asan_test.cc revision f1877cf0a314f407ac535ab1606fdac4f9b05026
1//===-- asan_test.cc ------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11//
12//===----------------------------------------------------------------------===//
13#include <stdio.h>
14#include <signal.h>
15#include <stdlib.h>
16#include <string.h>
17#include <strings.h>
18#include <pthread.h>
19#include <stdint.h>
20#include <setjmp.h>
21#include <assert.h>
22
23#ifdef __linux__
24# include <sys/prctl.h>
25# include <sys/types.h>
26# include <sys/stat.h>
27# include <fcntl.h>
28#endif
29
30#if defined(__i386__) || defined(__x86_64__)
31#include <emmintrin.h>
32#endif
33
34#include "asan_test_utils.h"
35
36#ifndef __APPLE__
37#include <malloc.h>
38#else
39#include <malloc/malloc.h>
40#include <AvailabilityMacros.h>  // For MAC_OS_X_VERSION_*
41#include <CoreFoundation/CFString.h>
42#endif  // __APPLE__
43
44#if ASAN_HAS_EXCEPTIONS
45# define ASAN_THROW(x) throw (x)
46#else
47# define ASAN_THROW(x)
48#endif
49
50#include <sys/mman.h>
51
52typedef uint8_t   U1;
53typedef uint16_t  U2;
54typedef uint32_t  U4;
55typedef uint64_t  U8;
56
57static const int kPageSize = 4096;
58
59// Simple stand-alone pseudorandom number generator.
60// Current algorithm is ANSI C linear congruential PRNG.
61static inline uint32_t my_rand(uint32_t* state) {
62  return (*state = *state * 1103515245 + 12345) >> 16;
63}
64
65static uint32_t global_seed = 0;
66
67const size_t kLargeMalloc = 1 << 24;
68
69template<typename T>
70NOINLINE void asan_write(T *a) {
71  *a = 0;
72}
73
74NOINLINE void asan_write_sized_aligned(uint8_t *p, size_t size) {
75  EXPECT_EQ(0U, ((uintptr_t)p % size));
76  if      (size == 1) asan_write((uint8_t*)p);
77  else if (size == 2) asan_write((uint16_t*)p);
78  else if (size == 4) asan_write((uint32_t*)p);
79  else if (size == 8) asan_write((uint64_t*)p);
80}
81
82NOINLINE void *malloc_fff(size_t size) {
83  void *res = malloc/**/(size); break_optimization(0); return res;}
84NOINLINE void *malloc_eee(size_t size) {
85  void *res = malloc_fff(size); break_optimization(0); return res;}
86NOINLINE void *malloc_ddd(size_t size) {
87  void *res = malloc_eee(size); break_optimization(0); return res;}
88NOINLINE void *malloc_ccc(size_t size) {
89  void *res = malloc_ddd(size); break_optimization(0); return res;}
90NOINLINE void *malloc_bbb(size_t size) {
91  void *res = malloc_ccc(size); break_optimization(0); return res;}
92NOINLINE void *malloc_aaa(size_t size) {
93  void *res = malloc_bbb(size); break_optimization(0); return res;}
94
95#ifndef __APPLE__
96NOINLINE void *memalign_fff(size_t alignment, size_t size) {
97  void *res = memalign/**/(alignment, size); break_optimization(0); return res;}
98NOINLINE void *memalign_eee(size_t alignment, size_t size) {
99  void *res = memalign_fff(alignment, size); break_optimization(0); return res;}
100NOINLINE void *memalign_ddd(size_t alignment, size_t size) {
101  void *res = memalign_eee(alignment, size); break_optimization(0); return res;}
102NOINLINE void *memalign_ccc(size_t alignment, size_t size) {
103  void *res = memalign_ddd(alignment, size); break_optimization(0); return res;}
104NOINLINE void *memalign_bbb(size_t alignment, size_t size) {
105  void *res = memalign_ccc(alignment, size); break_optimization(0); return res;}
106NOINLINE void *memalign_aaa(size_t alignment, size_t size) {
107  void *res = memalign_bbb(alignment, size); break_optimization(0); return res;}
108#endif  // __APPLE__
109
110
111NOINLINE void free_ccc(void *p) { free(p); break_optimization(0);}
112NOINLINE void free_bbb(void *p) { free_ccc(p); break_optimization(0);}
113NOINLINE void free_aaa(void *p) { free_bbb(p); break_optimization(0);}
114
115template<typename T>
116NOINLINE void oob_test(int size, int off) {
117  char *p = (char*)malloc_aaa(size);
118  // fprintf(stderr, "writing %d byte(s) into [%p,%p) with offset %d\n",
119  //        sizeof(T), p, p + size, off);
120  asan_write((T*)(p + off));
121  free_aaa(p);
122}
123
124
125template<typename T>
126NOINLINE void uaf_test(int size, int off) {
127  char *p = (char *)malloc_aaa(size);
128  free_aaa(p);
129  for (int i = 1; i < 100; i++)
130    free_aaa(malloc_aaa(i));
131  fprintf(stderr, "writing %ld byte(s) at %p with offset %d\n",
132          (long)sizeof(T), p, off);
133  asan_write((T*)(p + off));
134}
135
136TEST(AddressSanitizer, HasFeatureAddressSanitizerTest) {
137#if defined(__has_feature) && __has_feature(address_sanitizer)
138  bool asan = 1;
139#elif defined(__SANITIZE_ADDRESS__)
140  bool asan = 1;
141#else
142  bool asan = 0;
143#endif
144  EXPECT_EQ(true, asan);
145}
146
147TEST(AddressSanitizer, SimpleDeathTest) {
148  EXPECT_DEATH(exit(1), "");
149}
150
151TEST(AddressSanitizer, VariousMallocsTest) {
152  int *a = (int*)malloc(100 * sizeof(int));
153  a[50] = 0;
154  free(a);
155
156  int *r = (int*)malloc(10);
157  r = (int*)realloc(r, 2000 * sizeof(int));
158  r[1000] = 0;
159  free(r);
160
161  int *b = new int[100];
162  b[50] = 0;
163  delete [] b;
164
165  int *c = new int;
166  *c = 0;
167  delete c;
168
169#if !defined(__APPLE__) && !defined(ANDROID) && !defined(__ANDROID__)
170  int *pm;
171  int pm_res = posix_memalign((void**)&pm, kPageSize, kPageSize);
172  EXPECT_EQ(0, pm_res);
173  free(pm);
174#endif
175
176#if !defined(__APPLE__)
177  int *ma = (int*)memalign(kPageSize, kPageSize);
178  EXPECT_EQ(0U, (uintptr_t)ma % kPageSize);
179  ma[123] = 0;
180  free(ma);
181#endif  // __APPLE__
182}
183
184TEST(AddressSanitizer, CallocTest) {
185  int *a = (int*)calloc(100, sizeof(int));
186  EXPECT_EQ(0, a[10]);
187  free(a);
188}
189
190TEST(AddressSanitizer, VallocTest) {
191  void *a = valloc(100);
192  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
193  free(a);
194}
195
196#ifndef __APPLE__
197TEST(AddressSanitizer, PvallocTest) {
198  char *a = (char*)pvalloc(kPageSize + 100);
199  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
200  a[kPageSize + 101] = 1;  // we should not report an error here.
201  free(a);
202
203  a = (char*)pvalloc(0);  // pvalloc(0) should allocate at least one page.
204  EXPECT_EQ(0U, (uintptr_t)a % kPageSize);
205  a[101] = 1;  // we should not report an error here.
206  free(a);
207}
208#endif  // __APPLE__
209
210void *TSDWorker(void *test_key) {
211  if (test_key) {
212    pthread_setspecific(*(pthread_key_t*)test_key, (void*)0xfeedface);
213  }
214  return NULL;
215}
216
217void TSDDestructor(void *tsd) {
218  // Spawning a thread will check that the current thread id is not -1.
219  pthread_t th;
220  PTHREAD_CREATE(&th, NULL, TSDWorker, NULL);
221  PTHREAD_JOIN(th, NULL);
222}
223
224// This tests triggers the thread-specific data destruction fiasco which occurs
225// if we don't manage the TSD destructors ourselves. We create a new pthread
226// key with a non-NULL destructor which is likely to be put after the destructor
227// of AsanThread in the list of destructors.
228// In this case the TSD for AsanThread will be destroyed before TSDDestructor
229// is called for the child thread, and a CHECK will fail when we call
230// pthread_create() to spawn the grandchild.
231TEST(AddressSanitizer, DISABLED_TSDTest) {
232  pthread_t th;
233  pthread_key_t test_key;
234  pthread_key_create(&test_key, TSDDestructor);
235  PTHREAD_CREATE(&th, NULL, TSDWorker, &test_key);
236  PTHREAD_JOIN(th, NULL);
237  pthread_key_delete(test_key);
238}
239
240template<typename T>
241void OOBTest() {
242  char expected_str[100];
243  for (int size = sizeof(T); size < 20; size += 5) {
244    for (int i = -5; i < 0; i++) {
245      const char *str =
246          "is located.*%d byte.*to the left";
247      sprintf(expected_str, str, abs(i));
248      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
249    }
250
251    for (int i = 0; i < (int)(size - sizeof(T) + 1); i++)
252      oob_test<T>(size, i);
253
254    for (int i = size - sizeof(T) + 1; i <= (int)(size + 3 * sizeof(T)); i++) {
255      const char *str =
256          "is located.*%d byte.*to the right";
257      int off = i >= size ? (i - size) : 0;
258      // we don't catch unaligned partially OOB accesses.
259      if (i % sizeof(T)) continue;
260      sprintf(expected_str, str, off);
261      EXPECT_DEATH(oob_test<T>(size, i), expected_str);
262    }
263  }
264
265  EXPECT_DEATH(oob_test<T>(kLargeMalloc, -1),
266          "is located.*1 byte.*to the left");
267  EXPECT_DEATH(oob_test<T>(kLargeMalloc, kLargeMalloc),
268          "is located.*0 byte.*to the right");
269}
270
271// TODO(glider): the following tests are EXTREMELY slow on Darwin:
272//   AddressSanitizer.OOB_char (125503 ms)
273//   AddressSanitizer.OOB_int (126890 ms)
274//   AddressSanitizer.OOBRightTest (315605 ms)
275//   AddressSanitizer.SimpleStackTest (366559 ms)
276
277TEST(AddressSanitizer, OOB_char) {
278  OOBTest<U1>();
279}
280
281TEST(AddressSanitizer, OOB_int) {
282  OOBTest<U4>();
283}
284
285TEST(AddressSanitizer, OOBRightTest) {
286  for (size_t access_size = 1; access_size <= 8; access_size *= 2) {
287    for (size_t alloc_size = 1; alloc_size <= 8; alloc_size++) {
288      for (size_t offset = 0; offset <= 8; offset += access_size) {
289        void *p = malloc(alloc_size);
290        // allocated: [p, p + alloc_size)
291        // accessed:  [p + offset, p + offset + access_size)
292        uint8_t *addr = (uint8_t*)p + offset;
293        if (offset + access_size <= alloc_size) {
294          asan_write_sized_aligned(addr, access_size);
295        } else {
296          int outside_bytes = offset > alloc_size ? (offset - alloc_size) : 0;
297          const char *str =
298              "is located.%d *byte.*to the right";
299          char expected_str[100];
300          sprintf(expected_str, str, outside_bytes);
301          EXPECT_DEATH(asan_write_sized_aligned(addr, access_size),
302                       expected_str);
303        }
304        free(p);
305      }
306    }
307  }
308}
309
310#if ASAN_ALLOCATOR_VERSION == 2  // Broken with the asan_allocator1
311TEST(AddressSanitizer, LargeOOBRightTest) {
312  size_t large_power_of_two = 1 << 19;
313  for (size_t i = 16; i <= 256; i *= 2) {
314    size_t size = large_power_of_two - i;
315    char *p = Ident(new char[size]);
316    EXPECT_DEATH(p[size] = 0, "is located 0 bytes to the right");
317    delete [] p;
318  }
319}
320#endif  // ASAN_ALLOCATOR_VERSION == 2
321
322TEST(AddressSanitizer, UAF_char) {
323  const char *uaf_string = "AddressSanitizer:.*heap-use-after-free";
324  EXPECT_DEATH(uaf_test<U1>(1, 0), uaf_string);
325  EXPECT_DEATH(uaf_test<U1>(10, 0), uaf_string);
326  EXPECT_DEATH(uaf_test<U1>(10, 10), uaf_string);
327  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, 0), uaf_string);
328  EXPECT_DEATH(uaf_test<U1>(kLargeMalloc, kLargeMalloc / 2), uaf_string);
329}
330
331#if ASAN_HAS_BLACKLIST
332TEST(AddressSanitizer, IgnoreTest) {
333  int *x = Ident(new int);
334  delete Ident(x);
335  *x = 0;
336}
337#endif  // ASAN_HAS_BLACKLIST
338
339struct StructWithBitField {
340  int bf1:1;
341  int bf2:1;
342  int bf3:1;
343  int bf4:29;
344};
345
346TEST(AddressSanitizer, BitFieldPositiveTest) {
347  StructWithBitField *x = new StructWithBitField;
348  delete Ident(x);
349  EXPECT_DEATH(x->bf1 = 0, "use-after-free");
350  EXPECT_DEATH(x->bf2 = 0, "use-after-free");
351  EXPECT_DEATH(x->bf3 = 0, "use-after-free");
352  EXPECT_DEATH(x->bf4 = 0, "use-after-free");
353}
354
355struct StructWithBitFields_8_24 {
356  int a:8;
357  int b:24;
358};
359
360TEST(AddressSanitizer, BitFieldNegativeTest) {
361  StructWithBitFields_8_24 *x = Ident(new StructWithBitFields_8_24);
362  x->a = 0;
363  x->b = 0;
364  delete Ident(x);
365}
366
367TEST(AddressSanitizer, OutOfMemoryTest) {
368  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 48) : (0xf0000000);
369  EXPECT_EQ(0, realloc(0, size));
370  EXPECT_EQ(0, realloc(0, ~Ident(0)));
371  EXPECT_EQ(0, malloc(size));
372  EXPECT_EQ(0, malloc(~Ident(0)));
373  EXPECT_EQ(0, calloc(1, size));
374  EXPECT_EQ(0, calloc(1, ~Ident(0)));
375}
376
377#if ASAN_NEEDS_SEGV
378namespace {
379
380const char kUnknownCrash[] = "AddressSanitizer: SEGV on unknown address";
381const char kOverriddenHandler[] = "ASan signal handler has been overridden\n";
382
383TEST(AddressSanitizer, WildAddressTest) {
384  char *c = (char*)0x123;
385  EXPECT_DEATH(*c = 0, kUnknownCrash);
386}
387
388void my_sigaction_sighandler(int, siginfo_t*, void*) {
389  fprintf(stderr, kOverriddenHandler);
390  exit(1);
391}
392
393void my_signal_sighandler(int signum) {
394  fprintf(stderr, kOverriddenHandler);
395  exit(1);
396}
397
398TEST(AddressSanitizer, SignalTest) {
399  struct sigaction sigact;
400  memset(&sigact, 0, sizeof(sigact));
401  sigact.sa_sigaction = my_sigaction_sighandler;
402  sigact.sa_flags = SA_SIGINFO;
403  // ASan should silently ignore sigaction()...
