asan_test.cc revision ca2849c2819b5c7a8771a1e8bc449cf8f5ef6527
1//===-- asan_test.cc ------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22#include <algorithm>
23
24#ifdef __linux__
25# include <sys/prctl.h>
26# include <sys/types.h>
27# include <sys/stat.h>
28# include <fcntl.h>
29#include <unistd.h>
30#endif
31
32#if defined(__i386__) || defined(__x86_64__)
33#include <emmintrin.h>
34#endif
35
36#include "asan_test_utils.h"
37
38#ifndef __APPLE__
39#include <malloc.h>
40#else
41#include <malloc/malloc.h>
42#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
43#include <CoreFoundation/CFString.h>
44#endif  // __APPLE__
45
46#if ASAN_HAS_EXCEPTIONS
47# define ASAN_THROW(x) throw (x)
48#else
49# define ASAN_THROW(x)
50#endif
51
52#include <sys/mman.h>
53
54typedef uint8_t   U1;
55typedef uint16_t  U2;
56typedef uint32_t  U4;
57typedef uint64_t  U8;
58
59static const int kPageSize = 4096;
60
61const size_t kLargeMalloc = 1 << 24;
62
63template<typename T>
64NOINLINE void asan_write(T *a) {
65  *a = 0;
66}
67
68NOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
69  EXPECT_EQ(0U, ((uintptr_t)p % size));
70  if      (size == 1) asan_write((uint8_t*)p);
71  else if (size == 2) asan_write((uint16_t*)p);
72  else if (size == 4) asan_write((uint32_t*)p);
73  else if (size == 8) asan_write((uint64_t*)p);
74}
75
76NOINLINE void *malloc_fff(size_t size) {
77  void *res = malloc/**/(size); break_optimization(0); return res;}
78NOINLINE void *malloc_eee(size_t size) {
79  void *res = malloc_fff(size); break_optimization(0); return res;}
80NOINLINE void *malloc_ddd(size_t size) {
81  void *res = malloc_eee(size); break_optimization(0); return res;}
82NOINLINE void *malloc_ccc(size_t size) {
83  void *res = malloc_ddd(size); break_optimization(0); return res;}
84NOINLINE void *malloc_bbb(size_t size) {
85  void *res = malloc_ccc(size); break_optimization(0); return res;}
86NOINLINE void *malloc_aaa(size_t size) {
87  void *res = malloc_bbb(size); break_optimization(0); return res;}
88
89#ifndef __APPLE__
90NOINLINE void *memalign_fff(size_t alignment, size_t size) {
91  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
92NOINLINE void *memalign_eee(size_t alignment, size_t size) {
93  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
94NOINLINE void *memalign_ddd(size_t alignment, size_t size) {
95  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
96NOINLINE void *memalign_ccc(size_t alignment, size_t size) {
97  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
98NOINLINE void *memalign_bbb(size_t alignment, size_t size) {
99  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
100NOINLINE void *memalign_aaa(size_t alignment, size_t size) {
101  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
102#endif  // __APPLE__
103
104
105NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
106NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
107NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
108
109template<typename T>
110NOINLINE void oob_test(int size, int off) {
111  char *p = (char*)malloc_aaa(size);
112  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
113  //        sizeof(T), p, p + size, off);
114  asan_write((T*)(p + off));
115  free_aaa(p);
116}
117
118
119template<typename T>
120NOINLINE void uaf_test(int size, int off) {
121  char *p = (char *)malloc_aaa(size);
122  free_aaa(p);
123  for (int i = 1; i < 100; i++)
124    free_aaa(malloc_aaa(i));
125  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
126          (long)sizeof(T), p, off);
127  asan_write((T*)(p + off));
128}
129
130TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
131#if defined(__has_feature) && __has_feature(address_sanitizer)
132  bool asan = 1;
133#elif defined(__SANITIZE_ADDRESS__)
134  bool asan = 1;
135#else
136  bool asan = 0;
137#endif
138  EXPECT_EQ(true, asan);
139}
140
141TEST(AddressSanitizer, SimpleDeathTest) {
142  EXPECT_DEATH(exit(1), "");
143}
144
145TEST(AddressSanitizer, VariousMallocsTest) {
146  int *a = (int*)malloc(100 * sizeof(int));
147  a[50] = 0;
148  free(a);
149
150  int *r = (int*)malloc(10);
151  r = (int*)realloc(r, 2000 * sizeof(int));
152  r[1000] = 0;
153  free(r);
154
155  int *b = new int[100];
156  b[50] = 0;
157  delete [] b;
158
159  int *c = new int;
160  *c = 0;
161  delete c;
162
163#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
164  int *pm;
165  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
166  EXPECT_EQ(0, pm_res);
167  free(pm);
168#endif
169
170#if !defined(__APPLE__)
171  int *ma = (int*)memalign(kPageSize, kPageSize);
172  EXPECT_EQ(0U, (uintptr_t)ma % kPageSize);
173  ma[123] = 0;
174  free(ma);
175#endif  // __APPLE__
176}
177
178TEST(AddressSanitizer, CallocTest) {
179  int *a = (int*)calloc(100, sizeof(int));
180  EXPECT_EQ(0, a[10]);
181  free(a);
182}
183
184TEST(AddressSanitizer, VallocTest) {
185  void *a = valloc(100);
186  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
187  free(a);
188}
189
190#ifndef __APPLE__
191TEST(AddressSanitizer, PvallocTest) {
192  char *a = (char*)pvalloc(kPageSize + 100);
193  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
194  a[kPageSize + 101] = 1;  // we should not report an error here.
195  free(a);
196
197  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
198  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
199  a[101] = 1;  // we should not report an error here.
200  free(a);
201}
202#endif  // __APPLE__
203
204void *TSDWorker(void *test_key) {
205  if (test_key) {
206    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
207  }
208  return NULL;
209}
210
211void TSDDestructor(void *tsd) {
212  // Spawning a thread will check that the current thread id is not -1.
213  pthread_t th;
214  PTHREAD_CREATE(&th, NULL, TSDWorker, NULL);
215  PTHREAD_JOIN(th, NULL);
216}
217
218// This tests triggers the thread-specific data destruction fiasco which occurs
219// if we don't manage the TSD destructors ourselves. We create a new pthread
220// key with a non-NULL destructor which is likely to be put after the destructor
221// of AsanThread in the list of destructors.
222// In this case the TSD for AsanThread will be destroyed before TSDDestructor
223// is called for the child thread, and a CHECK will fail when we call
224// pthread_create() to spawn the grandchild.
225TEST(AddressSanitizer, DISABLED_TSDTest) {
226  pthread_t th;
227  pthread_key_t test_key;
228  pthread_key_create(&test_key, TSDDestructor);
229  PTHREAD_CREATE(&th, NULL, TSDWorker, &test_key);
230  PTHREAD_JOIN(th, NULL);
231  pthread_key_delete(test_key);
232}
233
234template<typename T>
235void OOBTest() {
236  char expected_str[100];
237  for (int size = sizeof(T); size < 20; size += 5) {
238    for (int i = -5; i < 0; i++) {
239      const char *str =
240          "is located.*%d byte.*to the left";
241      sprintf(expected_str, str, abs(i));
242      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
243    }
244
245    for (int i = 0; i < (int)(size - sizeof(T) + 1); i++)
246      oob_test<T>(size, i);
247
248    for (int i = size - sizeof(T) + 1; i <= (int)(size + 2 * sizeof(T)); i++) {
249      const char *str =
250          "is located.*%d byte.*to the right";
251      int off = i >= size ? (i - size) : 0;
252      // we don't catch unaligned partially OOB accesses.
253      if (i % sizeof(T)) continue;
254      sprintf(expected_str, str, off);
255      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
256    }
257  }
258
259  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
260          "is located.*1 byte.*to the left");
261  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
262          "is located.*0 byte.*to the right");
263}
264
265// TODO(glider): the following tests are EXTREMELY slow on Darwin:
266//   AddressSanitizer.OOB_char (125503 ms)
267//   AddressSanitizer.OOB_int (126890 ms)
268//   AddressSanitizer.OOBRightTest (315605 ms)
269//   AddressSanitizer.SimpleStackTest (366559 ms)
270
271TEST(AddressSanitizer, OOB_char) {
272  OOBTest<U1>();
273}
274
275TEST(AddressSanitizer, OOB_int) {
276  OOBTest<U4>();
277}
278
279TEST(AddressSanitizer, OOBRightTest) {
280  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
281    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
282      for (size_t offset = 0; offset <= 8; offset += access_size) {
283        void *p = malloc(alloc_size);
284        // allocated: [p, p + alloc_size)
285        // accessed:  [p + offset, p + offset + access_size)
286        uint8_t *addr = (uint8_t*)p + offset;
287        if (offset + access_size <= alloc_size) {
288          asan_write_sized_aligned(addr, access_size);
289        } else {
290          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
291          const char *str =
292              "is located.%d *byte.*to the right";
293          char expected_str[100];
294          sprintf(expected_str, str, outside_bytes);
295          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
296                       expected_str);
297        }
298        free(p);
299      }
300    }
301  }
302}
303
304#if ASAN_ALLOCATOR_VERSION == 2  // Broken with the asan_allocator1
305TEST(AddressSanitizer, LargeOOBRightTest) {
306  size_t large_power_of_two = 1 << 19;
307  for (size_t i = 16; i <= 256; i *= 2) {
308    size_t size = large_power_of_two - i;
309    char *p = Ident(new char[size]);
310    EXPECT_DEATH(p[size] = 0, "is located 0 bytes to the right");
311    delete [] p;
312  }
313}
314#endif  // ASAN_ALLOCATOR_VERSION == 2
315
316TEST(AddressSanitizer, UAF_char) {
317  const char *uaf_string = "AddressSanitizer:.*heap-use-after-free";
318  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
319  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
320  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
321  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
322  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
323}
324
325#if ASAN_HAS_BLACKLIST
326TEST(AddressSanitizer, IgnoreTest) {
327  int *x = Ident(new int);
328  delete Ident(x);
329  *x = 0;
330}
331#endif  // ASAN_HAS_BLACKLIST
332
333struct StructWithBitField {
334  int bf1:1;
335  int bf2:1;
336  int bf3:1;
337  int bf4:29;
338};
339
340TEST(AddressSanitizer, BitFieldPositiveTest) {
341  StructWithBitField *x = new StructWithBitField;
342  delete Ident(x);
343  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
344  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
345  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
346  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
347}
348
349struct StructWithBitFields_8_24 {
350  int a:8;
351  int b:24;
352};
353
354TEST(AddressSanitizer, BitFieldNegativeTest) {
355  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
356  x->a = 0;
357  x->b = 0;
358  delete Ident(x);
359}
360
361TEST(AddressSanitizer, OutOfMemoryTest) {
362  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
363  EXPECT_EQ(0, realloc(0, size));
364  EXPECT_EQ(0, realloc(0, ~Ident(0)));
365  EXPECT_EQ(0, malloc(size));
366  EXPECT_EQ(0, malloc(~Ident(0)));
367  EXPECT_EQ(0, calloc(1, size));
368  EXPECT_EQ(0, calloc(1, ~Ident(0)));
369}
370
371#if ASAN_NEEDS_SEGV
372namespace {
373
374const char kUnknownCrash[] = "AddressSanitizer: SEGV on unknown address";
375const char kOverriddenHandler[] = "ASan signal handler has been overridden\n";
376
377TEST(AddressSanitizer, WildAddressTest) {
378  char *c = (char*)0x123;
379  EXPECT_DEATH(*c = 0, kUnknownCrash);
380}
381
382void my_sigaction_sighandler(int, siginfo_t*, void*) {
383  fprintf(stderr, kOverriddenHandler);
384  exit(1);
385}
386
387void my_signal_sighandler(int signum) {
388  fprintf(stderr, kOverriddenHandler);
389  exit(1);
390}
391
392TEST(AddressSanitizer, SignalTest) {
393  struct sigaction sigact;
394  memset(&sigact, 0, sizeof(sigact));
395  sigact.sa_sigaction = my_sigaction_sighandler;
396  sigact.sa_flags = SA_SIGINFO;
397  // ASan should silently ignore sigaction()...
