divsf3.c revision 2d1fdb26e458c4ddc04155c1d421bced3ba90cd0
1//===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is dual licensed under the MIT and the University of Illinois Open
6// Source Licenses. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements single-precision soft-float division
11// with the IEEE-754 default rounding (to nearest, ties to even).
12//
13// For simplicity, this implementation currently flushes denormals to zero.
14// It should be a fairly straightforward exercise to implement gradual
15// underflow with correct rounding.
16//
17//===----------------------------------------------------------------------===//
18
19#define SINGLE_PRECISION
20#include "fp_lib.h"
21
22ARM_EABI_FNALIAS(fdiv, divsf3)
23
24COMPILER_RT_ABI fp_t
25__divsf3(fp_t a, fp_t b) {
26
27    const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
28    const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
29    const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
30
31    rep_t aSignificand = toRep(a) & significandMask;
32    rep_t bSignificand = toRep(b) & significandMask;
33    int scale = 0;
34
35    // Detect if a or b is zero, denormal, infinity, or NaN.
36    if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
37
38        const rep_t aAbs = toRep(a) & absMask;
39        const rep_t bAbs = toRep(b) & absMask;
40
41        // NaN / anything = qNaN
42        if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
43        // anything / NaN = qNaN
44        if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
45
46        if (aAbs == infRep) {
47            // infinity / infinity = NaN
48            if (bAbs == infRep) return fromRep(qnanRep);
49            // infinity / anything else = +/- infinity
50            else return fromRep(aAbs | quotientSign);
51        }
52
53        // anything else / infinity = +/- 0
54        if (bAbs == infRep) return fromRep(quotientSign);
55
56        if (!aAbs) {
57            // zero / zero = NaN
58            if (!bAbs) return fromRep(qnanRep);
59            // zero / anything else = +/- zero
60            else return fromRep(quotientSign);
61        }
62        // anything else / zero = +/- infinity
63        if (!bAbs) return fromRep(infRep | quotientSign);
64
65        // one or both of a or b is denormal, the other (if applicable) is a
66        // normal number.  Renormalize one or both of a and b, and set scale to
67        // include the necessary exponent adjustment.
68        if (aAbs < implicitBit) scale += normalize(&aSignificand);
69        if (bAbs < implicitBit) scale -= normalize(&bSignificand);
70    }
71
72    // Or in the implicit significand bit.  (If we fell through from the
73    // denormal path it was already set by normalize( ), but setting it twice
74    // won't hurt anything.)
75    aSignificand |= implicitBit;
76    bSignificand |= implicitBit;
77    int quotientExponent = aExponent - bExponent + scale;
78
79    // Align the significand of b as a Q31 fixed-point number in the range
80    // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
81    // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
82    // is accurate to about 3.5 binary digits.
83    uint32_t q31b = bSignificand << 8;
84    uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
85
86    // Now refine the reciprocal estimate using a Newton-Raphson iteration:
87    //
88    //     x1 = x0 * (2 - x0 * b)
89    //
90    // This doubles the number of correct binary digits in the approximation
91    // with each iteration, so after three iterations, we have about 28 binary
92    // digits of accuracy.
93    uint32_t correction;
94    correction = -((uint64_t)reciprocal * q31b >> 32);
95    reciprocal = (uint64_t)reciprocal * correction >> 31;
96    correction = -((uint64_t)reciprocal * q31b >> 32);
97    reciprocal = (uint64_t)reciprocal * correction >> 31;
98    correction = -((uint64_t)reciprocal * q31b >> 32);
99    reciprocal = (uint64_t)reciprocal * correction >> 31;
100
101    // Exhaustive testing shows that the error in reciprocal after three steps
102    // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
103    // expectations.  We bump the reciprocal by a tiny value to force the error
104    // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
105    // be specific).  This also causes 1/1 to give a sensible approximation
106    // instead of zero (due to overflow).
107    reciprocal -= 2;
108
109    // The numerical reciprocal is accurate to within 2^-28, lies in the
110    // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
111    // than the true reciprocal of b.  Multiplying a by this reciprocal thus
112    // gives a numerical q = a/b in Q24 with the following properties:
113    //
114    //    1. q < a/b
115    //    2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
116    //    3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
117    //       from the fact that we truncate the product, and the 2^27 term
118    //       is the error in the reciprocal of b scaled by the maximum
119    //       possible value of a.  As a consequence of this error bound,
120    //       either q or nextafter(q) is the correctly rounded
121    rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
122
123    // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
124    // In either case, we are going to compute a residual of the form
125    //
126    //     r = a - q*b
127    //
128    // We know from the construction of q that r satisfies:
129    //
130    //     0 <= r < ulp(q)*b
131    //
132    // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
133    // already have the correct result.  The exact halfway case cannot occur.
134    // We also take this time to right shift quotient if it falls in the [1,2)
135    // range and adjust the exponent accordingly.
136    rep_t residual;
137    if (quotient < (implicitBit << 1)) {
138        residual = (aSignificand << 24) - quotient * bSignificand;
139        quotientExponent--;
140    } else {
141        quotient >>= 1;
142        residual = (aSignificand << 23) - quotient * bSignificand;
143    }
144
145    const int writtenExponent = quotientExponent + exponentBias;
146
147    if (writtenExponent >= maxExponent) {
148        // If we have overflowed the exponent, return infinity.
149        return fromRep(infRep | quotientSign);
150    }
151
152    else if (writtenExponent < 1) {
153        // Flush denormals to zero.  In the future, it would be nice to add
154        // code to round them correctly.
155        return fromRep(quotientSign);
156    }
157
158    else {
159        const bool round = (residual << 1) > bSignificand;
160        // Clear the implicit bit
161        rep_t absResult = quotient & significandMask;
162        // Insert the exponent
163        absResult |= (rep_t)writtenExponent << significandBits;
164        // Round
165        absResult += round;
166        // Insert the sign and return
167        return fromRep(absResult | quotientSign);
168    }
169}
170