404  EXPECT_EQ(0, sigaction(SIGSEGV, &sigact, 0));
405#ifdef __APPLE__
406  EXPECT_EQ(0, sigaction(SIGBUS, &sigact, 0));
407#endif
408  char *c = (char*)0x123;
409  EXPECT_DEATH(*c = 0, kUnknownCrash);
410  // ... and signal().
411  EXPECT_EQ(0, signal(SIGSEGV, my_signal_sighandler));
412  EXPECT_DEATH(*c = 0, kUnknownCrash);
413}
414}  // namespace
415#endif
416
417static void MallocStress(size_t n) {
418  uint32_t seed = my_rand(&global_seed);
419  for (size_t iter = 0; iter < 10; iter++) {
420    vector<void *> vec;
421    for (size_t i = 0; i < n; i++) {
422      if ((i % 3) == 0) {
423        if (vec.empty()) continue;
424        size_t idx = my_rand(&seed) % vec.size();
425        void *ptr = vec[idx];
426        vec[idx] = vec.back();
427        vec.pop_back();
428        free_aaa(ptr);
429      } else {
430        size_t size = my_rand(&seed) % 1000 + 1;
431#ifndef __APPLE__
432        size_t alignment = 1 << (my_rand(&seed) % 7 + 3);
433        char *ptr = (char*)memalign_aaa(alignment, size);
434#else
435        char *ptr = (char*) malloc_aaa(size);
436#endif
437        vec.push_back(ptr);
438        ptr[0] = 0;
439        ptr[size-1] = 0;
440        ptr[size/2] = 0;
441      }
442    }
443    for (size_t i = 0; i < vec.size(); i++)
444      free_aaa(vec[i]);
445  }
446}
447
448TEST(AddressSanitizer, MallocStressTest) {
449  MallocStress((ASAN_LOW_MEMORY) ? 20000 : 200000);
450}
451
452static void TestLargeMalloc(size_t size) {
453  char buff[1024];
454  sprintf(buff, "is located 1 bytes to the left of %lu-byte", (long)size);
455  EXPECT_DEATH(Ident((char*)malloc(size))[-1] = 0, buff);
456}
457
458TEST(AddressSanitizer, LargeMallocTest) {
459  for (int i = 113; i < (1 << 28); i = i * 2 + 13) {
460    TestLargeMalloc(i);
461  }
462}
463
464#if ASAN_LOW_MEMORY != 1
465TEST(AddressSanitizer, HugeMallocTest) {
466#ifdef __APPLE__
467  // It was empirically found out that 1215 megabytes is the maximum amount of
468  // memory available to the process under AddressSanitizer on 32-bit Mac 10.6.
469  // 32-bit Mac 10.7 gives even less (< 1G).
470  // (the libSystem malloc() allows allocating up to 2300 megabytes without
471  // ASan).
472  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 500 : 4100;
473#else
474  size_t n_megs = SANITIZER_WORDSIZE == 32 ? 2600 : 4100;
475#endif
476  TestLargeMalloc(n_megs << 20);
477}
478#endif
479
480#ifndef __APPLE__
481void MemalignRun(size_t align, size_t size, int idx) {
482  fprintf(stderr, "align %ld\n", align);
483  char *p = (char *)memalign(align, size);
484  Ident(p)[idx] = 0;
485  free(p);
486}
487
488TEST(AddressSanitizer, memalign) {
489  for (int align = 16; align <= (1 << 23); align *= 2) {
490    size_t size = align * 5;
491    EXPECT_DEATH(MemalignRun(align, size, -1),
492                 "is located 1 bytes to the left");
493    EXPECT_DEATH(MemalignRun(align, size, size + 1),
494                 "is located 1 bytes to the right");
495  }
496}
497#endif
498
499TEST(AddressSanitizer, ThreadedMallocStressTest) {
500  const int kNumThreads = 4;
501  const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000;
502  pthread_t t[kNumThreads];
503  for (int i = 0; i < kNumThreads; i++) {
504    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))MallocStress,
505        (void*)kNumIterations);
506  }
507  for (int i = 0; i < kNumThreads; i++) {
508    PTHREAD_JOIN(t[i], 0);
509  }
510}
511
512void *ManyThreadsWorker(void *a) {
513  for (int iter = 0; iter < 100; iter++) {
514    for (size_t size = 100; size < 2000; size *= 2) {
515      free(Ident(malloc(size)));
516    }
517  }
518  return 0;
519}
520
521TEST(AddressSanitizer, ManyThreadsTest) {
522  const size_t kNumThreads =
523      (SANITIZER_WORDSIZE == 32 || ASAN_AVOID_EXPENSIVE_TESTS) ? 30 : 1000;
524  pthread_t t[kNumThreads];
525  for (size_t i = 0; i < kNumThreads; i++) {
526    PTHREAD_CREATE(&t[i], 0, ManyThreadsWorker, (void*)i);
527  }
528  for (size_t i = 0; i < kNumThreads; i++) {
529    PTHREAD_JOIN(t[i], 0);
530  }
531}
532
533TEST(AddressSanitizer, ReallocTest) {
534  const int kMinElem = 5;
535  int *ptr = (int*)malloc(sizeof(int) * kMinElem);
536  ptr[3] = 3;
537  for (int i = 0; i < 10000; i++) {
538    ptr = (int*)realloc(ptr,
539        (my_rand(&global_seed) % 1000 + kMinElem) * sizeof(int));
540    EXPECT_EQ(3, ptr[3]);
541  }
542}
543
544#ifndef __APPLE__
545static const char *kMallocUsableSizeErrorMsg =
546  "AddressSanitizer: attempting to call malloc_usable_size()";
547
548TEST(AddressSanitizer, MallocUsableSizeTest) {
549  const size_t kArraySize = 100;
550  char *array = Ident((char*)malloc(kArraySize));
551  int *int_ptr = Ident(new int);
552  EXPECT_EQ(0U, malloc_usable_size(NULL));
553  EXPECT_EQ(kArraySize, malloc_usable_size(array));
554  EXPECT_EQ(sizeof(int), malloc_usable_size(int_ptr));
555  EXPECT_DEATH(malloc_usable_size((void*)0x123), kMallocUsableSizeErrorMsg);
556  EXPECT_DEATH(malloc_usable_size(array + kArraySize / 2),
557               kMallocUsableSizeErrorMsg);
558  free(array);
559  EXPECT_DEATH(malloc_usable_size(array), kMallocUsableSizeErrorMsg);
560}
561#endif
562
563void WrongFree() {
564  int *x = (int*)malloc(100 * sizeof(int));
565  // Use the allocated memory, otherwise Clang will optimize it out.
566  Ident(x);
567  free(x + 1);
568}
569
570TEST(AddressSanitizer, WrongFreeTest) {
571  EXPECT_DEATH(WrongFree(),
572               "ERROR: AddressSanitizer: attempting free.*not malloc");
573}
574
575void DoubleFree() {
576  int *x = (int*)malloc(100 * sizeof(int));
577  fprintf(stderr, "DoubleFree: x=%p\n", x);
578  free(x);
579  free(x);
580  fprintf(stderr, "should have failed in the second free(%p)\n", x);
581  abort();
582}
583
584TEST(AddressSanitizer, DoubleFreeTest) {
585  EXPECT_DEATH(DoubleFree(), ASAN_PCRE_DOTALL
586               "ERROR: AddressSanitizer: attempting double-free"
587               ".*is located 0 bytes inside of 400-byte region"
588               ".*freed by thread T0 here"
589               ".*previously allocated by thread T0 here");
590}
591
592template<int kSize>
593NOINLINE void SizedStackTest() {
594  char a[kSize];
595  char  *A = Ident((char*)&a);
596  for (size_t i = 0; i < kSize; i++)
597    A[i] = i;
598  EXPECT_DEATH(A[-1] = 0, "");
599  EXPECT_DEATH(A[-20] = 0, "");
600  EXPECT_DEATH(A[-31] = 0, "");
601  EXPECT_DEATH(A[kSize] = 0, "");
602  EXPECT_DEATH(A[kSize + 1] = 0, "");
603  EXPECT_DEATH(A[kSize + 10] = 0, "");
604  EXPECT_DEATH(A[kSize + 31] = 0, "");
605}
606
607TEST(AddressSanitizer, SimpleStackTest) {
608  SizedStackTest<1>();
609  SizedStackTest<2>();
610  SizedStackTest<3>();
611  SizedStackTest<4>();
612  SizedStackTest<5>();
613  SizedStackTest<6>();
614  SizedStackTest<7>();
615  SizedStackTest<16>();
616  SizedStackTest<25>();
617  SizedStackTest<34>();
618  SizedStackTest<43>();
619  SizedStackTest<51>();
620  SizedStackTest<62>();
621  SizedStackTest<64>();
622  SizedStackTest<128>();
623}
624
625TEST(AddressSanitizer, ManyStackObjectsTest) {
626  char XXX[10];
627  char YYY[20];
628  char ZZZ[30];
629  Ident(XXX);
630  Ident(YYY);
631  EXPECT_DEATH(Ident(ZZZ)[-1] = 0, ASAN_PCRE_DOTALL "XXX.*YYY.*ZZZ");
632}
633
634NOINLINE static void Frame0(int frame, char *a, char *b, char *c) {
635  char d[4] = {0};
636  char *D = Ident(d);
637  switch (frame) {
638    case 3: a[5]++; break;
639    case 2: b[5]++; break;
640    case 1: c[5]++; break;
641    case 0: D[5]++; break;
642  }
643}
644NOINLINE static void Frame1(int frame, char *a, char *b) {
645  char c[4] = {0}; Frame0(frame, a, b, c);
646  break_optimization(0);
647}
648NOINLINE static void Frame2(int frame, char *a) {
649  char b[4] = {0}; Frame1(frame, a, b);
650  break_optimization(0);
651}
652NOINLINE static void Frame3(int frame) {
653  char a[4] = {0}; Frame2(frame, a);
654  break_optimization(0);
655}
656
657TEST(AddressSanitizer, GuiltyStackFrame0Test) {
658  EXPECT_DEATH(Frame3(0), "located .*in frame <.*Frame0");
659}
660TEST(AddressSanitizer, GuiltyStackFrame1Test) {
661  EXPECT_DEATH(Frame3(1), "located .*in frame <.*Frame1");
662}
663TEST(AddressSanitizer, GuiltyStackFrame2Test) {
664  EXPECT_DEATH(Frame3(2), "located .*in frame <.*Frame2");
665}
666TEST(AddressSanitizer, GuiltyStackFrame3Test) {
667  EXPECT_DEATH(Frame3(3), "located .*in frame <.*Frame3");
668}
669
670NOINLINE void LongJmpFunc1(jmp_buf buf) {
671  // create three red zones for these two stack objects.
