanitizer, ShadowGapTest) {
1490#if __WORDSIZE == 32
1491  char *addr = (char*)0x22000000;
1492#else
1493  char *addr = (char*)0x0000100000080000;
1494#endif
1495  EXPECT_DEATH(*addr = 1, "AddressSanitizer crashed on unknown");
1496}
1497#endif  // ASAN_NEEDS_SEGV
1498
1499extern "C" {
1500__attribute__((noinline))
1501static void UseThenFreeThenUse() {
1502  char *x = Ident((char*)malloc(8));
1503  *x = 1;
1504  free_aaa(x);
1505  *x = 2;
1506}
1507}
1508
1509TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1510  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1511}
1512
1513TEST(AddressSanitizer, StrDupTest) {
1514  free(strdup(Ident("123")));
1515}
1516
1517// Currently we create and poison redzone at right of global variables.
1518char glob5[5];
1519static char static110[110];
1520const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1521static const char StaticConstGlob[3] = {9, 8, 7};
1522extern int GlobalsTest(int x);
1523
1524TEST(AddressSanitizer, GlobalTest) {
1525  static char func_static15[15];
1526
1527  static char fs1[10];
1528  static char fs2[10];
1529  static char fs3[10];
1530
1531  glob5[Ident(0)] = 0;
1532  glob5[Ident(1)] = 0;
1533  glob5[Ident(2)] = 0;
1534  glob5[Ident(3)] = 0;
1535  glob5[Ident(4)] = 0;
1536
1537  EXPECT_DEATH(glob5[Ident(5)] = 0,
1538               "0 bytes to the right of global variable.*glob5.* size 5");
1539  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1540               "6 bytes to the right of global variable.*glob5.* size 5");
1541  Ident(static110);  // avoid optimizations
1542  static110[Ident(0)] = 0;
1543  static110[Ident(109)] = 0;
1544  EXPECT_DEATH(static110[Ident(110)] = 0,
1545               "0 bytes to the right of global variable");
1546  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1547               "7 bytes to the right of global variable");
1548
1549  Ident(func_static15);  // avoid optimizations
1550  func_static15[Ident(0)] = 0;
1551  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1552               "0 bytes to the right of global variable");
1553  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1554               "9 bytes to the right of global variable");
1555
1556  Ident(fs1);
1557  Ident(fs2);
1558  Ident(fs3);
1559
1560  // We don't create left redzones, so this is not 100% guaranteed to fail.
1561  // But most likely will.
1562  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1563
1564  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1565               "is located 1 bytes to the right of .*ConstGlob");
1566  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1567               "is located 2 bytes to the right of .*StaticConstGlob");
1568
1569  // call stuff from another file.
1570  GlobalsTest(0);
1571}
1572
1573TEST(AddressSanitizer, GlobalStringConstTest) {
1574  static const char *zoo = "FOOBAR123";
1575  const char *p = Ident(zoo);
1576  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1577}
1578
1579TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1580  static char zoo[10];
1581  const char *p = Ident(zoo);
1582  // The file name should be present in the report.
1583  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.cc");
1584}
1585
1586int *ReturnsPointerToALocalObject() {
1587  int a = 0;
1588  return Ident(&a);
1589}
1590
1591#if ASAN_UAR == 1
1592TEST(AddressSanitizer, LocalReferenceReturnTest) {
1593  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1594  int *p = f();
1595  // Call 'f' a few more times, 'p' should still be poisoned.
1596  for (int i = 0; i < 32; i++)
1597    f();
1598  EXPECT_DEATH(*p = 1, "AddressSanitizer stack-use-after-return");
1599  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1600}
1601#endif
1602
1603template <int kSize>
1604__attribute__((noinline))
1605static void FuncWithStack() {
1606  char x[kSize];
1607  Ident(x)[0] = 0;
1608  Ident(x)[kSize-1] = 0;
1609}
1610
1611static void LotsOfStackReuse() {
1612  int LargeStack[10000];
1613  Ident(LargeStack)[0] = 0;
1614  for (int i = 0; i < 10000; i++) {
1615    FuncWithStack<128 * 1>();
1616    FuncWithStack<128 * 2>();
1617    FuncWithStack<128 * 4>();
1618    FuncWithStack<128 * 8>();
1619    FuncWithStack<128 * 16>();
1620    FuncWithStack<128 * 32>();
1621    FuncWithStack<128 * 64>();
1622    FuncWithStack<128 * 128>();
1623    FuncWithStack<128 * 256>();
1624    FuncWithStack<128 * 512>();
1625    Ident(LargeStack)[0] = 0;
1626  }
1627}
1628
1629TEST(AddressSanitizer, StressStackReuseTest) {
1630  LotsOfStackReuse();
1631}
1632
1633TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1634  const int kNumThreads = 20;
1635  pthread_t t[kNumThreads];
1636  for (int i = 0; i < kNumThreads; i++) {
1637    pthread_create(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1638  }
1639  for (int i = 0; i < kNumThreads; i++) {
1640    pthread_join(t[i], 0);
1641  }
1642}
1643
1644static void *PthreadExit(void *a) {
1645  pthread_exit(0);
1646  return 0;
1647}
1648
1649TEST(AddressSanitizer, PthreadExitTest) {
1650  pthread_t t;
1651  for (int i = 0; i < 1000; i++) {
1652    pthread_create(&t, 0, PthreadExit, 0);
1653    pthread_join(t, 0);
1654  }
1655}
1656
1657#ifdef __EXCEPTIONS
1658__attribute__((noinline))
1659static void StackReuseAndException() {
1660  int large_stack[1000];
1661  Ident(large_stack);
1662  ASAN_THROW(1);
1663}
1664
1665// TODO(kcc): support exceptions with use-after-return.