398  EXPECT_EQ(0, sigaction(SIGSEGV, &sigact, 0));
399#ifdef __APPLE__
400  EXPECT_EQ(0, sigaction(SIGBUS, &sigact, 0));
401#endif
402  char *c = (char*)0x123;
403  EXPECT_DEATH(*c = 0, kUnknownCrash);
404  // ... and signal().
405  EXPECT_EQ(0, signal(SIGSEGV, my_signal_sighandler));
406  EXPECT_DEATH(*c = 0, kUnknownCrash);
407}
408}  // namespace
409#endif
410
411static void MallocStress(size_t n) {
412  uint32_t seed = my_rand();
413  for (size_t iter = 0; iter < 10; iter++) {
414    vector<void *> vec;
415    for (size_t i = 0; i < n; i++) {
416      if ((i % 3) == 0) {
417        if (vec.empty()) continue;
418        size_t idx = my_rand_r(&seed) % vec.size();
419        void *ptr = vec[idx];
420        vec[idx] = vec.back();
421        vec.pop_back();
422        free_aaa(ptr);
423      } else {
424        size_t size = my_rand_r(&seed) % 1000 + 1;
425#ifndef __APPLE__
426        size_t alignment = 1 << (my_rand_r(&seed) % 7 + 3);
427        char *ptr = (char*)memalign_aaa(alignment, size);
428#else
429        char *ptr = (char*) malloc_aaa(size);
430#endif
431        vec.push_back(ptr);
432        ptr[0] = 0;
433        ptr[size-1] = 0;
434        ptr[size/2] = 0;
435      }
436    }
437    for (size_t i = 0; i < vec.size(); i++)
438      free_aaa(vec[i]);
439  }
440}
441
442TEST(AddressSanitizer, MallocStressTest) {
443  MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
444}
445
446static void TestLargeMalloc(size_t size) {
447  char buff[1024];
448  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
449  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
450}
451
452TEST(AddressSanitizer, LargeMallocTest) {
453  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
454    TestLargeMalloc(i);
455  }
456}
457
458#if ASAN_LOW_MEMORY != 1
459TEST(AddressSanitizer, HugeMallocTest) {
460#ifdef __APPLE__
461  // It was empirically found out that 1215 megabytes is the maximum amount of
462  // memory available to the process under AddressSanitizer on 32-bit Mac 10.6.
463  // 32-bit Mac 10.7 gives even less (< 1G).
464  // (the libSystem malloc() allows allocating up to 2300 megabytes without
465  // ASan).
466  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 500 : 4100;
467#else
468  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 2600 : 4100;
469#endif
470  TestLargeMalloc(n_megs << 20);
471}
472#endif
473
474#ifndef __APPLE__
475void MemalignRun(size_t align, size_t size, int idx) {
476  char *p = (char *)memalign(align, size);
477  Ident(p)[idx] = 0;
478  free(p);
479}
480
481TEST(AddressSanitizer, memalign) {
482  for (int align = 16; align <= (1 << 23); align *= 2) {
483    size_t size = align * 5;
484    EXPECT_DEATH(MemalignRun(align, size, -1),
485                 "is located 1 bytes to the left");
486    EXPECT_DEATH(MemalignRun(align, size, size + 1),
487                 "is located 1 bytes to the right");
488  }
489}
490#endif
491
492TEST(AddressSanitizer, ThreadedMallocStressTest) {
493  const int kNumThreads = 4;
494  const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
495  pthread_t t[kNumThreads];
496  for (int i = 0; i < kNumThreads; i++) {
497    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))MallocStress,
498        (void*)kNumIterations);
499  }
500  for (int i = 0; i < kNumThreads; i++) {
501    PTHREAD_JOIN(t[i], 0);
502  }
503}
504
505void *ManyThreadsWorker(void *a) {
506  for (int iter = 0; iter < 100; iter++) {
507    for (size_t size = 100; size < 2000; size *= 2) {
508      free(Ident(malloc(size)));
509    }
510  }
511  return 0;
512}
513
514TEST(AddressSanitizer, ManyThreadsTest) {
515  const size_t kNumThreads =
516      (SANITIZER_WORDSIZE == 32 || ASAN_AVOID_EXPENSIVE_TESTS) ? 30 : 1000;
517  pthread_t t[kNumThreads];
518  for (size_t i = 0; i < kNumThreads; i++) {
519    PTHREAD_CREATE(&t[i], 0, ManyThreadsWorker, (void*)i);
520  }
521  for (size_t i = 0; i < kNumThreads; i++) {
522    PTHREAD_JOIN(t[i], 0);
523  }
524}
525
526TEST(AddressSanitizer, ReallocTest) {
527  const int kMinElem = 5;
528  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
529  ptr[3] = 3;
530  for (int i = 0; i < 10000; i++) {
531    ptr = (int*)realloc(ptr,
532        (my_rand() % 1000 + kMinElem) * sizeof(int));
533    EXPECT_EQ(3, ptr[3]);
534  }
535}
536
537#ifndef __APPLE__
538static const char *kMallocUsableSizeErrorMsg =
539  "AddressSanitizer: attempting to call malloc_usable_size()";
540
541TEST(AddressSanitizer, MallocUsableSizeTest) {
542  const size_t kArraySize = 100;
543  char *array = Ident((char*)malloc(kArraySize));
544  int *int_ptr = Ident(new int);
545  EXPECT_EQ(0U, malloc_usable_size(NULL));
546  EXPECT_EQ(kArraySize, malloc_usable_size(array));
547  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
548  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
549  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
550               kMallocUsableSizeErrorMsg);
551  free(array);
552  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
553}
554#endif
555
556void WrongFree() {
557  int *x = (int*)malloc(100 * sizeof(int));
558  // Use the allocated memory, otherwise Clang will optimize it out.
559  Ident(x);
560  free(x + 1);
561}
562
563TEST(AddressSanitizer, WrongFreeTest) {
564  EXPECT_DEATH(WrongFree(),
565               "ERROR: AddressSanitizer: attempting free.*not malloc");
566}
567
568void DoubleFree() {
569  int *x = (int*)malloc(100 * sizeof(int));
570  fprintf(stderr, "DoubleFree: x=%p\n", x);
571  free(x);
572  free(x);
573  fprintf(stderr, "should have failed in the second free(%p)\n", x);
574  abort();
575}
576
577TEST(AddressSanitizer, DoubleFreeTest) {
578  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
579               "ERROR: AddressSanitizer: attempting double-free"
580               ".*is located 0 bytes inside of 400-byte region"
581               ".*freed by thread T0 here"
582               ".*previously allocated by thread T0 here");
583}
584
585template<int kSize>
586NOINLINE void SizedStackTest() {
587  char a[kSize];
588  char  *A = Ident((char*)&a);
589  for (size_t i = 0; i < kSize; i++)
590    A[i] = i;
591  EXPECT_DEATH(A[-1] = 0, "");
592  EXPECT_DEATH(A[-20] = 0, "");
593  EXPECT_DEATH(A[-31] = 0, "");
594  EXPECT_DEATH(A[kSize] = 0, "");
595  EXPECT_DEATH(A[kSize + 1] = 0, "");
596  EXPECT_DEATH(A[kSize + 10] = 0, "");
597  EXPECT_DEATH(A[kSize + 31] = 0, "");
598}
599
600TEST(AddressSanitizer, SimpleStackTest) {
601  SizedStackTest<1>();
602  SizedStackTest<2>();
603  SizedStackTest<3>();
604  SizedStackTest<4>();
605  SizedStackTest<5>();
606  SizedStackTest<6>();
607  SizedStackTest<7>();
608  SizedStackTest<16>();
609  SizedStackTest<25>();
610  SizedStackTest<34>();
611  SizedStackTest<43>();
612  SizedStackTest<51>();
613  SizedStackTest<62>();
614  SizedStackTest<64>();
615  SizedStackTest<128>();
616}
617
618TEST(AddressSanitizer, ManyStackObjectsTest) {
619  char XXX[10];
620  char YYY[20];
621  char ZZZ[30];
622  Ident(XXX);
623  Ident(YYY);
624  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
625}
626
627NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
628  char d[4] = {0};
629  char *D = Ident(d);
630  switch (frame) {
631    case 3: a[5]++; break;
632    case 2: b[5]++; break;
633    case 1: c[5]++; break;
634    case 0: D[5]++; break;
635  }
636}
637NOINLINE static void Frame1(int frame, char *a, char *b) {
638  char c[4] = {0}; Frame0(frame, a, b, c);
639  break_optimization(0);
640}
641NOINLINE static void Frame2(int frame, char *a) {
642  char b[4] = {0}; Frame1(frame, a, b);
643  break_optimization(0);
644}
645NOINLINE static void Frame3(int frame) {
646  char a[4] = {0}; Frame2(frame, a);
647  break_optimization(0);
648}
649
650TEST(AddressSanitizer, GuiltyStackFrame0Test) {
651  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
652}
653TEST(AddressSanitizer, GuiltyStackFrame1Test) {
654  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
655}
656TEST(AddressSanitizer, GuiltyStackFrame2Test) {
657  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
658}
659TEST(AddressSanitizer, GuiltyStackFrame3Test) {
660  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
661}
662
663NOINLINE void LongJmpFunc1(jmp_buf buf) {
664  // create three red zones for these two stack objects.