672  int a;
673  int b;
674
675  int *A = Ident(&a);
676  int *B = Ident(&b);
677  *A = *B;
678  longjmp(buf, 1);
679}
680
681NOINLINE void BuiltinLongJmpFunc1(jmp_buf buf) {
682  // create three red zones for these two stack objects.
683  int a;
684  int b;
685
686  int *A = Ident(&a);
687  int *B = Ident(&b);
688  *A = *B;
689  __builtin_longjmp((void**)buf, 1);
690}
691
692NOINLINE void UnderscopeLongJmpFunc1(jmp_buf buf) {
693  // create three red zones for these two stack objects.
694  int a;
695  int b;
696
697  int *A = Ident(&a);
698  int *B = Ident(&b);
699  *A = *B;
700  _longjmp(buf, 1);
701}
702
703NOINLINE void SigLongJmpFunc1(sigjmp_buf buf) {
704  // create three red zones for these two stack objects.
705  int a;
706  int b;
707
708  int *A = Ident(&a);
709  int *B = Ident(&b);
710  *A = *B;
711  siglongjmp(buf, 1);
712}
713
714
715NOINLINE void TouchStackFunc() {
716  int a[100];  // long array will intersect with redzones from LongJmpFunc1.
717  int *A = Ident(a);
718  for (int i = 0; i < 100; i++)
719    A[i] = i*i;
720}
721
722// Test that we handle longjmp and do not report fals positives on stack.
723TEST(AddressSanitizer, LongJmpTest) {
724  static jmp_buf buf;
725  if (!setjmp(buf)) {
726    LongJmpFunc1(buf);
727  } else {
728    TouchStackFunc();
729  }
730}
731
732#if not defined(__ANDROID__)
733TEST(AddressSanitizer, BuiltinLongJmpTest) {
734  static jmp_buf buf;
735  if (!__builtin_setjmp((void**)buf)) {
736    BuiltinLongJmpFunc1(buf);
737  } else {
738    TouchStackFunc();
739  }
740}
741#endif  // not defined(__ANDROID__)
742
743TEST(AddressSanitizer, UnderscopeLongJmpTest) {
744  static jmp_buf buf;
745  if (!_setjmp(buf)) {
746    UnderscopeLongJmpFunc1(buf);
747  } else {
748    TouchStackFunc();
749  }
750}
751
752TEST(AddressSanitizer, SigLongJmpTest) {
753  static sigjmp_buf buf;
754  if (!sigsetjmp(buf, 1)) {
755    SigLongJmpFunc1(buf);
756  } else {
757    TouchStackFunc();
758  }
759}
760
761#ifdef __EXCEPTIONS
762NOINLINE void ThrowFunc() {
763  // create three red zones for these two stack objects.
764  int a;
765  int b;
766
767  int *A = Ident(&a);
768  int *B = Ident(&b);
769  *A = *B;
770  ASAN_THROW(1);
771}
772
773TEST(AddressSanitizer, CxxExceptionTest) {
774  if (ASAN_UAR) return;
775  // TODO(kcc): this test crashes on 32-bit for some reason...
776  if (SANITIZER_WORDSIZE == 32) return;
777  try {
778    ThrowFunc();
779  } catch(...) {}
780  TouchStackFunc();
781}
782#endif
783
784void *ThreadStackReuseFunc1(void *unused) {
785  // create three red zones for these two stack objects.
786  int a;
787  int b;
788
789  int *A = Ident(&a);
790  int *B = Ident(&b);
791  *A = *B;
792  pthread_exit(0);
793  return 0;
794}
795
796void *ThreadStackReuseFunc2(void *unused) {
797  TouchStackFunc();
798  return 0;
799}
800
801TEST(AddressSanitizer, ThreadStackReuseTest) {
802  pthread_t t;
803  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc1, 0);
804  PTHREAD_JOIN(t, 0);
805  PTHREAD_CREATE(&t, 0, ThreadStackReuseFunc2, 0);
806  PTHREAD_JOIN(t, 0);
807}
808
809#if defined(__i386__) || defined(__x86_64__)
810TEST(AddressSanitizer, Store128Test) {
811  char *a = Ident((char*)malloc(Ident(12)));
812  char *p = a;
813  if (((uintptr_t)a % 16) != 0)
814    p = a + 8;
815  assert(((uintptr_t)p % 16) == 0);
816  __m128i value_wide = _mm_set1_epi16(0x1234);
817  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
818               "AddressSanitizer: heap-buffer-overflow");
819  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
820               "WRITE of size 16");
821  EXPECT_DEATH(_mm_store_si128((__m128i*)p, value_wide),
822               "located 0 bytes to the right of 12-byte");
823  free(a);
824}
825#endif
826
827static string RightOOBErrorMessage(int oob_distance, bool is_write) {
828  assert(oob_distance >= 0);
829  char expected_str[100];
830  sprintf(expected_str, ASAN_PCRE_DOTALL "%s.*located %d bytes to the right",
831          is_write ? "WRITE" : "READ", oob_distance);
832  return string(expected_str);
833}
834
835static string RightOOBWriteMessage(int oob_distance) {
836  return RightOOBErrorMessage(oob_distance, /*is_write*/true);
837}
838
839static string RightOOBReadMessage(int oob_distance) {
840  return RightOOBErrorMessage(oob_distance, /*is_write*/false);
841}
842
843static string LeftOOBErrorMessage(int oob_distance, bool is_write) {
844  assert(oob_distance > 0);
845  char expected_str[100];
846  sprintf(expected_str, ASAN_PCRE_DOTALL "%s.*located %d bytes to the left",
847          is_write ? "WRITE" : "READ", oob_distance);
848  return string(expected_str);
849}
850
851static string LeftOOBWriteMessage(int oob_distance) {
852  return LeftOOBErrorMessage(oob_distance, /*is_write*/true);
853}
854
855static string LeftOOBReadMessage(int oob_distance) {
856  return LeftOOBErrorMessage(oob_distance, /*is_write*/false);
857}
858
859static string LeftOOBAccessMessage(int oob_distance) {
860  assert(oob_distance > 0);
861  char expected_str[100];
862  sprintf(expected_str, "located %d bytes to the left", oob_distance);
863  return string(expected_str);
864}
865
866template<typename T>
867void MemSetOOBTestTemplate(size_t length) {
868  if (length == 0) return;
869  size_t size = Ident(sizeof(T) * length);
870  T *array = Ident((T*)malloc(size));
871  int element = Ident(42);
872  int zero = Ident(0);
873  // memset interval inside array
874  memset(array, element, size);
875  memset(array, element, size - 1);
876  memset(array + length - 1, element, sizeof(T));
877  memset(array, element, 1);
878
879  // memset 0 bytes
880  memset(array - 10, element, zero);
881  memset(array - 1, element, zero);
882  memset(array, element, zero);
883  memset(array + length, 0, zero);
884  memset(array + length + 1, 0, zero);
885
886  // try to memset bytes to the right of array
887  EXPECT_DEATH(memset(array, 0, size + 1),
888               RightOOBWriteMessage(0));
889  EXPECT_DEATH(memset((char*)(array + length) - 1, element, 6),
890               RightOOBWriteMessage(4));
891  EXPECT_DEATH(memset(array + 1, element, size + sizeof(T)),
892               RightOOBWriteMessage(2 * sizeof(T) - 1));
893  // whole interval is to the right
894  EXPECT_DEATH(memset(array + length + 1, 0, 10),
895               RightOOBWriteMessage(sizeof(T)));
896
897  // try to memset bytes to the left of array
898  EXPECT_DEATH(memset((char*)array - 1, element, size),
899               LeftOOBWriteMessage(1));
900  EXPECT_DEATH(memset((char*)array - 5, 0, 6),
901               LeftOOBWriteMessage(5));
902  EXPECT_DEATH(memset(array - 5, element, size + 5 * sizeof(T)),
903               LeftOOBWriteMessage(5 * sizeof(T)));
904  // whole interval is to the left
905  EXPECT_DEATH(memset(array - 2, 0, sizeof(T)),
906               LeftOOBWriteMessage(2 * sizeof(T)));
907
908  // try to memset bytes both to the left & to the right
909  EXPECT_DEATH(memset((char*)array - 2, element, size + 4),
910               LeftOOBWriteMessage(2));
911
912  free(array);
913}
914
915TEST(AddressSanitizer, MemSetOOBTest) {
916  MemSetOOBTestTemplate<char>(100);
917  MemSetOOBTestTemplate<int>(5);
918  MemSetOOBTestTemplate<double>(256);
919  // We can test arrays of structres/classes here, but what for?
920}
921
922// Same test for memcpy and memmove functions
923template <typename T, class M>
924void MemTransferOOBTestTemplate(size_t length) {
925  if (length == 0) return;
926  size_t size = Ident(sizeof(T) * length);
927  T *src = Ident((T*)malloc(size));
928  T *dest = Ident((T*)malloc(size));
929  int zero = Ident(0);
930
931  // valid transfer of bytes between arrays
932  M::transfer(dest, src, size);
933  M::transfer(dest + 1, src, size - sizeof(T));
934  M::transfer(dest, src + length - 1, sizeof(T));
935  M::transfer(dest, src, 1);
936
937  // transfer zero bytes
938  M::transfer(dest - 1, src, 0);
939  M::transfer(dest + length, src, zero);
940  M::transfer(dest, src - 1, zero);
941  M::transfer(dest, src, zero);
942
943  // try to change mem to the right of dest
944  EXPECT_DEATH(M::transfer(dest + 1, src, size),
945               RightOOBWriteMessage(sizeof(T) - 1));
946  EXPECT_DEATH(M::transfer((char*)(dest + length) - 1, src, 5),
947               RightOOBWriteMessage(3));
948
949  // try to change mem to the left of dest
950  EXPECT_DEATH(M::transfer(dest - 2, src, size),
951               LeftOOBWriteMessage(2 * sizeof(T)));
952  EXPECT_DEATH(M::transfer((char*)dest - 3, src, 4),
953               LeftOOBWriteMessage(3));
954
955  // try to access mem to the right of src
956  EXPECT_DEATH(M::transfer(dest, src + 2, size),
957               RightOOBReadMessage(2 * sizeof(T) - 1));
958  EXPECT_DEATH(M::transfer(dest, (char*)(src + length) - 3, 6),
959               RightOOBReadMessage(2));
960
961  // try to access mem to the left of src
962  EXPECT_DEATH(M::transfer(dest, src - 1, size),
963               LeftOOBReadMessage(sizeof(T)));
964  EXPECT_DEATH(M::transfer(dest, (char*)src - 6, 7),
965               LeftOOBReadMessage(6));
966
967  // Generally we don't need to test cases where both accessing src and writing
968  // to dest address to poisoned memory.