1666TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1667  for (int i = 0; i < 10000; i++) {
1668    try {
1669    StackReuseAndException();
1670    } catch(...) {
1671    }
1672  }
1673}
1674#endif
1675
1676TEST(AddressSanitizer, MlockTest) {
1677  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1678  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1679  EXPECT_EQ(0, munlockall());
1680  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1681}
1682
1683struct LargeStruct {
1684  int foo[100];
1685};
1686
1687// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
1688// Struct copy should not cause asan warning even if lhs == rhs.
1689TEST(AddressSanitizer, LargeStructCopyTest) {
1690  LargeStruct a;
1691  *Ident(&a) = *Ident(&a);
1692}
1693
1694__attribute__((no_address_safety_analysis))
1695static void NoAddressSafety() {
1696  char *foo = new char[10];
1697  Ident(foo)[10] = 0;
1698  delete [] foo;
1699}
1700
1701TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
1702  Ident(NoAddressSafety)();
1703}
1704
1705// ------------------ demo tests; run each one-by-one -------------
1706// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
1707TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
1708  ThreadedTestSpawn();
1709}
1710
1711void *SimpleBugOnSTack(void *x = 0) {
1712  char a[20];
1713  Ident(a)[20] = 0;
1714  return 0;
1715}
1716
1717TEST(AddressSanitizer, DISABLED_DemoStackTest) {
1718  SimpleBugOnSTack();
1719}
1720
1721TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
1722  pthread_t t;
1723  pthread_create(&t, 0, SimpleBugOnSTack, 0);
1724  pthread_join(t, 0);
1725}
1726
1727TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
1728  uaf_test<U1>(10, 0);
1729}
1730TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
1731  uaf_test<U1>(10, -2);
1732}
1733TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
1734  uaf_test<U1>(10, 10);
1735}
1736
1737TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
1738  uaf_test<U1>(kLargeMalloc, 0);
1739}
1740
1741TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
1742  oob_test<U1>(10, -1);
1743}
1744
1745TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
1746  oob_test<U1>(kLargeMalloc, -1);
1747}
1748
1749TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
1750  oob_test<U1>(10, 10);
1751}
1752
1753TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
1754  oob_test<U1>(kLargeMalloc, kLargeMalloc);
1755}
1756
1757TEST(AddressSanitizer, DISABLED_DemoOOM) {
1758  size_t size = __WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
1759  printf("%p\n", malloc(size));
1760}
1761
1762TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
1763  DoubleFree();
1764}
1765
1766TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
1767  int *a = 0;
1768  Ident(a)[10] = 0;
1769}
1770
1771TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
1772  static char a[100];
1773  static char b[100];
1774  static char c[100];
1775  Ident(a);
1776  Ident(b);
1777  Ident(c);
1778  Ident(a)[5] = 0;
1779  Ident(b)[105] = 0;
1780  Ident(a)[5] = 0;
1781}
1782
1783TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
1784  const size_t kAllocSize = (1 << 28) - 1024;
1785  size_t total_size = 0;
1786  while (true) {
1787    char *x = (char*)malloc(kAllocSize);
1788    memset(x, 0, kAllocSize);
1789    total_size += kAllocSize;
1790    fprintf(stderr, "total: %ldM\n", (long)total_size >> 20);
1791  }
1792}
1793
1794#ifdef __APPLE__
1795#include "asan_mac_test.h"
1796// TODO(glider): figure out whether we still need these tests. Is it correct
1797// to intercept CFAllocator?
1798TEST(AddressSanitizerMac, DISABLED_CFAllocatorDefaultDoubleFree) {
1799  EXPECT_DEATH(
1800      CFAllocatorDefaultDoubleFree(),
1801      "attempting double-free");
1802}
1803
1804TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
1805  EXPECT_DEATH(
1806      CFAllocatorSystemDefaultDoubleFree(),
1807      "attempting double-free");
1808}
1809
1810TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocDoubleFree) {
1811  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
1812}
1813
1814TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
1815  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
1816}
1817
1818TEST(AddressSanitizerMac, GCDDispatchAsync) {
1819  // Make sure the whole ASan report is printed, i.e. that we don't die
1820  // on a CHECK.