665  int a;
666  int b;
667
668  int *A = Ident(&a);
669  int *B = Ident(&b);
670  *A = *B;
671  longjmp(buf, 1);
672}
673
674NOINLINE void BuiltinLongJmpFunc1(jmp_buf buf) {
675  // create three red zones for these two stack objects.
676  int a;
677  int b;
678
679  int *A = Ident(&a);
680  int *B = Ident(&b);
681  *A = *B;
682  __builtin_longjmp((void**)buf, 1);
683}
684
685NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
686  // create three red zones for these two stack objects.
687  int a;
688  int b;
689
690  int *A = Ident(&a);
691  int *B = Ident(&b);
692  *A = *B;
693  _longjmp(buf, 1);
694}
695
696NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
697  // create three red zones for these two stack objects.
698  int a;
699  int b;
700
701  int *A = Ident(&a);
702  int *B = Ident(&b);
703  *A = *B;
704  siglongjmp(buf, 1);
705}
706
707
708NOINLINE void TouchStackFunc() {
709  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
710  int *A = Ident(a);
711  for (int i = 0; i < 100; i++)
712    A[i] = i*i;
713}
714
715// Test that we handle longjmp and do not report fals positives on stack.
716TEST(AddressSanitizer, LongJmpTest) {
717  static jmp_buf buf;
718  if (!setjmp(buf)) {
719    LongJmpFunc1(buf);
720  } else {
721    TouchStackFunc();
722  }
723}
724
725#if not defined(__ANDROID__)
726TEST(AddressSanitizer, BuiltinLongJmpTest) {
727  static jmp_buf buf;
728  if (!__builtin_setjmp((void**)buf)) {
729    BuiltinLongJmpFunc1(buf);
730  } else {
731    TouchStackFunc();
732  }
733}
734#endif  // not defined(__ANDROID__)
735
736TEST(AddressSanitizer, UnderscopeLongJmpTest) {
737  static jmp_buf buf;
738  if (!_setjmp(buf)) {
739    UnderscopeLongJmpFunc1(buf);
740  } else {
741    TouchStackFunc();
742  }
743}
744
745TEST(AddressSanitizer, SigLongJmpTest) {
746  static sigjmp_buf buf;
747  if (!sigsetjmp(buf, 1)) {
748    SigLongJmpFunc1(buf);
749  } else {
750    TouchStackFunc();
751  }
752}
753
754#ifdef __EXCEPTIONS
755NOINLINE void ThrowFunc() {
756  // create three red zones for these two stack objects.
757  int a;
758  int b;
759
760  int *A = Ident(&a);
761  int *B = Ident(&b);
762  *A = *B;
763  ASAN_THROW(1);
764}
765
766TEST(AddressSanitizer, CxxExceptionTest) {
767  if (ASAN_UAR) return;
768  // TODO(kcc): this test crashes on 32-bit for some reason...
769  if (SANITIZER_WORDSIZE == 32) return;
770  try {
771    ThrowFunc();
772  } catch(...) {}
773  TouchStackFunc();
774}
775#endif
776
777void *ThreadStackReuseFunc1(void *unused) {
778  // create three red zones for these two stack objects.
779  int a;
780  int b;
781
782  int *A = Ident(&a);
783  int *B = Ident(&b);
784  *A = *B;
785  pthread_exit(0);
786  return 0;
787}
788
789void *ThreadStackReuseFunc2(void *unused) {
790  TouchStackFunc();
791  return 0;
792}
793
794TEST(AddressSanitizer, ThreadStackReuseTest) {
795  pthread_t t;
796  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc1, 0);
797  PTHREAD_JOIN(t, 0);
798  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc2, 0);
799  PTHREAD_JOIN(t, 0);
800}
801
802#if defined(__i386__) || defined(__x86_64__)
803TEST(AddressSanitizer, Store128Test) {
804  char *a = Ident((char*)malloc(Ident(12)));
805  char *p = a;
806  if (((uintptr_t)a % 16) != 0)
807    p = a + 8;
808  assert(((uintptr_t)p % 16) == 0);
809  __m128i value_wide = _mm_set1_epi16(0x1234);
810  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
811               "AddressSanitizer: heap-buffer-overflow");
812  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
813               "WRITE of size 16");
814  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
815               "located 0 bytes to the right of 12-byte");
816  free(a);
817}
818#endif
819
820static string RightOOBErrorMessage(int oob_distance, bool is_write) {
821  assert(oob_distance >= 0);
822  char expected_str[100];
823  sprintf(expected_str, ASAN_PCRE_DOTALL "%s.*located %d bytes to the right",
824          is_write ? "WRITE" : "READ", oob_distance);
825  return string(expected_str);
826}
827
828static string RightOOBWriteMessage(int oob_distance) {
829  return RightOOBErrorMessage(oob_distance, /*is_write*/true);
830}
831
832static string RightOOBReadMessage(int oob_distance) {
833  return RightOOBErrorMessage(oob_distance, /*is_write*/false);
834}
835
836static string LeftOOBErrorMessage(int oob_distance, bool is_write) {
837  assert(oob_distance > 0);
838  char expected_str[100];
839  sprintf(expected_str, ASAN_PCRE_DOTALL "%s.*located %d bytes to the left",
840          is_write ? "WRITE" : "READ", oob_distance);
841  return string(expected_str);
842}
843
844static string LeftOOBWriteMessage(int oob_distance) {
845  return LeftOOBErrorMessage(oob_distance, /*is_write*/true);
846}
847
848static string LeftOOBReadMessage(int oob_distance) {
849  return LeftOOBErrorMessage(oob_distance, /*is_write*/false);
850}
851
852static string LeftOOBAccessMessage(int oob_distance) {
853  assert(oob_distance > 0);
854  char expected_str[100];
855  sprintf(expected_str, "located %d bytes to the left", oob_distance);
856  return string(expected_str);
857}
858
859template<typename T>
860void MemSetOOBTestTemplate(size_t length) {
861  if (length == 0) return;
862  size_t size = Ident(sizeof(T) * length);
863  T *array = Ident((T*)malloc(size));
864  int element = Ident(42);
865  int zero = Ident(0);
866  void *(*MEMSET)(void *s, int c, size_t n) = Ident(memset);
867  // memset interval inside array
868  MEMSET(array, element, size);
869  MEMSET(array, element, size - 1);
870  MEMSET(array + length - 1, element, sizeof(T));
871  MEMSET(array, element, 1);
872
873  // memset 0 bytes
874  MEMSET(array - 10, element, zero);
875  MEMSET(array - 1, element, zero);
876  MEMSET(array, element, zero);
877  MEMSET(array + length, 0, zero);
878  MEMSET(array + length + 1, 0, zero);
879
880  // try to memset bytes to the right of array
881  EXPECT_DEATH(MEMSET(array, 0, size + 1),
882               RightOOBWriteMessage(0));
883  EXPECT_DEATH(MEMSET((char*)(array + length) - 1, element, 6),
884               RightOOBWriteMessage(0));
885  EXPECT_DEATH(MEMSET(array + 1, element, size + sizeof(T)),
886               RightOOBWriteMessage(0));
887  // whole interval is to the right
888  EXPECT_DEATH(MEMSET(array + length + 1, 0, 10),
889               RightOOBWriteMessage(sizeof(T)));
890
891  // try to memset bytes to the left of array
892  EXPECT_DEATH(MEMSET((char*)array - 1, element, size),
893               LeftOOBWriteMessage(1));
894  EXPECT_DEATH(MEMSET((char*)array - 5, 0, 6),
895               LeftOOBWriteMessage(5));
896  if (length >= 100) {
897    // Large OOB, we find it only if the redzone is large enough.
898    EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
899                 LeftOOBWriteMessage(5 * sizeof(T)));
900  }
901  // whole interval is to the left
902  EXPECT_DEATH(MEMSET(array - 2, 0, sizeof(T)),
903               LeftOOBWriteMessage(2 * sizeof(T)));
904
905  // try to memset bytes both to the left & to the right
906  EXPECT_DEATH(MEMSET((char*)array - 2, element, size + 4),
907               LeftOOBWriteMessage(2));
908
909  free(array);
910}
911
912TEST(AddressSanitizer, MemSetOOBTest) {
913  MemSetOOBTestTemplate<char>(100);
914  MemSetOOBTestTemplate<int>(5);
915  MemSetOOBTestTemplate<double>(256);
916  // We can test arrays of structres/classes here, but what for?
917}
918
919// Try to allocate two arrays of 'size' bytes that are near each other.
920// Strictly speaking we are not guaranteed to find such two pointers,
921// but given the structure of asan's allocator we will.