969
970  T *big_src = Ident((T*)malloc(size * 2));
971  T *big_dest = Ident((T*)malloc(size * 2));
972  // try to change mem to both sides of dest
973  EXPECT_DEATH(M::transfer(dest - 1, big_src, size * 2),
974               LeftOOBWriteMessage(sizeof(T)));
975  // try to access mem to both sides of src
976  EXPECT_DEATH(M::transfer(big_dest, src - 2, size * 2),
977               LeftOOBReadMessage(2 * sizeof(T)));
978
979  free(src);
980  free(dest);
981  free(big_src);
982  free(big_dest);
983}
984
985class MemCpyWrapper {
986 public:
987  static void* transfer(void *to, const void *from, size_t size) {
988    return memcpy(to, from, size);
989  }
990};
991TEST(AddressSanitizer, MemCpyOOBTest) {
992  MemTransferOOBTestTemplate<char, MemCpyWrapper>(100);
993  MemTransferOOBTestTemplate<int, MemCpyWrapper>(1024);
994}
995
996class MemMoveWrapper {
997 public:
998  static void* transfer(void *to, const void *from, size_t size) {
999    return memmove(to, from, size);
1000  }
1001};
1002TEST(AddressSanitizer, MemMoveOOBTest) {
1003  MemTransferOOBTestTemplate<char, MemMoveWrapper>(100);
1004  MemTransferOOBTestTemplate<int, MemMoveWrapper>(1024);
1005}
1006
1007// Tests for string functions
1008
1009// Used for string functions tests
1010static char global_string[] = "global";
1011static size_t global_string_length = 6;
1012
1013// Input to a test is a zero-terminated string str with given length
1014// Accesses to the bytes to the left and to the right of str
1015// are presumed to produce OOB errors
1016void StrLenOOBTestTemplate(char *str, size_t length, bool is_global) {
1017  // Normal strlen calls
1018  EXPECT_EQ(strlen(str), length);
1019  if (length > 0) {
1020    EXPECT_EQ(length - 1, strlen(str + 1));
1021    EXPECT_EQ(0U, strlen(str + length));
1022  }
1023  // Arg of strlen is not malloced, OOB access
1024  if (!is_global) {
1025    // We don't insert RedZones to the left of global variables
1026    EXPECT_DEATH(Ident(strlen(str - 1)), LeftOOBReadMessage(1));
1027    EXPECT_DEATH(Ident(strlen(str - 5)), LeftOOBReadMessage(5));
1028  }
1029  EXPECT_DEATH(Ident(strlen(str + length + 1)), RightOOBReadMessage(0));
1030  // Overwrite terminator
1031  str[length] = 'a';
1032  // String is not zero-terminated, strlen will lead to OOB access
1033  EXPECT_DEATH(Ident(strlen(str)), RightOOBReadMessage(0));
1034  EXPECT_DEATH(Ident(strlen(str + length)), RightOOBReadMessage(0));
1035  // Restore terminator
1036  str[length] = 0;
1037}
1038TEST(AddressSanitizer, StrLenOOBTest) {
1039  // Check heap-allocated string
1040  size_t length = Ident(10);
1041  char *heap_string = Ident((char*)malloc(length + 1));
1042  char stack_string[10 + 1];
1043  break_optimization(&stack_string);
1044  for (size_t i = 0; i < length; i++) {
1045    heap_string[i] = 'a';
1046    stack_string[i] = 'b';
1047  }
1048  heap_string[length] = 0;
1049  stack_string[length] = 0;
1050  StrLenOOBTestTemplate(heap_string, length, false);
1051  // TODO(samsonov): Fix expected messages in StrLenOOBTestTemplate to
1052  //      make test for stack_string work. Or move it to output tests.
1053  // StrLenOOBTestTemplate(stack_string, length, false);
1054  StrLenOOBTestTemplate(global_string, global_string_length, true);
1055  free(heap_string);
1056}
1057
1058static inline char* MallocAndMemsetString(size_t size, char ch) {
1059  char *s = Ident((char*)malloc(size));
1060  memset(s, ch, size);
1061  return s;
1062}
1063static inline char* MallocAndMemsetString(size_t size) {
1064  return MallocAndMemsetString(size, 'z');
1065}
1066
1067#ifndef __APPLE__
1068TEST(AddressSanitizer, StrNLenOOBTest) {
1069  size_t size = Ident(123);
1070  char *str = MallocAndMemsetString(size);
1071  // Normal strnlen calls.
1072  Ident(strnlen(str - 1, 0));
1073  Ident(strnlen(str, size));
1074  Ident(strnlen(str + size - 1, 1));
1075  str[size - 1] = '\0';
1076  Ident(strnlen(str, 2 * size));
1077  // Argument points to not allocated memory.
1078  EXPECT_DEATH(Ident(strnlen(str - 1, 1)), LeftOOBReadMessage(1));
1079  EXPECT_DEATH(Ident(strnlen(str + size, 1)), RightOOBReadMessage(0));
1080  // Overwrite the terminating '\0' and hit unallocated memory.
1081  str[size - 1] = 'z';
1082  EXPECT_DEATH(Ident(strnlen(str, size + 1)), RightOOBReadMessage(0));
1083  free(str);
1084}
1085#endif
1086
1087TEST(AddressSanitizer, StrDupOOBTest) {
1088  size_t size = Ident(42);
1089  char *str = MallocAndMemsetString(size);
1090  char *new_str;
1091  // Normal strdup calls.
1092  str[size - 1] = '\0';
1093  new_str = strdup(str);
1094  free(new_str);
1095  new_str = strdup(str + size - 1);
1096  free(new_str);
1097  // Argument points to not allocated memory.
1098  EXPECT_DEATH(Ident(strdup(str - 1)), LeftOOBReadMessage(1));
1099  EXPECT_DEATH(Ident(strdup(str + size)), RightOOBReadMessage(0));
1100  // Overwrite the terminating '\0' and hit unallocated memory.
1101  str[size - 1] = 'z';
1102  EXPECT_DEATH(Ident(strdup(str)), RightOOBReadMessage(0));
1103  free(str);
1104}
1105
1106TEST(AddressSanitizer, StrCpyOOBTest) {
1107  size_t to_size = Ident(30);
1108  size_t from_size = Ident(6);  // less than to_size
1109  char *to = Ident((char*)malloc(to_size));
1110  char *from = Ident((char*)malloc(from_size));
1111  // Normal strcpy calls.
1112  strcpy(from, "hello");
1113  strcpy(to, from);
1114  strcpy(to + to_size - from_size, from);
1115  // Length of "from" is too small.
1116  EXPECT_DEATH(Ident(strcpy(from, "hello2")), RightOOBWriteMessage(0));
1117  // "to" or "from" points to not allocated memory.
1118  EXPECT_DEATH(Ident(strcpy(to - 1, from)), LeftOOBWriteMessage(1));
1119  EXPECT_DEATH(Ident(strcpy(to, from - 1)), LeftOOBReadMessage(1));
1120  EXPECT_DEATH(Ident(strcpy(to, from + from_size)), RightOOBReadMessage(0));
1121  EXPECT_DEATH(Ident(strcpy(to + to_size, from)), RightOOBWriteMessage(0));
1122  // Overwrite the terminating '\0' character and hit unallocated memory.
1123  from[from_size - 1] = '!';
1124  EXPECT_DEATH(Ident(strcpy(to, from)), RightOOBReadMessage(0));
1125  free(to);
1126  free(from);
1127}
1128
1129TEST(AddressSanitizer, StrNCpyOOBTest) {
1130  size_t to_size = Ident(20);
1131  size_t from_size = Ident(6);  // less than to_size
1132  char *to = Ident((char*)malloc(to_size));
1133  // From is a zero-terminated string "hello\0" of length 6
1134  char *from = Ident((char*)malloc(from_size));
1135  strcpy(from, "hello");
1136  // copy 0 bytes
1137  strncpy(to, from, 0);
1138  strncpy(to - 1, from - 1, 0);
1139  // normal strncpy calls
1140  strncpy(to, from, from_size);
1141  strncpy(to, from, to_size);
1142  strncpy(to, from + from_size - 1, to_size);
1143  strncpy(to + to_size - 1, from, 1);
1144  // One of {to, from} points to not allocated memory
1145  EXPECT_DEATH(Ident(strncpy(to, from - 1, from_size)),
1146               LeftOOBReadMessage(1));
1147  EXPECT_DEATH(Ident(strncpy(to - 1, from, from_size)),
1148               LeftOOBWriteMessage(1));
1149  EXPECT_DEATH(Ident(strncpy(to, from + from_size, 1)),
1150               RightOOBReadMessage(0));
1151  EXPECT_DEATH(Ident(strncpy(to + to_size, from, 1)),
1152               RightOOBWriteMessage(0));
1153  // Length of "to" is too small
1154  EXPECT_DEATH(Ident(strncpy(to + to_size - from_size + 1, from, from_size)),
1155               RightOOBWriteMessage(0));
1156  EXPECT_DEATH(Ident(strncpy(to + 1, from, to_size)),
1157               RightOOBWriteMessage(0));
1158  // Overwrite terminator in from
1159  from[from_size - 1] = '!';
1160  // normal strncpy call
1161  strncpy(to, from, from_size);
1162  // Length of "from" is too small
1163  EXPECT_DEATH(Ident(strncpy(to, from, to_size)),
1164               RightOOBReadMessage(0));
1165  free(to);
1166  free(from);
1167}
1168
1169// Users may have different definitions of "strchr" and "index", so provide
1170// function pointer typedefs and overload RunStrChrTest implementation.
1171// We can't use macro for RunStrChrTest body here, as this macro would
1172// confuse EXPECT_DEATH gtest macro.
1173typedef char*(*PointerToStrChr1)(const char*, int);
1174typedef char*(*PointerToStrChr2)(char*, int);
1175
1176USED static void RunStrChrTest(PointerToStrChr1 StrChr) {
1177  size_t size = Ident(100);
1178  char *str = MallocAndMemsetString(size);
1179  str[10] = 'q';
1180  str[11] = '\0';
1181  EXPECT_EQ(str, StrChr(str, 'z'));
1182  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1183  EXPECT_EQ(NULL, StrChr(str, 'a'));
1184  // StrChr argument points to not allocated memory.
1185  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBReadMessage(1));
1186  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBReadMessage(0));
1187  // Overwrite the terminator and hit not allocated memory.
1188  str[11] = 'z';
1189  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBReadMessage(0));
1190  free(str);
1191}
1192USED static void RunStrChrTest(PointerToStrChr2 StrChr) {
1193  size_t size = Ident(100);
1194  char *str = MallocAndMemsetString(size);
1195  str[10] = 'q';
1196  str[11] = '\0';
1197  EXPECT_EQ(str, StrChr(str, 'z'));
1198  EXPECT_EQ(str + 10, StrChr(str, 'q'));
1199  EXPECT_EQ(NULL, StrChr(str, 'a'));
1200  // StrChr argument points to not allocated memory.
1201  EXPECT_DEATH(Ident(StrChr(str - 1, 'z')), LeftOOBReadMessage(1));
1202  EXPECT_DEATH(Ident(StrChr(str + size, 'z')), RightOOBReadMessage(0));
1203  // Overwrite the terminator and hit not allocated memory.