1821  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte and word");
1822}
1823
1824TEST(AddressSanitizerMac, GCDDispatchSync) {
1825  // Make sure the whole ASan report is printed, i.e. that we don't die
1826  // on a CHECK.
1827  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte and word");
1828}
1829
1830
1831TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
1832  // Make sure the whole ASan report is printed, i.e. that we don't die
1833  // on a CHECK.
1834  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte and word");
1835}
1836
1837TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
1838  // Make sure the whole ASan report is printed, i.e. that we don't die
1839  // on a CHECK.
1840  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte and word");
1841}
1842
1843TEST(AddressSanitizerMac, GCDDispatchAfter) {
1844  // Make sure the whole ASan report is printed, i.e. that we don't die
1845  // on a CHECK.
1846  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte and word");
1847}
1848
1849TEST(AddressSanitizerMac, GCDSourceEvent) {
1850  // Make sure the whole ASan report is printed, i.e. that we don't die
1851  // on a CHECK.
1852  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte and word");
1853}
1854
1855TEST(AddressSanitizerMac, GCDSourceCancel) {
1856  // Make sure the whole ASan report is printed, i.e. that we don't die
1857  // on a CHECK.
1858  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte and word");
1859}
1860
1861TEST(AddressSanitizerMac, GCDGroupAsync) {
1862  // Make sure the whole ASan report is printed, i.e. that we don't die
1863  // on a CHECK.
1864  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte and word");
1865}
1866
1867void *MallocIntrospectionLockWorker(void *_) {
1868  const int kNumPointers = 100;
1869  int i;
1870  void *pointers[kNumPointers];
1871  for (i = 0; i < kNumPointers; i++) {
1872    pointers[i] = malloc(i + 1);
1873  }
1874  for (i = 0; i < kNumPointers; i++) {
1875    free(pointers[i]);
1876  }
1877
1878  return NULL;
1879}
1880
1881void *MallocIntrospectionLockForker(void *_) {
1882  pid_t result = fork();
1883  if (result == -1) {
1884    perror("fork");
1885  }
1886  assert(result != -1);
1887  if (result == 0) {
1888    // Call malloc in the child process to make sure we won't deadlock.
1889    void *ptr = malloc(42);
1890    free(ptr);
1891    exit(0);
1892  } else {
1893    // Return in the parent process.
1894    return NULL;
1895  }
1896}
1897
1898TEST(AddressSanitizerMac, MallocIntrospectionLock) {
1899  // Incorrect implementation of force_lock and force_unlock in our malloc zone
1900  // will cause forked processes to deadlock.
1901  // TODO(glider): need to detect that none of the child processes deadlocked.
1902  const int kNumWorkers = 5, kNumIterations = 100;
1903  int i, iter;
1904  for (iter = 0; iter < kNumIterations; iter++) {
1905    pthread_t workers[kNumWorkers], forker;
1906    for (i = 0; i < kNumWorkers; i++) {
1907      pthread_create(&workers[i], 0, MallocIntrospectionLockWorker, 0);
1908    }
1909    pthread_create(&forker, 0, MallocIntrospectionLockForker, 0);
1910    for (i = 0; i < kNumWorkers; i++) {
1911      pthread_join(workers[i], 0);
1912    }
1913    pthread_join(forker, 0);
1914  }
1915}
1916
1917void *TSDAllocWorker(void *test_key) {
1918  if (test_key) {
1919    void *mem = malloc(10);
1920    pthread_setspecific(*(pthread_key_t*)test_key, mem);
1921  }
1922  return NULL;
1923}
1924
1925TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
1926  pthread_t th;
1927  pthread_key_t test_key;
1928  pthread_key_create(&test_key, CallFreeOnWorkqueue);
1929  pthread_create(&th, NULL, TSDAllocWorker, &test_key);
1930  pthread_join(th, NULL);
1931  pthread_key_delete(test_key);
1932}
1933
1934// Test that CFStringCreateCopy does not copy constant strings.
1935TEST(AddressSanitizerMac, CFStringCreateCopy) {
1936  CFStringRef str = CFSTR("Hello world!\n");
1937  CFStringRef str2 = CFStringCreateCopy(0, str);
1938  EXPECT_EQ(str, str2);
1939}
1940
1941#endif  // __APPLE__
1942
1943int main(int argc, char **argv) {
1944  progname = argv[0];
1945  testing::GTEST_FLAG(death_test_style) = "threadsafe";
1946  testing::InitGoogleTest(&argc, argv);
1947  return RUN_ALL_TESTS();
1948}
1949