922static bool AllocateTwoAdjacentArrays(char **x1, char **x2, size_t size) {
923  vector<char *> v;
924  bool res = false;
925  for (size_t i = 0; i < 1000U && !res; i++) {
926    v.push_back(new char[size]);
927    if (i == 0) continue;
928    sort(v.begin(), v.end());
929    for (size_t j = 1; j < v.size(); j++) {
930      assert(v[j] > v[j-1]);
931      if ((size_t)(v[j] - v[j-1]) < size * 2) {
932        *x2 = v[j];
933        *x1 = v[j-1];
934        res = true;
935        break;
936      }
937    }
938  }
939
940  for (size_t i = 0; i < v.size(); i++) {
941    if (res && v[i] == *x1) continue;
942    if (res && v[i] == *x2) continue;
943    delete [] v[i];
944  }
945  return res;
946}
947
948TEST(AddressSanitizer, LargeOOBInMemset) {
949  for (size_t size = 200; size < 100000; size += size / 2) {
950    char *x1, *x2;
951    if (!Ident(AllocateTwoAdjacentArrays)(&x1, &x2, size))
952      continue;
953    // fprintf(stderr, "  large oob memset: %p %p %zd\n", x1, x2, size);
954    // Do a memset on x1 with huge out-of-bound access that will end up in x2.
955    EXPECT_DEATH(Ident(memset)(x1, 0, size * 2),
956                 "is located 0 bytes to the right");
957    delete [] x1;
958    delete [] x2;
959    return;
960  }
961  assert(0 && "Did not find two adjacent malloc-ed pointers");
962}
963
964// Same test for memcpy and memmove functions
965template <typename T, class M>
966void MemTransferOOBTestTemplate(size_t length) {
967  if (length == 0) return;
968  size_t size = Ident(sizeof(T) * length);
969  T *src = Ident((T*)malloc(size));
970  T *dest = Ident((T*)malloc(size));
971  int zero = Ident(0);
972
973  // valid transfer of bytes between arrays
974  M::transfer(dest, src, size);
975  M::transfer(dest + 1, src, size - sizeof(T));
976  M::transfer(dest, src + length - 1, sizeof(T));
977  M::transfer(dest, src, 1);
978
979  // transfer zero bytes
980  M::transfer(dest - 1, src, 0);
981  M::transfer(dest + length, src, zero);
982  M::transfer(dest, src - 1, zero);
983  M::transfer(dest, src, zero);
984
985  // try to change mem to the right of dest
986  EXPECT_DEATH(M::transfer(dest + 1, src, size),
987               RightOOBWriteMessage(0));
988  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
989               RightOOBWriteMessage(0));
990
991  // try to change mem to the left of dest
992  EXPECT_DEATH(M::transfer(dest - 2, src, size),
993               LeftOOBWriteMessage(2 * sizeof(T)));
994  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
995               LeftOOBWriteMessage(3));
996
997  // try to access mem to the right of src
998  EXPECT_DEATH(M::transfer(dest, src + 2, size),
999               RightOOBReadMessage(0));
1000  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
1001               RightOOBReadMessage(0));
1002
1003  // try to access mem to the left of src
1004  EXPECT_DEATH(M::transfer(dest, src - 1, size),
1005               LeftOOBReadMessage(sizeof(T)));
1006  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
1007               LeftOOBReadMessage(6));
1008
1009  // Generally we don't need to test cases where both accessing src and writing
1010  // to dest address to poisoned memory.
1011
1012  T *big_src = Ident((T*)malloc(size * 2));
1013  T *big_dest = Ident((T*)malloc(size * 2));
1014  // try to change mem to both sides of dest
1015  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
1016               LeftOOBWriteMessage(sizeof(T)));
1017  // try to access mem to both sides of src
1018  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
1019               LeftOOBReadMessage(2 * sizeof(T)));
1020
1021  free(src);
1022  free(dest);
1023  free(big_src);
1024  free(big_dest);
1025}
1026
1027class MemCpyWrapper {
1028 public:
1029  static void* transfer(void *to, const void *from, size_t size) {
1030    return Ident(memcpy)(to, from, size);
1031  }
1032};
1033TEST(AddressSanitizer, MemCpyOOBTest) {
1034  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
1035  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
1036}
1037
1038class MemMoveWrapper {
1039 public:
1040  static void* transfer(void *to, const void *from, size_t size) {
1041    return Ident(memmove)(to, from, size);
1042  }
1043};
1044TEST(AddressSanitizer, MemMoveOOBTest) {
1045  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
1046  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
1047}
1048
1049// Tests for string functions
1050
1051// Used for string functions tests
1052static char global_string[] = "global";
1053static size_t global_string_length = 6;
1054
1055// Input to a test is a zero-terminated string str with given length
1056// Accesses to the bytes to the left and to the right of str
1057// are presumed to produce OOB errors
1058void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
1059  // Normal strlen calls
1060  EXPECT_EQ(strlen(str), length);
1061  if (length > 0) {
1062    EXPECT_EQ(length - 1, strlen(str + 1));
1063    EXPECT_EQ(0U, strlen(str + length));
1064  }
1065  // Arg of strlen is not malloced, OOB access
1066  if (!is_global) {
1067    // We don't insert RedZones to the left of global variables
1068    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBReadMessage(1));
1069    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBReadMessage(5));
1070  }
1071  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBReadMessage(0));
1072  // Overwrite terminator
1073  str[length] = 'a';
1074  // String is not zero-terminated, strlen will lead to OOB access
1075  EXPECT_DEATH(Ident(strlen(str)), RightOOBReadMessage(0));
1076  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBReadMessage(0));
1077  // Restore terminator
1078  str[length] = 0;
1079}
1080TEST(AddressSanitizer, StrLenOOBTest) {
1081  // Check heap-allocated string
1082  size_t length = Ident(10);
1083  char *heap_string = Ident((char*)malloc(length + 1));
1084  char stack_string[10 + 1];
1085  break_optimization(&stack_string);
1086  for (size_t i = 0; i < length; i++) {
1087    heap_string[i] = 'a';
1088    stack_string[i] = 'b';
1089  }
1090  heap_string[length] = 0;
1091  stack_string[length] = 0;
1092  StrLenOOBTestTemplate(heap_string, length, false);
1093  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
1094  //      make test for stack_string work. Or move it to output tests.
1095  // StrLenOOBTestTemplate(stack_string, length, false);
1096  StrLenOOBTestTemplate(global_string, global_string_length, true);
1097  free(heap_string);
1098}
1099
1100static inline char* MallocAndMemsetString(size_t size, char ch) {
1101  char *s = Ident((char*)malloc(size));
1102  memset(s, ch, size);
1103  return s;
1104}
1105static inline char* MallocAndMemsetString(size_t size) {
1106  return MallocAndMemsetString(size, 'z');
1107}
1108
1109#ifndef __APPLE__
1110TEST(AddressSanitizer, StrNLenOOBTest) {
1111  size_t size = Ident(123);
1112  char *str = MallocAndMemsetString(size);
1113  // Normal strnlen calls.
1114  Ident(strnlen(str - 1, 0));
1115  Ident(strnlen(str, size));
1116  Ident(strnlen(str + size - 1, 1));
1117  str[size - 1] = '\0';
1118  Ident(strnlen(str, 2 * size));
1119  // Argument points to not allocated memory.
1120  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBReadMessage(1));
1121  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBReadMessage(0));
1122  // Overwrite the terminating '\0' and hit unallocated memory.
1123  str[size - 1] = 'z';
1124  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBReadMessage(0));
1125  free(str);
1126}
1127#endif
1128
1129TEST(AddressSanitizer, StrDupOOBTest) {
1130  size_t size = Ident(42);
1131  char *str = MallocAndMemsetString(size);
1132  char *new_str;
1133  // Normal strdup calls.
1134  str[size - 1] = '\0';
1135  new_str = strdup(str);
1136  free(new_str);
1137  new_str = strdup(str + size - 1);
1138  free(new_str);
1139  // Argument points to not allocated memory.
1140  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBReadMessage(1));
1141  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBReadMessage(0));
1142  // Overwrite the terminating '\0' and hit unallocated memory.
1143  str[size - 1] = 'z';
1144  EXPECT_DEATH(Ident(strdup(str)), RightOOBReadMessage(0));
1145  free(str);
1146}
1147
1148TEST(AddressSanitizer, StrCpyOOBTest) {
1149  size_t to_size = Ident(30);
1150  size_t from_size = Ident(6);  // less than to_size
1151  char *to = Ident((char*)malloc(to_size));
1152  char *from = Ident((char*)malloc(from_size));
1153  // Normal strcpy calls.
1154  strcpy(from, "hello");
1155  strcpy(to, from);
1156  strcpy(to + to_size - from_size, from);
1157  // Length of "from" is too small.
1158  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBWriteMessage(0));
1159  // "to" or "from" points to not allocated memory.
1160  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBWriteMessage(1));
1161  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBReadMessage(1));
1162  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBReadMessage(0));
1163  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBWriteMessage(0));
1164  // Overwrite the terminating '\0' character and hit unallocated memory.
1165  from[from_size - 1] = '!';
1166  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBReadMessage(0));
1167  free(to);
1168  free(from);
1169}
1170
1171TEST(AddressSanitizer, StrNCpyOOBTest) {
1172  size_t to_size = Ident(20);
1173  size_t from_size = Ident(6);  // less than to_size
1174  char *to = Ident((char*)malloc(to_size));
1175  // From is a zero-terminated string "hello\0" of length 6
1176  char *from = Ident((char*)malloc(from_size));
1177  strcpy(from, "hello");
1178  // copy 0 bytes
1179  strncpy(to, from, 0);
1180  strncpy(to - 1, from - 1, 0);
1181  // normal strncpy calls
1182  strncpy(to, from, from_size);
1183  strncpy(to, from, to_size);
1184  strncpy(to, from + from_size - 1, to_size);
1185  strncpy(to + to_size - 1, from, 1);
1186  // One of {to, from} points to not allocated memory
1187  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1188               LeftOOBReadMessage(1));
1189  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1190               LeftOOBWriteMessage(1));
1191  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1192               RightOOBReadMessage(0));
1193  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1194               RightOOBWriteMessage(0));
1195  // Length of "to" is too small
1196  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1197               RightOOBWriteMessage(0));
1198  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1199               RightOOBWriteMessage(0));
1200  // Overwrite terminator in from
1201  from[from_size - 1] = '!';
1202  // normal strncpy call
1203  strncpy(to, from, from_size);
1204  // Length of "from" is too small
1205  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1206               RightOOBReadMessage(0));
1207  free(to);
1208  free(from);
1209}
1210
1211// Users may have different definitions of "strchr" and "index", so provide
1212// function pointer typedefs and overload RunStrChrTest implementation.