1204  str[11] = 'z';
1205  EXPECT_DEATH(Ident(StrChr(str, 'a')), RightOOBReadMessage(0));
1206  free(str);
1207}
1208
1209TEST(AddressSanitizer, StrChrAndIndexOOBTest) {
1210  RunStrChrTest(&strchr);
1211  RunStrChrTest(&index);
1212}
1213
1214TEST(AddressSanitizer, StrCmpAndFriendsLogicTest) {
1215  // strcmp
1216  EXPECT_EQ(0, strcmp("", ""));
1217  EXPECT_EQ(0, strcmp("abcd", "abcd"));
1218  EXPECT_GT(0, strcmp("ab", "ac"));
1219  EXPECT_GT(0, strcmp("abc", "abcd"));
1220  EXPECT_LT(0, strcmp("acc", "abc"));
1221  EXPECT_LT(0, strcmp("abcd", "abc"));
1222
1223  // strncmp
1224  EXPECT_EQ(0, strncmp("a", "b", 0));
1225  EXPECT_EQ(0, strncmp("abcd", "abcd", 10));
1226  EXPECT_EQ(0, strncmp("abcd", "abcef", 3));
1227  EXPECT_GT(0, strncmp("abcde", "abcfa", 4));
1228  EXPECT_GT(0, strncmp("a", "b", 5));
1229  EXPECT_GT(0, strncmp("bc", "bcde", 4));
1230  EXPECT_LT(0, strncmp("xyz", "xyy", 10));
1231  EXPECT_LT(0, strncmp("baa", "aaa", 1));
1232  EXPECT_LT(0, strncmp("zyx", "", 2));
1233
1234  // strcasecmp
1235  EXPECT_EQ(0, strcasecmp("", ""));
1236  EXPECT_EQ(0, strcasecmp("zzz", "zzz"));
1237  EXPECT_EQ(0, strcasecmp("abCD", "ABcd"));
1238  EXPECT_GT(0, strcasecmp("aB", "Ac"));
1239  EXPECT_GT(0, strcasecmp("ABC", "ABCd"));
1240  EXPECT_LT(0, strcasecmp("acc", "abc"));
1241  EXPECT_LT(0, strcasecmp("ABCd", "abc"));
1242
1243  // strncasecmp
1244  EXPECT_EQ(0, strncasecmp("a", "b", 0));
1245  EXPECT_EQ(0, strncasecmp("abCD", "ABcd", 10));
1246  EXPECT_EQ(0, strncasecmp("abCd", "ABcef", 3));
1247  EXPECT_GT(0, strncasecmp("abcde", "ABCfa", 4));
1248  EXPECT_GT(0, strncasecmp("a", "B", 5));
1249  EXPECT_GT(0, strncasecmp("bc", "BCde", 4));
1250  EXPECT_LT(0, strncasecmp("xyz", "xyy", 10));
1251  EXPECT_LT(0, strncasecmp("Baa", "aaa", 1));
1252  EXPECT_LT(0, strncasecmp("zyx", "", 2));
1253
1254  // memcmp
1255  EXPECT_EQ(0, memcmp("a", "b", 0));
1256  EXPECT_EQ(0, memcmp("ab\0c", "ab\0c", 4));
1257  EXPECT_GT(0, memcmp("\0ab", "\0ac", 3));
1258  EXPECT_GT(0, memcmp("abb\0", "abba", 4));
1259  EXPECT_LT(0, memcmp("ab\0cd", "ab\0c\0", 5));
1260  EXPECT_LT(0, memcmp("zza", "zyx", 3));
1261}
1262
1263typedef int(*PointerToStrCmp)(const char*, const char*);
1264void RunStrCmpTest(PointerToStrCmp StrCmp) {
1265  size_t size = Ident(100);
1266  char *s1 = MallocAndMemsetString(size);
1267  char *s2 = MallocAndMemsetString(size);
1268  s1[size - 1] = '\0';
1269  s2[size - 1] = '\0';
1270  // Normal StrCmp calls
1271  Ident(StrCmp(s1, s2));
1272  Ident(StrCmp(s1, s2 + size - 1));
1273  Ident(StrCmp(s1 + size - 1, s2 + size - 1));
1274  s1[size - 1] = 'z';
1275  s2[size - 1] = 'x';
1276  Ident(StrCmp(s1, s2));
1277  // One of arguments points to not allocated memory.
1278  EXPECT_DEATH(Ident(StrCmp)(s1 - 1, s2), LeftOOBReadMessage(1));
1279  EXPECT_DEATH(Ident(StrCmp)(s1, s2 - 1), LeftOOBReadMessage(1));
1280  EXPECT_DEATH(Ident(StrCmp)(s1 + size, s2), RightOOBReadMessage(0));
1281  EXPECT_DEATH(Ident(StrCmp)(s1, s2 + size), RightOOBReadMessage(0));
1282  // Hit unallocated memory and die.
1283  s2[size - 1] = 'z';
1284  EXPECT_DEATH(Ident(StrCmp)(s1, s1), RightOOBReadMessage(0));
1285  EXPECT_DEATH(Ident(StrCmp)(s1 + size - 1, s2), RightOOBReadMessage(0));
1286  free(s1);
1287  free(s2);
1288}
1289
1290TEST(AddressSanitizer, StrCmpOOBTest) {
1291  RunStrCmpTest(&strcmp);
1292}
1293
1294TEST(AddressSanitizer, StrCaseCmpOOBTest) {
1295  RunStrCmpTest(&strcasecmp);
1296}
1297
1298typedef int(*PointerToStrNCmp)(const char*, const char*, size_t);
1299void RunStrNCmpTest(PointerToStrNCmp StrNCmp) {
1300  size_t size = Ident(100);
1301  char *s1 = MallocAndMemsetString(size);
1302  char *s2 = MallocAndMemsetString(size);
1303  s1[size - 1] = '\0';
1304  s2[size - 1] = '\0';
1305  // Normal StrNCmp calls
1306  Ident(StrNCmp(s1, s2, size + 2));
1307  s1[size - 1] = 'z';
1308  s2[size - 1] = 'x';
1309  Ident(StrNCmp(s1 + size - 2, s2 + size - 2, size));
1310  s2[size - 1] = 'z';
1311  Ident(StrNCmp(s1 - 1, s2 - 1, 0));
1312  Ident(StrNCmp(s1 + size - 1, s2 + size - 1, 1));
1313  // One of arguments points to not allocated memory.
1314  EXPECT_DEATH(Ident(StrNCmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1));
1315  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1));
1316  EXPECT_DEATH(Ident(StrNCmp)(s1 + size, s2, 1), RightOOBReadMessage(0));
1317  EXPECT_DEATH(Ident(StrNCmp)(s1, s2 + size, 1), RightOOBReadMessage(0));
1318  // Hit unallocated memory and die.
1319  EXPECT_DEATH(Ident(StrNCmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0));
1320  EXPECT_DEATH(Ident(StrNCmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0));
1321  free(s1);
1322  free(s2);
1323}
1324
1325TEST(AddressSanitizer, StrNCmpOOBTest) {
1326  RunStrNCmpTest(&strncmp);
1327}
1328
1329TEST(AddressSanitizer, StrNCaseCmpOOBTest) {
1330  RunStrNCmpTest(&strncasecmp);
1331}
1332
1333TEST(AddressSanitizer, MemCmpOOBTest) {
1334  size_t size = Ident(100);
1335  char *s1 = MallocAndMemsetString(size);
1336  char *s2 = MallocAndMemsetString(size);
1337  // Normal memcmp calls.
1338  Ident(memcmp(s1, s2, size));
1339  Ident(memcmp(s1 + size - 1, s2 + size - 1, 1));
1340  Ident(memcmp(s1 - 1, s2 - 1, 0));
1341  // One of arguments points to not allocated memory.
1342  EXPECT_DEATH(Ident(memcmp)(s1 - 1, s2, 1), LeftOOBReadMessage(1));
1343  EXPECT_DEATH(Ident(memcmp)(s1, s2 - 1, 1), LeftOOBReadMessage(1));
1344  EXPECT_DEATH(Ident(memcmp)(s1 + size, s2, 1), RightOOBReadMessage(0));
1345  EXPECT_DEATH(Ident(memcmp)(s1, s2 + size, 1), RightOOBReadMessage(0));
1346  // Hit unallocated memory and die.
1347  EXPECT_DEATH(Ident(memcmp)(s1 + 1, s2 + 1, size), RightOOBReadMessage(0));
1348  EXPECT_DEATH(Ident(memcmp)(s1 + size - 1, s2, 2), RightOOBReadMessage(0));
1349  // Zero bytes are not terminators and don't prevent from OOB.
1350  s1[size - 1] = '\0';
1351  s2[size - 1] = '\0';
1352  EXPECT_DEATH(Ident(memcmp)(s1, s2, size + 1), RightOOBReadMessage(0));
1353  free(s1);
1354  free(s2);
1355}
1356
1357TEST(AddressSanitizer, StrCatOOBTest) {
1358  // strcat() reads strlen(to) bytes from |to| before concatenating.
1359  size_t to_size = Ident(100);
1360  char *to = MallocAndMemsetString(to_size);
1361  to[0] = '\0';
1362  size_t from_size = Ident(20);
1363  char *from = MallocAndMemsetString(from_size);
1364  from[from_size - 1] = '\0';
1365  // Normal strcat calls.
1366  strcat(to, from);
1367  strcat(to, from);
1368  strcat(to + from_size, from + from_size - 2);
1369  // Passing an invalid pointer is an error even when concatenating an empty
1370  // string.
1371  EXPECT_DEATH(strcat(to - 1, from + from_size - 1), LeftOOBAccessMessage(1));
1372  // One of arguments points to not allocated memory.
1373  EXPECT_DEATH(strcat(to - 1, from), LeftOOBAccessMessage(1));
1374  EXPECT_DEATH(strcat(to, from - 1), LeftOOBReadMessage(1));
1375  EXPECT_DEATH(strcat(to + to_size, from), RightOOBWriteMessage(0));
1376  EXPECT_DEATH(strcat(to, from + from_size), RightOOBReadMessage(0));
1377
1378  // "from" is not zero-terminated.
1379  from[from_size - 1] = 'z';
1380  EXPECT_DEATH(strcat(to, from), RightOOBReadMessage(0));
1381  from[from_size - 1] = '\0';
1382  // "to" is not zero-terminated.
1383  memset(to, 'z', to_size);
1384  EXPECT_DEATH(strcat(to, from), RightOOBWriteMessage(0));
1385  // "to" is too short to fit "from".
1386  to[to_size - from_size + 1] = '\0';
1387  EXPECT_DEATH(strcat(to, from), RightOOBWriteMessage(0));
1388  // length of "to" is just enough.
1389  strcat(to, from + 1);
1390
1391  free(to);
1392  free(from);
1393}
1394
1395TEST(AddressSanitizer, StrNCatOOBTest) {
1396  // strncat() reads strlen(to) bytes from |to| before concatenating.
1397  size_t to_size = Ident(100);
1398  char *to = MallocAndMemsetString(to_size);
1399  to[0] = '\0';
1400  size_t from_size = Ident(20);
1401  char *from = MallocAndMemsetString(from_size);
1402  // Normal strncat calls.
1403  strncat(to, from, 0);
1404  strncat(to, from, from_size);
1405  from[from_size - 1] = '\0';
1406  strncat(to, from, 2 * from_size);
1407  // Catenating empty string with an invalid string is still an error.
1408  EXPECT_DEATH(strncat(to - 1, from, 0), LeftOOBAccessMessage(1));
1409  strncat(to, from + from_size - 1, 10);
1410  // One of arguments points to not allocated memory.
1411  EXPECT_DEATH(strncat(to - 1, from, 2), LeftOOBAccessMessage(1));
1412  EXPECT_DEATH(strncat(to, from - 1, 2), LeftOOBReadMessage(1));
1413  EXPECT_DEATH(strncat(to + to_size, from, 2), RightOOBWriteMessage(0));
1414  EXPECT_DEATH(strncat(to, from + from_size, 2), RightOOBReadMessage(0));
1415
1416  memset(from, 'z', from_size);
1417  memset(to, 'z', to_size);
1418  to[0] = '\0';
1419  // "from" is too short.
1420  EXPECT_DEATH(strncat(to, from, from_size + 1), RightOOBReadMessage(0));
1421  // "to" is not zero-terminated.
1422  EXPECT_DEATH(strncat(to + 1, from, 1), RightOOBWriteMessage(0));
1423  // "to" is too short to fit "from".
1424  to[0] = 'z';
1425  to[to_size - from_size + 1] = '\0';
1426  EXPECT_DEATH(strncat(to, from, from_size - 1), RightOOBWriteMessage(0));
1427  // "to" is just enough.
1428  strncat(to, from, from_size - 2);
1429
1430  free(to);
1431  free(from);
1432}
1433
1434static string OverlapErrorMessage(const string &func) {
1435  return func + "-param-overlap";
1436}
1437
1438TEST(AddressSanitizer, StrArgsOverlapTest) {
1439  size_t size = Ident(100);
1440  char *str = Ident((char*)malloc(size));
1441
1442// Do not check memcpy() on OS X 10.7 and later, where it actually aliases
1443// memmove().
1444#if !defined(__APPLE__) || !defined(MAC_OS_X_VERSION_10_7) || \
1445    (MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_7)
1446  // Check "memcpy". Use Ident() to avoid inlining.
1447  memset(str, 'z', size);
1448  Ident(memcpy)(str + 1, str + 11, 10);
1449  Ident(memcpy)(str, str, 0);
1450  EXPECT_DEATH(Ident(memcpy)(str, str + 14, 15), OverlapErrorMessage("memcpy"));
1451  EXPECT_DEATH(Ident(memcpy)(str + 14, str, 15), OverlapErrorMessage("memcpy"));
1452#endif
1453
1454  // We do not treat memcpy with to==from as a bug.
1455  // See http://llvm.org/bugs/show_bug.cgi?id=11763.
1456  // EXPECT_DEATH(Ident(memcpy)(str + 20, str + 20, 1),
1457  //              OverlapErrorMessage("memcpy"));
1458
1459  // Check "strcpy".
1460  memset(str, 'z', size);
1461  str[9] = '\0';
1462  strcpy(str + 10, str);
1463  EXPECT_DEATH(strcpy(str + 9, str), OverlapErrorMessage("strcpy"));
1464  EXPECT_DEATH(strcpy(str, str + 4), OverlapErrorMessage("strcpy"));
1465  strcpy(str, str + 5);
1466
1467  // Check "strncpy".
1468  memset(str, 'z', size);
1469  strncpy(str, str + 10, 10);
1470  EXPECT_DEATH(strncpy(str, str + 9, 10), OverlapErrorMessage("strncpy"));
1471  EXPECT_DEATH(strncpy(str + 9, str, 10), OverlapErrorMessage("strncpy"));
1472  str[10] = '\0';
1473  strncpy(str + 11, str, 20);
1474  EXPECT_DEATH(strncpy(str + 10, str, 20), OverlapErrorMessage("strncpy"));
1475
1476  // Check "strcat".
1477  memset(str, 'z', size);
1478  str[10] = '\0';
1479  str[20] = '\0';
1480  strcat(str, str + 10);
1481  EXPECT_DEATH(strcat(str, str + 11), OverlapErrorMessage("strcat"));
1482  str[10] = '\0';
1483  strcat(str + 11, str);
1484  EXPECT_DEATH(strcat(str, str + 9), OverlapErrorMessage("strcat"));
1485  EXPECT_DEATH(strcat(str + 9, str), OverlapErrorMessage("strcat"));
1486  EXPECT_DEATH(strcat(str + 10, str), OverlapErrorMessage("strcat"));
1487
1488  // Check "strncat".
1489  memset(str, 'z', size);
1490  str[10] = '\0';
1491  strncat(str, str + 10, 10);  // from is empty
1492  EXPECT_DEATH(strncat(str, str + 11, 10), OverlapErrorMessage("strncat"));
1493  str[10] = '\0';
1494  str[20] = '\0';
1495  strncat(str + 5, str, 5);
1496  str[10] = '\0';
1497  EXPECT_DEATH(strncat(str + 5, str, 6), OverlapErrorMessage("strncat"));
1498  EXPECT_DEATH(strncat(str, str + 9, 10), OverlapErrorMessage("strncat"));
1499
1500  free(str);
1501}
1502
1503void CallAtoi(const char *nptr) {
1504  Ident(atoi(nptr));
1505}
1506void CallAtol(const char *nptr) {
1507  Ident(atol(nptr));
1508}
1509void CallAtoll(const char *nptr) {
1510  Ident(atoll(nptr));
1511}
1512typedef void(*PointerToCallAtoi)(const char*);
1513
1514void RunAtoiOOBTest(PointerToCallAtoi Atoi) {
1515  char *array = MallocAndMemsetString(10, '1');
1516  // Invalid pointer to the string.
1517  EXPECT_DEATH(Atoi(array + 11), RightOOBReadMessage(1));
1518  EXPECT_DEATH(Atoi(array - 1), LeftOOBReadMessage(1));
1519  // Die if a buffer doesn't have terminating NULL.
1520  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1521  // Make last symbol a terminating NULL or other non-digit.
1522  array[9] = '\0';
1523  Atoi(array);
1524  array[9] = 'a';
1525  Atoi(array);
1526  Atoi(array + 9);
1527  // Sometimes we need to detect overflow if no digits are found.
1528  memset(array, ' ', 10);
1529  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1530  array[9] = '-';
1531  EXPECT_DEATH(Atoi(array), RightOOBReadMessage(0));
1532  EXPECT_DEATH(Atoi(array + 9), RightOOBReadMessage(0));
1533  array[8] = '-';
1534  Atoi(array);
1535  free(array);
1536}
1537
1538TEST(AddressSanitizer, AtoiAndFriendsOOBTest) {
1539  RunAtoiOOBTest(&CallAtoi);
1540  RunAtoiOOBTest(&CallAtol);
1541  RunAtoiOOBTest(&CallAtoll);
1542}
1543
1544void CallStrtol(const char *nptr, char **endptr, int base) {
1545  Ident(strtol(nptr, endptr, base));
1546}
1547void CallStrtoll(const char *nptr, char **endptr, int base) {
1548  Ident(strtoll(nptr, endptr, base));
1549}
1550typedef void(*PointerToCallStrtol)(const char*, char**, int);
1551
1552void RunStrtolOOBTest(PointerToCallStrtol Strtol) {
1553  char *array = MallocAndMemsetString(3);
1554  char *endptr = NULL;
1555  array[0] = '1';
1556  array[1] = '2';
1557  array[2] = '3';
1558  // Invalid pointer to the string.
1559  EXPECT_DEATH(Strtol(array + 3, NULL, 0), RightOOBReadMessage(0));
1560  EXPECT_DEATH(Strtol(array - 1, NULL, 0), LeftOOBReadMessage(1));
1561  // Buffer overflow if there is no terminating null (depends on base).
1562  Strtol(array, &endptr, 3);
1563  EXPECT_EQ(array + 2, endptr);
1564  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1565  array[2] = 'z';
1566  Strtol(array, &endptr, 35);
1567  EXPECT_EQ(array + 2, endptr);
1568  EXPECT_DEATH(Strtol(array, NULL, 36), RightOOBReadMessage(0));
1569  // Add terminating zero to get rid of overflow.
1570  array[2] = '\0';
1571  Strtol(array, NULL, 36);
1572  // Don't check for overflow if base is invalid.
1573  Strtol(array - 1, NULL, -1);
1574  Strtol(array + 3, NULL, 1);
1575  // Sometimes we need to detect overflow if no digits are found.
1576  array[0] = array[1] = array[2] = ' ';
1577  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1578  array[2] = '+';
1579  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1580  array[2] = '-';
1581  EXPECT_DEATH(Strtol(array, NULL, 0), RightOOBReadMessage(0));
1582  array[1] = '+';
1583  Strtol(array, NULL, 0);
1584  array[1] = array[2] = 'z';
1585  Strtol(array, &endptr, 0);
1586  EXPECT_EQ(array, endptr);
1587  Strtol(array + 2, NULL, 0);
1588  EXPECT_EQ(array, endptr);
1589  free(array);
1590}
1591
1592TEST(AddressSanitizer, StrtollOOBTest) {
1593  RunStrtolOOBTest(&CallStrtoll);
1594}
1595TEST(AddressSanitizer, StrtolOOBTest) {
1596  RunStrtolOOBTest(&CallStrtol);
1597}
1598
1599// At the moment we instrument memcpy/memove/memset calls at compile time so we
1600// can't handle OOB error if these functions are called by pointer, see disabled
1601// MemIntrinsicCallByPointerTest below
1602typedef void*(*PointerToMemTransfer)(void*, const void*, size_t);
1603typedef void*(*PointerToMemSet)(void*, int, size_t);
1604
1605void CallMemSetByPointer(PointerToMemSet MemSet) {
1606  size_t size = Ident(100);
1607  char *array = Ident((char*)malloc(size));
1608  EXPECT_DEATH(MemSet(array, 0, 101), RightOOBWriteMessage(0));
1609  free(array);
1610}
1611
1612void CallMemTransferByPointer(PointerToMemTransfer MemTransfer) {
1613  size_t size = Ident(100);
1614  char *src = Ident((char*)malloc(size));
1615  char *dst = Ident((char*)malloc(size));
1616  EXPECT_DEATH(MemTransfer(dst, src, 101), RightOOBWriteMessage(0));
1617  free(src);
1618  free(dst);
1619}
1620
1621TEST(AddressSanitizer, DISABLED_MemIntrinsicCallByPointerTest) {
1622  CallMemSetByPointer(&memset);
1623  CallMemTransferByPointer(&memcpy);
1624  CallMemTransferByPointer(&memmove);
1625}
1626
1627#if defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__)
1628TEST(AddressSanitizer, pread) {
1629  char *x = new char[10];
1630  int fd = open("/proc/self/stat", O_RDONLY);
1631  ASSERT_GT(fd, 0);
1632  EXPECT_DEATH(pread(fd, x, 15, 0),
1633               ASAN_PCRE_DOTALL
1634               "AddressSanitizer: heap-buffer-overflow"
1635               ".* is located 4 bytes to the right of 10-byte region");
1636  close(fd);
1637  delete [] x;
1638}
1639
1640TEST(AddressSanitizer, pread64) {
1641  char *x = new char[10];
1642  int fd = open("/proc/self/stat", O_RDONLY);
1643  ASSERT_GT(fd, 0);
1644  EXPECT_DEATH(pread64(fd, x, 15, 0),
1645               ASAN_PCRE_DOTALL
1646               "AddressSanitizer: heap-buffer-overflow"
1647               ".* is located 4 bytes to the right of 10-byte region");
1648  close(fd);
1649  delete [] x;
1650}
1651
1652TEST(AddressSanitizer, read) {
1653  char *x = new char[10];
1654  int fd = open("/proc/self/stat", O_RDONLY);
1655  ASSERT_GT(fd, 0);
1656  EXPECT_DEATH(read(fd, x, 15),
1657               ASAN_PCRE_DOTALL
1658               "AddressSanitizer: heap-buffer-overflow"
1659               ".* is located 4 bytes to the right of 10-byte region");
1660  close(fd);
1661  delete [] x;
1662}
1663
1664#endif  // defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__)
1665
1666// This test case fails
1667// Clang optimizes memcpy/memset calls which lead to unaligned access
1668TEST(AddressSanitizer, DISABLED_MemIntrinsicUnalignedAccessTest) {
1669  int size = Ident(4096);
1670  char *s = Ident((char*)malloc(size));
1671  EXPECT_DEATH(memset(s + size - 1, 0, 2), RightOOBWriteMessage(0));
1672  free(s);
1673}
1674
1675// TODO(samsonov): Add a test with malloc(0)
1676// TODO(samsonov): Add tests for str* and mem* functions.
1677
1678NOINLINE static int LargeFunction(bool do_bad_access) {
1679  int *x = new int[100];
1680  x[0]++;
1681  x[1]++;
1682  x[2]++;
1683  x[3]++;
1684  x[4]++;
1685  x[5]++;
1686  x[6]++;
1687  x[7]++;
1688  x[8]++;
1689  x[9]++;
1690
1691  x[do_bad_access ? 100 : 0]++; int res = __LINE__;
1692
1693  x[10]++;
1694  x[11]++;
1695  x[12]++;
1696  x[13]++;
1697  x[14]++;
1698  x[15]++;
1699  x[16]++;
1700  x[17]++;
1701  x[18]++;
1702  x[19]++;
1703
1704  delete x;
1705  return res;
1706}
1707
1708// Test the we have correct debug info for the failing instruction.
1709// This test requires the in-process symbolizer to be enabled by default.
1710TEST(AddressSanitizer, DISABLED_LargeFunctionSymbolizeTest) {
1711  int failing_line = LargeFunction(false);
1712  char expected_warning[128];
1713  sprintf(expected_warning, "LargeFunction.*asan_test.*:%d", failing_line);
1714  EXPECT_DEATH(LargeFunction(true), expected_warning);
1715}
1716
1717// Check that we unwind and symbolize correctly.
1718TEST(AddressSanitizer, DISABLED_MallocFreeUnwindAndSymbolizeTest) {
1719  int *a = (int*)malloc_aaa(sizeof(int));
1720  *a = 1;
1721  free_aaa(a);
1722  EXPECT_DEATH(*a = 1, "free_ccc.*free_bbb.*free_aaa.*"
1723               "malloc_fff.*malloc_eee.*malloc_ddd");
1724}
1725
1726static void TryToSetThreadName(const char *name) {
1727#ifdef __linux__
1728  prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0);
1729#endif
1730}
1731
1732void *ThreadedTestAlloc(void *a) {
1733  TryToSetThreadName("AllocThr");
1734  int **p = (int**)a;
1735  *p = new int;
1736  return 0;
1737}
1738
1739void *ThreadedTestFree(void *a) {
1740  TryToSetThreadName("FreeThr");
1741  int **p = (int**)a;
1742  delete *p;
1743  return 0;
1744}
1745
1746void *ThreadedTestUse(void *a) {
1747  TryToSetThreadName("UseThr");
1748  int **p = (int**)a;
1749  **p = 1;
1750  return 0;
1751}
1752
1753void ThreadedTestSpawn() {
1754  pthread_t t;
1755  int *x;
1756  PTHREAD_CREATE(&t, 0, ThreadedTestAlloc, &x);
1757  PTHREAD_JOIN(t, 0);
1758  PTHREAD_CREATE(&t, 0, ThreadedTestFree, &x);
1759  PTHREAD_JOIN(t, 0);
1760  PTHREAD_CREATE(&t, 0, ThreadedTestUse, &x);
1761  PTHREAD_JOIN(t, 0);
1762}
1763
1764TEST(AddressSanitizer, ThreadedTest) {
1765  EXPECT_DEATH(ThreadedTestSpawn(),
1766               ASAN_PCRE_DOTALL
1767               "Thread T.*created"
1768               ".*Thread T.*created"
1769               ".*Thread T.*created");
1770}
1771
1772#ifdef __linux__
1773TEST(AddressSanitizer, ThreadNamesTest) {
1774  // ThreadedTestSpawn();
1775  EXPECT_DEATH(ThreadedTestSpawn(),
1776               ASAN_PCRE_DOTALL
1777               "WRITE .*thread T. .UseThr."