1213// We can't use macro for RunStrChrTest body here, as this macro would
1214// confuse EXPECT_DEATH gtest macro.
1215typedef char*(*PointerToStrChr1)(const char*, int);
1216typedef char*(*PointerToStrChr2)(char*, int);
1217
1218USED static void RunStrChrTest(PointerToStrChr1 StrChr) {
1219  size_t size = Ident(100);
1220  char *str = MallocAndMemsetString(size);
1221  str[10] = 'q';
1222  str[11] = '\0';
1223  EXPECT_EQ(str, StrChr(str, 'z'));
1224  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1225  EXPECT_EQ(NULL, StrChr(str, 'a'));
1226  // StrChr argument points to not allocated memory.
1227  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBReadMessage(1));
1228  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBReadMessage(0));
1229  // Overwrite the terminator and hit not allocated memory.
1230  str[11] = 'z';
1231  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBReadMessage(0));
1232  free(str);
1233}
1234USED static void RunStrChrTest(PointerToStrChr2 StrChr) {
1235  size_t size = Ident(100);
1236  char *str = MallocAndMemsetString(size);
1237  str[10] = 'q';
1238  str[11] = '\0';
1239  EXPECT_EQ(str, StrChr(str, 'z'));
1240  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1241  EXPECT_EQ(NULL, StrChr(str, 'a'));
1242  // StrChr argument points to not allocated memory.
1243  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBReadMessage(1));
1244  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBReadMessage(0));
1245  // Overwrite the terminator and hit not allocated memory.
1246  str[11] = 'z';
1247  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBReadMessage(0));
1248  free(str);
1249}
1250
1251TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1252  RunStrChrTest(&strchr);
1253  RunStrChrTest(&index);
1254}
1255
1256TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1257  // strcmp
1258  EXPECT_EQ(0, strcmp("", ""));
1259  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1260  EXPECT_GT(0, strcmp("ab", "ac"));
1261  EXPECT_GT(0, strcmp("abc", "abcd"));
1262  EXPECT_LT(0, strcmp("acc", "abc"));
1263  EXPECT_LT(0, strcmp("abcd", "abc"));
1264
1265  // strncmp
1266  EXPECT_EQ(0, strncmp("a", "b", 0));
1267  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1268  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1269  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1270  EXPECT_GT(0, strncmp("a", "b", 5));
1271  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1272  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1273  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1274  EXPECT_LT(0, strncmp("zyx", "", 2));
1275
1276  // strcasecmp
1277  EXPECT_EQ(0, strcasecmp("", ""));
1278  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1279  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1280  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1281  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1282  EXPECT_LT(0, strcasecmp("acc", "abc"));
1283  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1284
1285  // strncasecmp
1286  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1287  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1288  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1289  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1290  EXPECT_GT(0, strncasecmp("a", "B", 5));
1291  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1292  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1293  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1294  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1295
1296  // memcmp
1297  EXPECT_EQ(0, memcmp("a", "b", 0));
1298  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1299  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1300  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1301  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1302  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1303}
1304
1305typedef int(*PointerToStrCmp)(const char*, const char*);
1306void RunStrCmpTest(PointerToStrCmp StrCmp) {
1307  size_t size = Ident(100);
1308  int fill = 'o';
1309  char *s1 = MallocAndMemsetString(size, fill);
1310  char *s2 = MallocAndMemsetString(size, fill);
1311  s1[size - 1] = '\0';
1312  s2[size - 1] = '\0';
1313  // Normal StrCmp calls
1314  Ident(StrCmp(s1, s2));
1315  Ident(StrCmp(s1, s2 + size - 1));
1316  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1317  s1[size - 1] = 'z';
1318  s2[size - 1] = 'x';
1319  Ident(StrCmp(s1, s2));
1320  // One of arguments points to not allocated memory.
1321  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBReadMessage(1));
1322  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBReadMessage(1));
1323  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBReadMessage(0));
1324  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBReadMessage(0));
1325  // Hit unallocated memory and die.
1326  s1[size - 1] = fill;
1327  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBReadMessage(0));
1328  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBReadMessage(0));
1329  free(s1);
1330  free(s2);
1331}
1332
1333TEST(AddressSanitizer, StrCmpOOBTest) {
1334  RunStrCmpTest(&strcmp);
1335}
1336
1337TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1338  RunStrCmpTest(&strcasecmp);
1339}
1340
1341typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1342void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1343  size_t size = Ident(100);
1344  char *s1 = MallocAndMemsetString(size);
1345  char *s2 = MallocAndMemsetString(size);
1346  s1[size - 1] = '\0';
1347  s2[size - 1] = '\0';
1348  // Normal StrNCmp calls
1349  Ident(StrNCmp(s1, s2, size + 2));
1350  s1[size - 1] = 'z';
1351  s2[size - 1] = 'x';
1352  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1353  s2[size - 1] = 'z';
1354  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1355  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1356  // One of arguments points to not allocated memory.
1357  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1));
1358  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1));
1359  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBReadMessage(0));
1360  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBReadMessage(0));
1361  // Hit unallocated memory and die.
1362  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0));
1363  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0));
1364  free(s1);
1365  free(s2);
1366}
1367
1368TEST(AddressSanitizer, StrNCmpOOBTest) {
1369  RunStrNCmpTest(&strncmp);
1370}
1371
1372TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1373  RunStrNCmpTest(&strncasecmp);
1374}
1375
1376TEST(AddressSanitizer, MemCmpOOBTest) {
1377  size_t size = Ident(100);
1378  char *s1 = MallocAndMemsetString(size);
1379  char *s2 = MallocAndMemsetString(size);
1380  // Normal memcmp calls.
1381  Ident(memcmp(s1, s2, size));
1382  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1383  Ident(memcmp(s1 - 1, s2 - 1, 0));
1384  // One of arguments points to not allocated memory.
1385  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1));
1386  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1));
1387  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBReadMessage(0));
1388  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBReadMessage(0));
1389  // Hit unallocated memory and die.
1390  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0));
1391  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0));
1392  // Zero bytes are not terminators and don't prevent from OOB.
1393  s1[size - 1] = '\0';
1394  s2[size - 1] = '\0';
1395  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBReadMessage(0));
1396  free(s1);
1397  free(s2);
1398}
1399
1400TEST(AddressSanitizer, StrCatOOBTest) {
1401  // strcat() reads strlen(to) bytes from |to| before concatenating.
1402  size_t to_size = Ident(100);
1403  char *to = MallocAndMemsetString(to_size);
1404  to[0] = '\0';
1405  size_t from_size = Ident(20);
1406  char *from = MallocAndMemsetString(from_size);
1407  from[from_size - 1] = '\0';
1408  // Normal strcat calls.
1409  strcat(to, from);
1410  strcat(to, from);
1411  strcat(to + from_size, from + from_size - 2);
1412  // Passing an invalid pointer is an error even when concatenating an empty
1413  // string.
1414  EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBAccessMessage(1));
1415  // One of arguments points to not allocated memory.
1416  EXPECT_DEATH(strcat(to - 1, from), LeftOOBAccessMessage(1));
1417  EXPECT_DEATH(strcat(to, from - 1), LeftOOBReadMessage(1));
1418  EXPECT_DEATH(strcat(to + to_size, from), RightOOBWriteMessage(0));
1419  EXPECT_DEATH(strcat(to, from + from_size), RightOOBReadMessage(0));
1420
1421  // "from" is not zero-terminated.
1422  from[from_size - 1] = 'z';
1423  EXPECT_DEATH(strcat(to, from), RightOOBReadMessage(0));
1424  from[from_size - 1] = '\0';
1425  // "to" is not zero-terminated.
1426  memset(to, 'z', to_size);
1427  EXPECT_DEATH(strcat(to, from), RightOOBWriteMessage(0));
1428  // "to" is too short to fit "from".
1429  to[to_size - from_size + 1] = '\0';
1430  EXPECT_DEATH(strcat(to, from), RightOOBWriteMessage(0));
1431  // length of "to" is just enough.
1432  strcat(to, from + 1);
1433
1434  free(to);
1435  free(from);
1436}
1437
1438TEST(AddressSanitizer, StrNCatOOBTest) {
1439  // strncat() reads strlen(to) bytes from |to| before concatenating.
1440  size_t to_size = Ident(100);
1441  char *to = MallocAndMemsetString(to_size);
1442  to[0] = '\0';
1443  size_t from_size = Ident(20);
1444  char *from = MallocAndMemsetString(from_size);
1445  // Normal strncat calls.
1446  strncat(to, from, 0);
1447  strncat(to, from, from_size);
1448  from[from_size - 1] = '\0';
1449  strncat(to, from, 2 * from_size);
1450  // Catenating empty string with an invalid string is still an error.
1451  EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBAccessMessage(1));
1452  strncat(to, from + from_size - 1, 10);
1453  // One of arguments points to not allocated memory.
1454  EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBAccessMessage(1));
1455  EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBReadMessage(1));
1456  EXPECT_DEATH(strncat(to + to_size, from, 2), RightOOBWriteMessage(0));
1457  EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBReadMessage(0));
1458
1459  memset(from, 'z', from_size);
1460  memset(to, 'z', to_size);
1461  to[0] = '\0';
1462  // "from" is too short.
1463  EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBReadMessage(0));
1464  // "to" is not zero-terminated.
1465  EXPECT_DEATH(strncat(to + 1, from, 1), RightOOBWriteMessage(0));
1466  // "to" is too short to fit "from".
1467  to[0] = 'z';
1468  to[to_size - from_size + 1] = '\0';
1469  EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBWriteMessage(0));
1470  // "to" is just enough.
1471  strncat(to, from, from_size - 2);
1472
1473  free(to);
1474  free(from);
1475}
1476
1477static string OverlapErrorMessage(const string &func) {
1478  return func + "-param-overlap";
1479}
1480
1481TEST(AddressSanitizer, StrArgsOverlapTest) {
1482  size_t size = Ident(100);
1483  char *str = Ident((char*)malloc(size));
1484
1485// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1486// memmove().