1778               ".*freed by thread T. .FreeThr. here:"
1779               ".*previously allocated by thread T. .AllocThr. here:"
1780               ".*Thread T. .UseThr. created by T. here:"
1781               ".*Thread T. .FreeThr. created by T. here:"
1782               ".*Thread T. .AllocThr. created by T. here:"
1783               "");
1784}
1785#endif
1786
1787#if ASAN_NEEDS_SEGV
1788TEST(AddressSanitizer, ShadowGapTest) {
1789#if SANITIZER_WORDSIZE == 32
1790  char *addr = (char*)0x22000000;
1791#else
1792  char *addr = (char*)0x0000100000080000;
1793#endif
1794  EXPECT_DEATH(*addr = 1, "AddressSanitizer: SEGV on unknown");
1795}
1796#endif  // ASAN_NEEDS_SEGV
1797
1798extern "C" {
1799NOINLINE static void UseThenFreeThenUse() {
1800  char *x = Ident((char*)malloc(8));
1801  *x = 1;
1802  free_aaa(x);
1803  *x = 2;
1804}
1805}
1806
1807TEST(AddressSanitizer, UseThenFreeThenUseTest) {
1808  EXPECT_DEATH(UseThenFreeThenUse(), "freed by thread");
1809}
1810
1811TEST(AddressSanitizer, StrDupTest) {
1812  free(strdup(Ident("123")));
1813}
1814
1815// Currently we create and poison redzone at right of global variables.
1816char glob5[5];
1817static char static110[110];
1818const char ConstGlob[7] = {1, 2, 3, 4, 5, 6, 7};
1819static const char StaticConstGlob[3] = {9, 8, 7};
1820extern int GlobalsTest(int x);
1821
1822TEST(AddressSanitizer, GlobalTest) {
1823  static char func_static15[15];
1824
1825  static char fs1[10];
1826  static char fs2[10];
1827  static char fs3[10];
1828
1829  glob5[Ident(0)] = 0;
1830  glob5[Ident(1)] = 0;
1831  glob5[Ident(2)] = 0;
1832  glob5[Ident(3)] = 0;
1833  glob5[Ident(4)] = 0;
1834
1835  EXPECT_DEATH(glob5[Ident(5)] = 0,
1836               "0 bytes to the right of global variable.*glob5.* size 5");
1837  EXPECT_DEATH(glob5[Ident(5+6)] = 0,
1838               "6 bytes to the right of global variable.*glob5.* size 5");
1839  Ident(static110);  // avoid optimizations
1840  static110[Ident(0)] = 0;
1841  static110[Ident(109)] = 0;
1842  EXPECT_DEATH(static110[Ident(110)] = 0,
1843               "0 bytes to the right of global variable");
1844  EXPECT_DEATH(static110[Ident(110+7)] = 0,
1845               "7 bytes to the right of global variable");
1846
1847  Ident(func_static15);  // avoid optimizations
1848  func_static15[Ident(0)] = 0;
1849  EXPECT_DEATH(func_static15[Ident(15)] = 0,
1850               "0 bytes to the right of global variable");
1851  EXPECT_DEATH(func_static15[Ident(15 + 9)] = 0,
1852               "9 bytes to the right of global variable");
1853
1854  Ident(fs1);
1855  Ident(fs2);
1856  Ident(fs3);
1857
1858  // We don't create left redzones, so this is not 100% guaranteed to fail.
1859  // But most likely will.
1860  EXPECT_DEATH(fs2[Ident(-1)] = 0, "is located.*of global variable");
1861
1862  EXPECT_DEATH(Ident(Ident(ConstGlob)[8]),
1863               "is located 1 bytes to the right of .*ConstGlob");
1864  EXPECT_DEATH(Ident(Ident(StaticConstGlob)[5]),
1865               "is located 2 bytes to the right of .*StaticConstGlob");
1866
1867  // call stuff from another file.
1868  GlobalsTest(0);
1869}
1870
1871TEST(AddressSanitizer, GlobalStringConstTest) {
1872  static const char *zoo = "FOOBAR123";
1873  const char *p = Ident(zoo);
1874  EXPECT_DEATH(Ident(p[15]), "is ascii string 'FOOBAR123'");
1875}
1876
1877TEST(AddressSanitizer, FileNameInGlobalReportTest) {
1878  static char zoo[10];
1879  const char *p = Ident(zoo);
1880  // The file name should be present in the report.
1881  EXPECT_DEATH(Ident(p[15]), "zoo.*asan_test.");
1882}
1883
1884int *ReturnsPointerToALocalObject() {
1885  int a = 0;
1886  return Ident(&a);
1887}
1888
1889#if ASAN_UAR == 1
1890TEST(AddressSanitizer, LocalReferenceReturnTest) {
1891  int *(*f)() = Ident(ReturnsPointerToALocalObject);
1892  int *p = f();
1893  // Call 'f' a few more times, 'p' should still be poisoned.
1894  for (int i = 0; i < 32; i++)
1895    f();
1896  EXPECT_DEATH(*p = 1, "AddressSanitizer: stack-use-after-return");
1897  EXPECT_DEATH(*p = 1, "is located.*in frame .*ReturnsPointerToALocal");
1898}
1899#endif
1900
1901template <int kSize>
1902NOINLINE static void FuncWithStack() {
1903  char x[kSize];
1904  Ident(x)[0] = 0;
1905  Ident(x)[kSize-1] = 0;
1906}
1907
1908static void LotsOfStackReuse() {
1909  int LargeStack[10000];
1910  Ident(LargeStack)[0] = 0;
1911  for (int i = 0; i < 10000; i++) {
1912    FuncWithStack<128 * 1>();
1913    FuncWithStack<128 * 2>();
1914    FuncWithStack<128 * 4>();
1915    FuncWithStack<128 * 8>();
1916    FuncWithStack<128 * 16>();
1917    FuncWithStack<128 * 32>();
1918    FuncWithStack<128 * 64>();
1919    FuncWithStack<128 * 128>();
1920    FuncWithStack<128 * 256>();
1921    FuncWithStack<128 * 512>();
1922    Ident(LargeStack)[0] = 0;
1923  }
1924}
1925
1926TEST(AddressSanitizer, StressStackReuseTest) {
1927  LotsOfStackReuse();
1928}
1929
1930TEST(AddressSanitizer, ThreadedStressStackReuseTest) {
1931  const int kNumThreads = 20;
1932  pthread_t t[kNumThreads];
1933  for (int i = 0; i < kNumThreads; i++) {
1934    PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))LotsOfStackReuse, 0);
1935  }
1936  for (int i = 0; i < kNumThreads; i++) {
1937    PTHREAD_JOIN(t[i], 0);
1938  }
1939}
1940
1941static void *PthreadExit(void *a) {
1942  pthread_exit(0);
1943  return 0;
1944}
1945
1946TEST(AddressSanitizer, PthreadExitTest) {
1947  pthread_t t;
1948  for (int i = 0; i < 1000; i++) {
1949    PTHREAD_CREATE(&t, 0, PthreadExit, 0);
1950    PTHREAD_JOIN(t, 0);
1951  }
1952}
1953
1954#ifdef __EXCEPTIONS
1955NOINLINE static void StackReuseAndException() {
1956  int large_stack[1000];
1957  Ident(large_stack);
1958  ASAN_THROW(1);
1959}
1960
1961// TODO(kcc): support exceptions with use-after-return.
1962TEST(AddressSanitizer, DISABLED_StressStackReuseAndExceptionsTest) {
1963  for (int i = 0; i < 10000; i++) {
1964    try {
1965    StackReuseAndException();
1966    } catch(...) {
1967    }
1968  }
1969}
1970#endif
1971
1972TEST(AddressSanitizer, MlockTest) {
1973  EXPECT_EQ(0, mlockall(MCL_CURRENT));
1974  EXPECT_EQ(0, mlock((void*)0x12345, 0x5678));
1975  EXPECT_EQ(0, munlockall());
1976  EXPECT_EQ(0, munlock((void*)0x987, 0x654));
1977}
1978
1979struct LargeStruct {
1980  int foo[100];
1981};
1982
1983// Test for bug http://llvm.org/bugs/show_bug.cgi?id=11763.
1984// Struct copy should not cause asan warning even if lhs == rhs.
1985TEST(AddressSanitizer, LargeStructCopyTest) {
1986  LargeStruct a;
1987  *Ident(&a) = *Ident(&a);
1988}
1989
1990ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
1991static void NoAddressSafety() {
1992  char *foo = new char[10];
1993  Ident(foo)[10] = 0;
1994  delete [] foo;
1995}
1996
1997TEST(AddressSanitizer, AttributeNoAddressSafetyTest) {
1998  Ident(NoAddressSafety)();
1999}
2000
2001static string MismatchStr(const string &str) {
2002  return string("AddressSanitizer: alloc-dealloc-mismatch \\(") + str;
2003}
2004
2005// This test is disabled until we enable alloc_dealloc_mismatch by default.
2006// The feature is also tested by lit tests.