1487#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1488    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1489  // Check "memcpy". Use Ident() to avoid inlining.
1490  memset(str, 'z', size);
1491  Ident(memcpy)(str + 1, str + 11, 10);
1492  Ident(memcpy)(str, str, 0);
1493  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1494  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1495#endif
1496
1497  // We do not treat memcpy with to==from as a bug.
1498  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1499  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1500  //              OverlapErrorMessage("memcpy"));
1501
1502  // Check "strcpy".
1503  memset(str, 'z', size);
1504  str[9] = '\0';
1505  strcpy(str + 10, str);
1506  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1507  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1508  strcpy(str, str + 5);
1509
1510  // Check "strncpy".
1511  memset(str, 'z', size);
1512  strncpy(str, str + 10, 10);
1513  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1514  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1515  str[10] = '\0';
1516  strncpy(str + 11, str, 20);
1517  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1518
1519  // Check "strcat".
1520  memset(str, 'z', size);
1521  str[10] = '\0';
1522  str[20] = '\0';
1523  strcat(str, str + 10);
1524  EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
1525  str[10] = '\0';
1526  strcat(str + 11, str);
1527  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1528  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1529  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1530
1531  // Check "strncat".
1532  memset(str, 'z', size);
1533  str[10] = '\0';
1534  strncat(str, str + 10, 10);  // from is empty
1535  EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
1536  str[10] = '\0';
1537  str[20] = '\0';
1538  strncat(str + 5, str, 5);
1539  str[10] = '\0';
1540  EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
1541  EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
1542
1543  free(str);
1544}
1545
1546void CallAtoi(const char *nptr) {
1547  Ident(atoi(nptr));
1548}
1549void CallAtol(const char *nptr) {
1550  Ident(atol(nptr));
1551}
1552void CallAtoll(const char *nptr) {
1553  Ident(atoll(nptr));
1554}
1555typedef void(*PointerToCallAtoi)(const char*);
1556
1557void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
1558  char *array = MallocAndMemsetString(10, '1');
1559  // Invalid pointer to the string.
1560  EXPECT_DEATH(Atoi(array + 11), RightOOBReadMessage(1));
1561  EXPECT_DEATH(Atoi(array - 1), LeftOOBReadMessage(1));
1562  // Die if a buffer doesn't have terminating NULL.
1563  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1564  // Make last symbol a terminating NULL or other non-digit.
1565  array[9] = '\0';
1566  Atoi(array);
1567  array[9] = 'a';
1568  Atoi(array);
1569  Atoi(array + 9);
1570  // Sometimes we need to detect overflow if no digits are found.
1571  memset(array, ' ', 10);
1572  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1573  array[9] = '-';
1574  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1575  EXPECT_DEATH(Atoi(array + 9), RightOOBReadMessage(0));
1576  array[8] = '-';
1577  Atoi(array);
1578  free(array);
1579}
1580
1581TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
1582  RunAtoiOOBTest(&CallAtoi);
1583  RunAtoiOOBTest(&CallAtol);
1584  RunAtoiOOBTest(&CallAtoll);
1585}
1586
1587void CallStrtol(const char *nptr, char **endptr, int base) {
1588  Ident(strtol(nptr, endptr, base));
1589}
1590void CallStrtoll(const char *nptr, char **endptr, int base) {
1591  Ident(strtoll(nptr, endptr, base));
1592}
1593typedef void(*PointerToCallStrtol)(const char*, char**, int);
1594
1595void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
1596  char *array = MallocAndMemsetString(3);
1597  char *endptr = NULL;
1598  array[0] = '1';
1599  array[1] = '2';
1600  array[2] = '3';
1601  // Invalid pointer to the string.
1602  EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBReadMessage(0));
1603  EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBReadMessage(1));
1604  // Buffer overflow if there is no terminating null (depends on base).
1605  Strtol(array, &endptr, 3);
1606  EXPECT_EQ(array + 2, endptr);
1607  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1608  array[2] = 'z';
1609  Strtol(array, &endptr, 35);
1610  EXPECT_EQ(array + 2, endptr);
1611  EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBReadMessage(0));
1612  // Add terminating zero to get rid of overflow.
1613  array[2] = '\0';
1614  Strtol(array, NULL, 36);
1615  // Don't check for overflow if base is invalid.
1616  Strtol(array - 1, NULL, -1);
1617  Strtol(array + 3, NULL, 1);
1618  // Sometimes we need to detect overflow if no digits are found.
1619  array[0] = array[1] = array[2] = ' ';
1620  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1621  array[2] = '+';
1622  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1623  array[2] = '-';
1624  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1625  array[1] = '+';
1626  Strtol(array, NULL, 0);
1627  array[1] = array[2] = 'z';
1628  Strtol(array, &endptr, 0);
1629  EXPECT_EQ(array, endptr);
1630  Strtol(array + 2, NULL, 0);
1631  EXPECT_EQ(array, endptr);
1632  free(array);
1633}
1634
1635TEST(AddressSanitizer, StrtollOOBTest) {
1636  RunStrtolOOBTest(&CallStrtoll);
1637}
1638TEST(AddressSanitizer, StrtolOOBTest) {
1639  RunStrtolOOBTest(&CallStrtol);
1640}
1641
1642// At the moment we instrument memcpy/memove/memset calls at compile time so we
1643// can't handle OOB error if these functions are called by pointer, see disabled
1644// MemIntrinsicCallByPointerTest below
1645typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1646typedef void*(*PointerToMemSet)(void*, int, size_t);
1647
1648void CallMemSetByPointer(PointerToMemSet MemSet) {
1649  size_t size = Ident(100);
1650  char *array = Ident((char*)malloc(size));
1651  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBWriteMessage(0));
1652  free(array);
1653}
1654
1655void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1656  size_t size = Ident(100);
1657  char *src = Ident((char*)malloc(size));
1658  char *dst = Ident((char*)malloc(size));
1659  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBWriteMessage(0));
1660  free(src);
1661  free(dst);
1662}
1663
1664TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1665  CallMemSetByPointer(&memset);
1666  CallMemTransferByPointer(&memcpy);
1667  CallMemTransferByPointer(&memmove);
1668}
1669
1670#if defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__)
1671#define READ_TEST(READ_N_BYTES)                                          \
1672  char *x = new char[10];                                                \
1673  int fd = open("/proc/self/stat", O_RDONLY);                            \
1674  ASSERT_GT(fd, 0);                                                      \
1675  EXPECT_DEATH(READ_N_BYTES,                                             \
1676               ASAN_PCRE_DOTALL                                          \
1677               "AddressSanitizer: heap-buffer-overflow"                  \
1678               ".* is located 0 bytes to the right of 10-byte region");  \
1679  close(fd);                                                             \
1680  delete [] x;                                                           \
1681
1682TEST(AddressSanitizer, pread) {
1683  READ_TEST(pread(fd, x, 15, 0));
1684}
1685
1686TEST(AddressSanitizer, pread64) {
1687  READ_TEST(pread64(fd, x, 15, 0));
1688}
1689
1690TEST(AddressSanitizer, read) {
1691  READ_TEST(read(fd, x, 15));
1692}
1693#endif  // defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__)
1694
1695// This test case fails
1696// Clang optimizes memcpy/memset calls which lead to unaligned access
1697TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1698  int size = Ident(4096);
1699  char *s = Ident((char*)malloc(size));
1700  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBWriteMessage(0));
1701  free(s);
1702}
1703
1704// TODO(samsonov): Add a test with malloc(0)
1705// TODO(samsonov): Add tests for str* and mem* functions.
1706
1707NOINLINE static int LargeFunction(bool do_bad_access) {
1708  int *x = new int[100];
1709  x[0]++;
1710  x[1]++;
1711  x[2]++;
1712  x[3]++;
1713  x[4]++;
1714  x[5]++;
1715  x[6]++;
1716  x[7]++;
1717  x[8]++;
1718  x[9]++;
1719
1720  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1721
1722  x[10]++;
1723  x[11]++;
1724  x[12]++;
1725  x[13]++;
1726  x[14]++;
1727  x[15]++;
1728  x[16]++;
1729  x[17]++;
1730  x[18]++;
1731  x[19]++;
1732
1733  delete x;
1734  return res;
1735}
1736
1737// Test the we have correct debug info for the failing instruction.
1738// This test requires the in-process symbolizer to be enabled by default.
1739TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1740  int failing_line = LargeFunction(false);
1741  char expected_warning[128];
1742  sprintf(expected_warning, "LargeFunction.*asan_test.*:%d", failing_line);
1743  EXPECT_DEATH(LargeFunction(true), expected_warning);
1744}
1745
1746// Check that we unwind and symbolize correctly.
1747TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1748  int *a = (int*)malloc_aaa(sizeof(int));
1749  *a = 1;
1750  free_aaa(a);
1751  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1752               "malloc_fff.*malloc_eee.*malloc_ddd");
1753}
1754
1755static bool TryToSetThreadName(const char *name) {
1756#if defined(__linux__) && defined(PR_SET_NAME)
1757  return 0 == prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0);
1758#else
1759  return false;
1760#endif
1761}
1762
1763void *ThreadedTestAlloc(void *a) {
1764  EXPECT_EQ(true, TryToSetThreadName("AllocThr"));
1765  int **p = (int**)a;
1766  *p = new int;
1767  return 0;
1768}
1769
1770void *ThreadedTestFree(void *a) {
1771  EXPECT_EQ(true, TryToSetThreadName("FreeThr"));
1772  int **p = (int**)a;
1773  delete *p;
1774  return 0;
1775}
1776
1777void *ThreadedTestUse(void *a) {
1778  EXPECT_EQ(true, TryToSetThreadName("UseThr"));
1779  int **p = (int**)a;
1780  **p = 1;
1781  return 0;
1782}
1783
1784void ThreadedTestSpawn() {
1785  pthread_t t;
1786  int *x;
1787  PTHREAD_CREATE(&t, 0, ThreadedTestAlloc, &x);
1788  PTHREAD_JOIN(t, 0);
1789  PTHREAD_CREATE(&t, 0, ThreadedTestFree, &x);
1790  PTHREAD_JOIN(t, 0);
1791  PTHREAD_CREATE(&t, 0, ThreadedTestUse, &x);
1792  PTHREAD_JOIN(t, 0);
1793}
1794
1795TEST(AddressSanitizer, ThreadedTest) {
1796  EXPECT_DEATH(ThreadedTestSpawn(),
1797               ASAN_PCRE_DOTALL
1798               "Thread T.*created"
1799               ".*Thread T.*created"
1800               ".*Thread T.*created");
1801}
1802
1803void *ThreadedTestFunc(void *unused) {
1804  // Check if prctl(PR_SET_NAME) is supported. Return if not.
1805  if (!TryToSetThreadName("TestFunc"))
1806    return 0;
1807  EXPECT_DEATH(ThreadedTestSpawn(),
1808               ASAN_PCRE_DOTALL
1809               "WRITE .*thread T. .UseThr."
1810               ".*freed by thread T. .FreeThr. here:"
1811               ".*previously allocated by thread T. .AllocThr. here:"
1812               ".*Thread T. .UseThr. created by T.*TestFunc"
1813               ".*Thread T. .FreeThr. created by T"
1814               ".*Thread T. .AllocThr. created by T"
1815               "");
1816  return 0;
1817}
1818
1819TEST(AddressSanitizer, ThreadNamesTest) {
1820  // Run ThreadedTestFunc in a separate thread because it tries to set a
1821  // thread name and we don't want to change the main thread's name.
1822  pthread_t t;
1823  PTHREAD_CREATE(&t, 0, ThreadedTestFunc, 0);
1824  PTHREAD_JOIN(t, 0);
1825}
1826
1827#if ASAN_NEEDS_SEGV
1828TEST(AddressSanitizer, ShadowGapTest) {
1829#if SANITIZER_WORDSIZE == 32
1830  char *addr = (char*)0x22000000;
1831#else
1832  char *addr = (char*)0x0000100000080000;
1833#endif
1834  EXPECT_DEATH(*addr = 1, "AddressSanitizer: SEGV on unknown");
1835}
1836#endif  // ASAN_NEEDS_SEGV
1837
1838extern "C" {
1839NOINLINE static void UseThenFreeThenUse() {
1840  char *x = Ident((char*)malloc(8));
1841  *x = 1;
1842  free_aaa(x);
1843  *x = 2;
1844}
1845}
1846
1847TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1848  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1849}
1850
1851TEST(AddressSanitizer, StrDupTest) {
1852  free(strdup(Ident("123")));
1853}
1854
1855// Currently we create and poison redzone at right of global variables.
1856char glob5[5];
1857static char static110[110];
1858const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1859static const char StaticConstGlob[3] = {9, 8, 7};
1860extern int GlobalsTest(int x);
1861
1862TEST(AddressSanitizer, GlobalTest) {
1863  static char func_static15[15];
1864
1865  static char fs1[10];
1866  static char fs2[10];
1867  static char fs3[10];
1868
1869  glob5[Ident(0)] = 0;
1870  glob5[Ident(1)] = 0;
1871  glob5[Ident(2)] = 0;
1872  glob5[Ident(3)] = 0;
1873  glob5[Ident(4)] = 0;
1874
1875  EXPECT_DEATH(glob5[Ident(5)] = 0,
1876               "0 bytes to the right of global variable.*glob5.* size 5");
1877  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1878               "6 bytes to the right of global variable.*glob5.* size 5");
1879  Ident(static110);  // avoid optimizations
1880  static110[Ident(0)] = 0;
1881  static110[Ident(109)] = 0;
1882  EXPECT_DEATH(static110[Ident(110)] = 0,
1883               "0 bytes to the right of global variable");
1884  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1885               "7 bytes to the right of global variable");
1886
1887  Ident(func_static15);  // avoid optimizations
1888  func_static15[Ident(0)] = 0;
1889  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1890               "0 bytes to the right of global variable");
1891  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1892               "9 bytes to the right of global variable");
1893
1894  Ident(fs1);
1895  Ident(fs2);
1896  Ident(fs3);
1897
1898  // We don't create left redzones, so this is not 100% guaranteed to fail.
1899  // But most likely will.
1900  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1901
1902  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1903               "is located 1 bytes to the right of .*ConstGlob");
1904  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1905               "is located 2 bytes to the right of .*StaticConstGlob");
1906
1907  // call stuff from another file.
1908  GlobalsTest(0);
1909}
1910
1911TEST(AddressSanitizer, GlobalStringConstTest) {
1912  static const char *zoo = "FOOBAR123";
1913  const char *p = Ident(zoo);
1914  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1915}
1916
1917TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1918  static char zoo[10];
1919  const char *p = Ident(zoo);
1920  // The file name should be present in the report.
1921  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.");
1922}
1923
1924int *ReturnsPointerToALocalObject() {
1925  int a = 0;
1926  return Ident(&a);
1927}
1928
1929#if ASAN_UAR == 1
1930TEST(AddressSanitizer, LocalReferenceReturnTest) {
1931  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1932  int *p = f();
1933  // Call 'f' a few more times, 'p' should still be poisoned.
1934  for (int i = 0; i < 32; i++)
1935    f();
1936  EXPECT_DEATH(*p = 1, "AddressSanitizer: stack-use-after-return");
1937  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1938}
1939#endif
1940
1941template <int kSize>
1942NOINLINE static void FuncWithStack() {
1943  char x[kSize];
1944  Ident(x)[0] = 0;
1945  Ident(x)[kSize-1] = 0;
1946}
1947
1948static void LotsOfStackReuse() {
1949  int LargeStack[10000];
1950  Ident(LargeStack)[0] = 0;
1951  for (int i = 0; i < 10000; i++) {
1952    FuncWithStack<128 * 1>();
1953    FuncWithStack<128 * 2>();
1954    FuncWithStack<128 * 4>();
1955    FuncWithStack<128 * 8>();
1956    FuncWithStack<128 * 16>();
1957    FuncWithStack<128 * 32>();
1958    FuncWithStack<128 * 64>();
1959    FuncWithStack<128 * 128>();
1960    FuncWithStack<128 * 256>();
1961    FuncWithStack<128 * 512>();
1962    Ident(LargeStack)[0] = 0;
1963  }
1964}
1965
1966TEST(AddressSanitizer, StressStackReuseTest) {
1967  LotsOfStackReuse();
1968}
1969
1970TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1971  const int kNumThreads = 20;
1972  pthread_t t[kNumThreads];
1973  for (int i = 0; i < kNumThreads; i++) {
1974    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1975  }
1976  for (int i = 0; i < kNumThreads; i++) {
1977    PTHREAD_JOIN(t[i], 0);
1978  }
1979}
1980
1981static void *PthreadExit(void *a) {
1982  pthread_exit(0);
1983  return 0;
1984}
1985
1986TEST(AddressSanitizer, PthreadExitTest) {
1987  pthread_t t;
1988  for (int i = 0; i < 1000; i++) {
1989    PTHREAD_CREATE(&t, 0, PthreadExit, 0);
1990    PTHREAD_JOIN(t, 0);
1991  }
1992}
1993
1994#ifdef __EXCEPTIONS
1995NOINLINE static void StackReuseAndException() {
1996  int large_stack[1000];
1997  Ident(large_stack);
1998  ASAN_THROW(1);
1999}
2000
2001// TODO(kcc): support exceptions with use-after-return.
2002TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
2003  for (int i = 0; i < 10000; i++) {
2004    try {
2005    StackReuseAndException();
2006    } catch(...) {
2007    }
2008  }
2009}
2010#endif
2011
2012TEST(AddressSanitizer, MlockTest) {
2013  EXPECT_EQ(0, mlockall(MCL_CURRENT));
2014  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
2015  EXPECT_EQ(0, munlockall());
2016  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
2017}
2018
2019struct LargeStruct {
2020  int foo[100];
2021};
2022
2023// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
2024// Struct copy should not cause asan warning even if lhs == rhs.
2025TEST(AddressSanitizer, LargeStructCopyTest) {
2026  LargeStruct a;
2027  *Ident(&a) = *Ident(&a);
2028}
2029
2030ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
2031static void NoAddressSafety() {
2032  char *foo = new char[10];
2033  Ident(foo)[10] = 0;
2034  delete [] foo;
2035}
2036
2037TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
2038  Ident(NoAddressSafety)();
2039}
2040
2041// TODO(glider): Enable this test on Mac.
2042// It doesn't work on Android, as calls to new/delete go through malloc/free.