2007TEST(AddressSanitizer, DISABLED_AllocDeallocMismatch) {
2008  EXPECT_DEATH(free(Ident(new int)),
2009               MismatchStr("operator new vs free"));
2010  EXPECT_DEATH(free(Ident(new int[2])),
2011               MismatchStr("operator new \\[\\] vs free"));
2012  EXPECT_DEATH(delete (Ident(new int[2])),
2013               MismatchStr("operator new \\[\\] vs operator delete"));
2014  EXPECT_DEATH(delete (Ident((int*)malloc(2 * sizeof(int)))),
2015               MismatchStr("malloc vs operator delete"));
2016  EXPECT_DEATH(delete [] (Ident(new int)),
2017               MismatchStr("operator new vs operator delete \\[\\]"));
2018  EXPECT_DEATH(delete [] (Ident((int*)malloc(2 * sizeof(int)))),
2019               MismatchStr("malloc vs operator delete \\[\\]"));
2020}
2021
2022// ------------------ demo tests; run each one-by-one -------------
2023// e.g. --gtest_filter=*DemoOOBLeftHigh --gtest_also_run_disabled_tests
2024TEST(AddressSanitizer, DISABLED_DemoThreadedTest) {
2025  ThreadedTestSpawn();
2026}
2027
2028void *SimpleBugOnSTack(void *x = 0) {
2029  char a[20];
2030  Ident(a)[20] = 0;
2031  return 0;
2032}
2033
2034TEST(AddressSanitizer, DISABLED_DemoStackTest) {
2035  SimpleBugOnSTack();
2036}
2037
2038TEST(AddressSanitizer, DISABLED_DemoThreadStackTest) {
2039  pthread_t t;
2040  PTHREAD_CREATE(&t, 0, SimpleBugOnSTack, 0);
2041  PTHREAD_JOIN(t, 0);
2042}
2043
2044TEST(AddressSanitizer, DISABLED_DemoUAFLowIn) {
2045  uaf_test<U1>(10, 0);
2046}
2047TEST(AddressSanitizer, DISABLED_DemoUAFLowLeft) {
2048  uaf_test<U1>(10, -2);
2049}
2050TEST(AddressSanitizer, DISABLED_DemoUAFLowRight) {
2051  uaf_test<U1>(10, 10);
2052}
2053
2054TEST(AddressSanitizer, DISABLED_DemoUAFHigh) {
2055  uaf_test<U1>(kLargeMalloc, 0);
2056}
2057
2058TEST(AddressSanitizer, DISABLED_DemoOOBLeftLow) {
2059  oob_test<U1>(10, -1);
2060}
2061
2062TEST(AddressSanitizer, DISABLED_DemoOOBLeftHigh) {
2063  oob_test<U1>(kLargeMalloc, -1);
2064}
2065
2066TEST(AddressSanitizer, DISABLED_DemoOOBRightLow) {
2067  oob_test<U1>(10, 10);
2068}
2069
2070TEST(AddressSanitizer, DISABLED_DemoOOBRightHigh) {
2071  oob_test<U1>(kLargeMalloc, kLargeMalloc);
2072}
2073
2074TEST(AddressSanitizer, DISABLED_DemoOOM) {
2075  size_t size = SANITIZER_WORDSIZE == 64 ? (size_t)(1ULL << 40) : (0xf0000000);
2076  printf("%p\n", malloc(size));
2077}
2078
2079TEST(AddressSanitizer, DISABLED_DemoDoubleFreeTest) {
2080  DoubleFree();
2081}
2082
2083TEST(AddressSanitizer, DISABLED_DemoNullDerefTest) {
2084  int *a = 0;
2085  Ident(a)[10] = 0;
2086}
2087
2088TEST(AddressSanitizer, DISABLED_DemoFunctionStaticTest) {
2089  static char a[100];
2090  static char b[100];
2091  static char c[100];
2092  Ident(a);
2093  Ident(b);
2094  Ident(c);
2095  Ident(a)[5] = 0;
2096  Ident(b)[105] = 0;
2097  Ident(a)[5] = 0;
2098}
2099
2100TEST(AddressSanitizer, DISABLED_DemoTooMuchMemoryTest) {
2101  const size_t kAllocSize = (1 << 28) - 1024;
2102  size_t total_size = 0;
2103  while (true) {
2104    char *x = (char*)malloc(kAllocSize);
2105    memset(x, 0, kAllocSize);
2106    total_size += kAllocSize;
2107    fprintf(stderr, "total: %ldM %p\n", (long)total_size >> 20, x);
2108  }
2109}
2110
2111// http://code.google.com/p/address-sanitizer/issues/detail?id=66
2112TEST(AddressSanitizer, BufferOverflowAfterManyFrees) {
2113  for (int i = 0; i < 1000000; i++) {
2114    delete [] (Ident(new char [8644]));
2115  }
2116  char *x = new char[8192];
2117  EXPECT_DEATH(x[Ident(8192)] = 0, "AddressSanitizer: heap-buffer-overflow");
2118  delete [] Ident(x);
2119}
2120
2121#ifdef __APPLE__
2122#include "asan_mac_test.h"
2123TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree) {
2124  EXPECT_DEATH(
2125      CFAllocatorDefaultDoubleFree(NULL),
2126      "attempting double-free");
2127}
2128
2129void CFAllocator_DoubleFreeOnPthread() {
2130  pthread_t child;
2131  PTHREAD_CREATE(&child, NULL, CFAllocatorDefaultDoubleFree, NULL);
2132  PTHREAD_JOIN(child, NULL);  // Shouldn't be reached.
2133}
2134
2135TEST(AddressSanitizerMac, CFAllocatorDefaultDoubleFree_ChildPhread) {
2136  EXPECT_DEATH(CFAllocator_DoubleFreeOnPthread(), "attempting double-free");
2137}
2138
2139namespace {
2140
2141void *GLOB;
2142
2143void *CFAllocatorAllocateToGlob(void *unused) {
2144  GLOB = CFAllocatorAllocate(NULL, 100, /*hint*/0);
2145  return NULL;
2146}
2147
2148void *CFAllocatorDeallocateFromGlob(void *unused) {
2149  char *p = (char*)GLOB;
2150  p[100] = 'A';  // ASan should report an error here.
2151  CFAllocatorDeallocate(NULL, GLOB);
2152  return NULL;
2153}
2154
2155void CFAllocator_PassMemoryToAnotherThread() {
2156  pthread_t th1, th2;
2157  PTHREAD_CREATE(&th1, NULL, CFAllocatorAllocateToGlob, NULL);
2158  PTHREAD_JOIN(th1, NULL);
2159  PTHREAD_CREATE(&th2, NULL, CFAllocatorDeallocateFromGlob, NULL);
2160  PTHREAD_JOIN(th2, NULL);
2161}
2162
2163TEST(AddressSanitizerMac, CFAllocator_PassMemoryToAnotherThread) {
2164  EXPECT_DEATH(CFAllocator_PassMemoryToAnotherThread(),
2165               "heap-buffer-overflow");
2166}
2167
2168}  // namespace
2169
2170// TODO(glider): figure out whether we still need these tests. Is it correct
2171// to intercept the non-default CFAllocators?
2172TEST(AddressSanitizerMac, DISABLED_CFAllocatorSystemDefaultDoubleFree) {
2173  EXPECT_DEATH(
2174      CFAllocatorSystemDefaultDoubleFree(),
2175      "attempting double-free");
2176}
2177
2178// We're intercepting malloc, so kCFAllocatorMalloc is routed to ASan.
2179TEST(AddressSanitizerMac, CFAllocatorMallocDoubleFree) {
2180  EXPECT_DEATH(CFAllocatorMallocDoubleFree(), "attempting double-free");
2181}
2182
2183TEST(AddressSanitizerMac, DISABLED_CFAllocatorMallocZoneDoubleFree) {
2184  EXPECT_DEATH(CFAllocatorMallocZoneDoubleFree(), "attempting double-free");
2185}
2186
2187// For libdispatch tests below we check that ASan got to the shadow byte
2188// legend, i.e. managed to print the thread stacks (this almost certainly
2189// means that the libdispatch task creation has been intercepted correctly).
2190TEST(AddressSanitizerMac, GCDDispatchAsync) {
2191  // Make sure the whole ASan report is printed, i.e. that we don't die
2192  // on a CHECK.
2193  EXPECT_DEATH(TestGCDDispatchAsync(), "Shadow byte legend");
2194}
2195
2196TEST(AddressSanitizerMac, GCDDispatchSync) {
2197  // Make sure the whole ASan report is printed, i.e. that we don't die
2198  // on a CHECK.
2199  EXPECT_DEATH(TestGCDDispatchSync(), "Shadow byte legend");
2200}
2201
2202
2203TEST(AddressSanitizerMac, GCDReuseWqthreadsAsync) {
2204  // Make sure the whole ASan report is printed, i.e. that we don't die
2205  // on a CHECK.
2206  EXPECT_DEATH(TestGCDReuseWqthreadsAsync(), "Shadow byte legend");
2207}
2208
2209TEST(AddressSanitizerMac, GCDReuseWqthreadsSync) {
2210  // Make sure the whole ASan report is printed, i.e. that we don't die
2211  // on a CHECK.
2212  EXPECT_DEATH(TestGCDReuseWqthreadsSync(), "Shadow byte legend");
2213}
2214
2215TEST(AddressSanitizerMac, GCDDispatchAfter) {
2216  // Make sure the whole ASan report is printed, i.e. that we don't die
2217  // on a CHECK.
2218  EXPECT_DEATH(TestGCDDispatchAfter(), "Shadow byte legend");
2219}
2220
2221TEST(AddressSanitizerMac, GCDSourceEvent) {
2222  // Make sure the whole ASan report is printed, i.e. that we don't die
2223  // on a CHECK.
2224  EXPECT_DEATH(TestGCDSourceEvent(), "Shadow byte legend");
2225}
2226
2227TEST(AddressSanitizerMac, GCDSourceCancel) {
2228  // Make sure the whole ASan report is printed, i.e. that we don't die
2229  // on a CHECK.
2230  EXPECT_DEATH(TestGCDSourceCancel(), "Shadow byte legend");
2231}
2232
2233TEST(AddressSanitizerMac, GCDGroupAsync) {
2234  // Make sure the whole ASan report is printed, i.e. that we don't die
2235  // on a CHECK.
2236  EXPECT_DEATH(TestGCDGroupAsync(), "Shadow byte legend");
2237}
2238
2239void *MallocIntrospectionLockWorker(void *_) {
2240  const int kNumPointers = 100;
2241  int i;
2242  void *pointers[kNumPointers];
2243  for (i = 0; i < kNumPointers; i++) {
2244    pointers[i] = malloc(i + 1);
2245  }
2246  for (i = 0; i < kNumPointers; i++) {
2247    free(pointers[i]);
2248  }
2249
2250  return NULL;
2251}
2252
2253void *MallocIntrospectionLockForker(void *_) {
2254  pid_t result = fork();
2255  if (result == -1) {
2256    perror("fork");
2257  }
2258  assert(result != -1);
2259  if (result == 0) {
2260    // Call malloc in the child process to make sure we won't deadlock.
2261    void *ptr = malloc(42);
2262    free(ptr);
2263    exit(0);
2264  } else {
2265    // Return in the parent process.
2266    return NULL;
2267  }
2268}
2269
2270TEST(AddressSanitizerMac, MallocIntrospectionLock) {
2271  // Incorrect implementation of force_lock and force_unlock in our malloc zone
2272  // will cause forked processes to deadlock.
2273  // TODO(glider): need to detect that none of the child processes deadlocked.
2274  const int kNumWorkers = 5, kNumIterations = 100;
2275  int i, iter;
2276  for (iter = 0; iter < kNumIterations; iter++) {
2277    pthread_t workers[kNumWorkers], forker;
2278    for (i = 0; i < kNumWorkers; i++) {
2279      PTHREAD_CREATE(&workers[i], 0, MallocIntrospectionLockWorker, 0);
2280    }
2281    PTHREAD_CREATE(&forker, 0, MallocIntrospectionLockForker, 0);
2282    for (i = 0; i < kNumWorkers; i++) {
2283      PTHREAD_JOIN(workers[i], 0);
2284    }
2285    PTHREAD_JOIN(forker, 0);
2286  }
2287}
2288
2289void *TSDAllocWorker(void *test_key) {
2290  if (test_key) {
2291    void *mem = malloc(10);
2292    pthread_setspecific(*(pthread_key_t*)test_key, mem);
2293  }
2294  return NULL;
2295}
2296
2297TEST(AddressSanitizerMac, DISABLED_TSDWorkqueueTest) {
2298  pthread_t th;
2299  pthread_key_t test_key;
2300  pthread_key_create(&test_key, CallFreeOnWorkqueue);
2301  PTHREAD_CREATE(&th, NULL, TSDAllocWorker, &test_key);
2302  PTHREAD_JOIN(th, NULL);
2303  pthread_key_delete(test_key);
2304}
2305
2306// Test that CFStringCreateCopy does not copy constant strings.
2307TEST(AddressSanitizerMac, CFStringCreateCopy) {
2308  CFStringRef str = CFSTR("Hello world!\n");
2309  CFStringRef str2 = CFStringCreateCopy(0, str);
2310  EXPECT_EQ(str, str2);
2311}
2312
2313TEST(AddressSanitizerMac, NSObjectOOB) {
2314  // Make sure that our allocators are used for NSObjects.
2315  EXPECT_DEATH(TestOOBNSObjects(), "heap-buffer-overflow");
2316}
2317
2318// Make sure that correct pointer is passed to free() when deallocating a
2319// NSURL object.
2320// See http://code.google.com/p/address-sanitizer/issues/detail?id=70.
2321TEST(AddressSanitizerMac, NSURLDeallocation) {
2322  TestNSURLDeallocation();
2323}
2324
2325// See http://code.google.com/p/address-sanitizer/issues/detail?id=109.
2326TEST(AddressSanitizerMac, Mstats) {
2327  malloc_statistics_t stats1, stats2;
2328  malloc_zone_statistics(/*all zones*/NULL, &stats1);
2329  const size_t kMallocSize = 100000;
2330  void *alloc = Ident(malloc(kMallocSize));
2331  malloc_zone_statistics(/*all zones*/NULL, &stats2);
2332  EXPECT_GT(stats2.blocks_in_use, stats1.blocks_in_use);
2333  EXPECT_GE(stats2.size_in_use - stats1.size_in_use, kMallocSize);
2334  free(alloc);
2335  // Even the default OSX allocator may not change the stats after free().
2336}
2337#endif  // __APPLE__
2338
2339// Test that instrumentation of stack allocations takes into account
2340// AllocSize of a type, and not its StoreSize (16 vs 10 bytes for long double).
2341// See http://llvm.org/bugs/show_bug.cgi?id=12047 for more details.
2342TEST(AddressSanitizer, LongDoubleNegativeTest) {
2343  long double a, b;
2344  static long double c;
2345  memcpy(Ident(&a), Ident(&b), sizeof(long double));
2346  memcpy(Ident(&c), Ident(&b), sizeof(long double));
2347}
2348