2043#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
2044static string MismatchStr(const string &str) {
2045  return string("AddressSanitizer: alloc-dealloc-mismatch \\(") + str;
2046}
2047
2048TEST(AddressSanitizer, AllocDeallocMismatch) {
2049  EXPECT_DEATH(free(Ident(new int)),
2050               MismatchStr("operator new vs free"));
2051  EXPECT_DEATH(free(Ident(new int[2])),
2052               MismatchStr("operator new \\[\\] vs free"));
2053  EXPECT_DEATH(delete (Ident(new int[2])),
2054               MismatchStr("operator new \\[\\] vs operator delete"));
2055  EXPECT_DEATH(delete (Ident((int*)malloc(2 * sizeof(int)))),
2056               MismatchStr("malloc vs operator delete"));
2057  EXPECT_DEATH(delete [] (Ident(new int)),
2058               MismatchStr("operator new vs operator delete \\[\\]"));
2059  EXPECT_DEATH(delete [] (Ident((int*)malloc(2 * sizeof(int)))),
2060               MismatchStr("malloc vs operator delete \\[\\]"));
2061}
2062#endif
2063
2064// ------------------ demo tests; run each one-by-one -------------
2065// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
2066TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
2067  ThreadedTestSpawn();
2068}
2069
2070void *SimpleBugOnSTack(void *x = 0) {
2071  char a[20];
2072  Ident(a)[20] = 0;
2073  return 0;
2074}
2075
2076TEST(AddressSanitizer, DISABLED_DemoStackTest) {
2077  SimpleBugOnSTack();
2078}
2079
2080TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
2081  pthread_t t;
2082  PTHREAD_CREATE(&t, 0, SimpleBugOnSTack, 0);
2083  PTHREAD_JOIN(t, 0);
2084}
2085
2086TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
2087  uaf_test<U1>(10, 0);
2088}
2089TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
2090  uaf_test<U1>(10, -2);
2091}
2092TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
2093  uaf_test<U1>(10, 10);
2094}
2095
2096TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
2097  uaf_test<U1>(kLargeMalloc, 0);
2098}
2099
2100TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
2101  oob_test<U1>(10, -1);
2102}
2103
2104TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
2105  oob_test<U1>(kLargeMalloc, -1);
2106}
2107
2108TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
2109  oob_test<U1>(10, 10);
2110}
2111
2112TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
2113  oob_test<U1>(kLargeMalloc, kLargeMalloc);
2114}
2115
2116TEST(AddressSanitizer, DISABLED_DemoOOM) {
2117  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
2118  printf("%p\n", malloc(size));
2119}
2120
2121TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
2122  DoubleFree();
2123}
2124
2125TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
2126  int *a = 0;
2127  Ident(a)[10] = 0;
2128}
2129
2130TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
2131  static char a[100];
2132  static char b[100];
2133  static char c[100];
2134  Ident(a);
2135  Ident(b);
2136  Ident(c);
2137  Ident(a)[5] = 0;
2138  Ident(b)[105] = 0;
2139  Ident(a)[5] = 0;
2140}
2141
2142TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
2143  const size_t kAllocSize = (1 << 28) - 1024;
2144  size_t total_size = 0;
2145  while (true) {
2146    char *x = (char*)malloc(kAllocSize);
2147    memset(x, 0, kAllocSize);
2148    total_size += kAllocSize;
2149    fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x);
2150  }
2151}
2152
2153// http://code.google.com/p/address-sanitizer/issues/detail?id=66
2154TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
2155  for (int i = 0; i < 1000000; i++) {
2156    delete [] (Ident(new char [8644]));
2157  }
2158  char *x = new char[8192];
2159  EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer: heap-buffer-overflow");
2160  delete [] Ident(x);
2161}
2162
2163#ifdef __APPLE__
2164#include "asan_mac_test.h"
2165TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
2166  EXPECT_DEATH(
2167      CFAllocatorDefaultDoubleFree(NULL),
2168      "attempting double-free");
2169}
2170
2171void CFAllocator_DoubleFreeOnPthread() {
2172  pthread_t child;
2173  PTHREAD_CREATE(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
2174  PTHREAD_JOIN(child, NULL);  // Shouldn't be reached.
2175}
2176
2177TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
2178  EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
2179}
2180
2181namespace {
2182
2183void *GLOB;
2184
2185void *CFAllocatorAllocateToGlob(void *unused) {
2186  GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
2187  return NULL;
2188}
2189
2190void *CFAllocatorDeallocateFromGlob(void *unused) {
2191  char *p = (char*)GLOB;
2192  p[100] = 'A';  // ASan should report an error here.
2193  CFAllocatorDeallocate(NULL, GLOB);
2194  return NULL;
2195}
2196
2197void CFAllocator_PassMemoryToAnotherThread() {
2198  pthread_t th1, th2;
2199  PTHREAD_CREATE(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
2200  PTHREAD_JOIN(th1, NULL);
2201  PTHREAD_CREATE(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
2202  PTHREAD_JOIN(th2, NULL);
2203}
2204
2205TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
2206  EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
2207               "heap-buffer-overflow");
2208}
2209
2210}  // namespace
2211
2212// TODO(glider): figure out whether we still need these tests. Is it correct
2213// to intercept the non-default CFAllocators?
2214TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
2215  EXPECT_DEATH(
2216      CFAllocatorSystemDefaultDoubleFree(),
2217      "attempting double-free");
2218}
2219
2220// We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
2221TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
2222  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
2223}
2224
2225TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
2226  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
2227}
2228
2229// For libdispatch tests below we check that ASan got to the shadow byte
2230// legend, i.e. managed to print the thread stacks (this almost certainly
2231// means that the libdispatch task creation has been intercepted correctly).
2232TEST(AddressSanitizerMac, GCDDispatchAsync) {
2233  // Make sure the whole ASan report is printed, i.e. that we don't die
2234  // on a CHECK.
2235  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte legend");
2236}
2237
2238TEST(AddressSanitizerMac, GCDDispatchSync) {
2239  // Make sure the whole ASan report is printed, i.e. that we don't die
2240  // on a CHECK.
2241  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte legend");
2242}
2243
2244
2245TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
2246  // Make sure the whole ASan report is printed, i.e. that we don't die
2247  // on a CHECK.
2248  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte legend");
2249}
2250
2251TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
2252  // Make sure the whole ASan report is printed, i.e. that we don't die
2253  // on a CHECK.
2254  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte legend");
2255}
2256
2257TEST(AddressSanitizerMac, GCDDispatchAfter) {
2258  // Make sure the whole ASan report is printed, i.e. that we don't die
2259  // on a CHECK.
2260  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte legend");
2261}
2262
2263TEST(AddressSanitizerMac, GCDSourceEvent) {
2264  // Make sure the whole ASan report is printed, i.e. that we don't die
2265  // on a CHECK.
2266  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte legend");
2267}
2268
2269TEST(AddressSanitizerMac, GCDSourceCancel) {
2270  // Make sure the whole ASan report is printed, i.e. that we don't die
2271  // on a CHECK.
2272  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte legend");
2273}
2274
2275TEST(AddressSanitizerMac, GCDGroupAsync) {
2276  // Make sure the whole ASan report is printed, i.e. that we don't die
2277  // on a CHECK.
2278  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte legend");
2279}
2280
2281void *MallocIntrospectionLockWorker(void *_) {
2282  const int kNumPointers = 100;
2283  int i;
2284  void *pointers[kNumPointers];
2285  for (i = 0; i < kNumPointers; i++) {
2286    pointers[i] = malloc(i + 1);
2287  }
2288  for (i = 0; i < kNumPointers; i++) {
2289    free(pointers[i]);
2290  }
2291
2292  return NULL;
2293}
2294
2295void *MallocIntrospectionLockForker(void *_) {
2296  pid_t result = fork();
2297  if (result == -1) {
2298    perror("fork");
2299  }
2300  assert(result != -1);
2301  if (result == 0) {
2302    // Call malloc in the child process to make sure we won't deadlock.
2303    void *ptr = malloc(42);
2304    free(ptr);
2305    exit(0);
2306  } else {
2307    // Return in the parent process.
2308    return NULL;
2309  }
2310}
2311
2312TEST(AddressSanitizerMac, MallocIntrospectionLock) {
2313  // Incorrect implementation of force_lock and force_unlock in our malloc zone
2314  // will cause forked processes to deadlock.
2315  // TODO(glider): need to detect that none of the child processes deadlocked.
2316  const int kNumWorkers = 5, kNumIterations = 100;
2317  int i, iter;
2318  for (iter = 0; iter < kNumIterations; iter++) {
2319    pthread_t workers[kNumWorkers], forker;
2320    for (i = 0; i < kNumWorkers; i++) {
2321      PTHREAD_CREATE(&workers[i], 0, MallocIntrospectionLockWorker, 0);
2322    }
2323    PTHREAD_CREATE(&forker, 0, MallocIntrospectionLockForker, 0);
2324    for (i = 0; i < kNumWorkers; i++) {
2325      PTHREAD_JOIN(workers[i], 0);
2326    }
2327    PTHREAD_JOIN(forker, 0);
2328  }
2329}
2330
2331void *TSDAllocWorker(void *test_key) {
2332  if (test_key) {
2333    void *mem = malloc(10);
2334    pthread_setspecific(*(pthread_key_t*)test_key, mem);
2335  }
2336  return NULL;
2337}
2338
2339TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
2340  pthread_t th;
2341  pthread_key_t test_key;
2342  pthread_key_create(&test_key, CallFreeOnWorkqueue);
2343  PTHREAD_CREATE(&th, NULL, TSDAllocWorker, &test_key);
2344  PTHREAD_JOIN(th, NULL);
2345  pthread_key_delete(test_key);
2346}
2347
2348// Test that CFStringCreateCopy does not copy constant strings.
2349TEST(AddressSanitizerMac, CFStringCreateCopy) {
2350  CFStringRef str = CFSTR("Hello world!\n");
2351  CFStringRef str2 = CFStringCreateCopy(0, str);
2352  EXPECT_EQ(str, str2);
2353}
2354
2355TEST(AddressSanitizerMac, NSObjectOOB) {
2356  // Make sure that our allocators are used for NSObjects.
2357  EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
2358}
2359
2360// Make sure that correct pointer is passed to free() when deallocating a
2361// NSURL object.
2362// See http://code.google.com/p/address-sanitizer/issues/detail?id=70.
2363TEST(AddressSanitizerMac, NSURLDeallocation) {
2364  TestNSURLDeallocation();
2365}
2366
2367// See http://code.google.com/p/address-sanitizer/issues/detail?id=109.
2368TEST(AddressSanitizerMac, Mstats) {
2369  malloc_statistics_t stats1, stats2;
2370  malloc_zone_statistics(/*all zones*/NULL, &stats1);
2371  const size_t kMallocSize = 100000;
2372  void *alloc = Ident(malloc(kMallocSize));
2373  malloc_zone_statistics(/*all zones*/NULL, &stats2);
2374  EXPECT_GT(stats2.blocks_in_use, stats1.blocks_in_use);
2375  EXPECT_GE(stats2.size_in_use - stats1.size_in_use, kMallocSize);
2376  free(alloc);
2377  // Even the default OSX allocator may not change the stats after free().
2378}
2379#endif  // __APPLE__
2380
2381// Test that instrumentation of stack allocations takes into account
2382// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
2383// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
2384TEST(AddressSanitizer, LongDoubleNegativeTest) {
2385  long double a, b;
2386  static long double c;
2387  memcpy(Ident(&a), Ident(&b), sizeof(long double));
2388  memcpy(Ident(&c), Ident(&b), sizeof(long double));
2389}
2390