1//=-- lsan_common.cc ------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of LeakSanitizer.
11// Implementation of common leak checking functionality.
12//
13//===----------------------------------------------------------------------===//
14
15#include "lsan_common.h"
16
17#include "sanitizer_common/sanitizer_common.h"
18#include "sanitizer_common/sanitizer_flags.h"
19#include "sanitizer_common/sanitizer_placement_new.h"
20#include "sanitizer_common/sanitizer_procmaps.h"
21#include "sanitizer_common/sanitizer_stackdepot.h"
22#include "sanitizer_common/sanitizer_stacktrace.h"
23#include "sanitizer_common/sanitizer_stoptheworld.h"
24#include "sanitizer_common/sanitizer_suppressions.h"
25#include "sanitizer_common/sanitizer_report_decorator.h"
26
27#if CAN_SANITIZE_LEAKS
28namespace __lsan {
29
30// This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
31// also to protect the global list of root regions.
32BlockingMutex global_mutex(LINKER_INITIALIZED);
33
34THREADLOCAL int disable_counter;
35bool DisabledInThisThread() { return disable_counter > 0; }
36
37Flags lsan_flags;
38
39static void InitializeFlags() {
40  Flags *f = flags();
41  // Default values.
42  f->report_objects = false;
43  f->resolution = 0;
44  f->max_leaks = 0;
45  f->exitcode = 23;
46  f->print_suppressions = true;
47  f->suppressions="";
48  f->use_registers = true;
49  f->use_globals = true;
50  f->use_stacks = true;
51  f->use_tls = true;
52  f->use_root_regions = true;
53  f->use_unaligned = false;
54  f->use_poisoned = false;
55  f->log_pointers = false;
56  f->log_threads = false;
57
58  const char *options = GetEnv("LSAN_OPTIONS");
59  if (options) {
60    ParseFlag(options, &f->use_registers, "use_registers", "");
61    ParseFlag(options, &f->use_globals, "use_globals", "");
62    ParseFlag(options, &f->use_stacks, "use_stacks", "");
63    ParseFlag(options, &f->use_tls, "use_tls", "");
64    ParseFlag(options, &f->use_root_regions, "use_root_regions", "");
65    ParseFlag(options, &f->use_unaligned, "use_unaligned", "");
66    ParseFlag(options, &f->use_poisoned, "use_poisoned", "");
67    ParseFlag(options, &f->report_objects, "report_objects", "");
68    ParseFlag(options, &f->resolution, "resolution", "");
69    CHECK_GE(&f->resolution, 0);
70    ParseFlag(options, &f->max_leaks, "max_leaks", "");
71    CHECK_GE(&f->max_leaks, 0);
72    ParseFlag(options, &f->log_pointers, "log_pointers", "");
73    ParseFlag(options, &f->log_threads, "log_threads", "");
74    ParseFlag(options, &f->exitcode, "exitcode", "");
75    ParseFlag(options, &f->print_suppressions, "print_suppressions", "");
76    ParseFlag(options, &f->suppressions, "suppressions", "");
77  }
78}
79
80#define LOG_POINTERS(...)                           \
81  do {                                              \
82    if (flags()->log_pointers) Report(__VA_ARGS__); \
83  } while (0);
84
85#define LOG_THREADS(...)                           \
86  do {                                             \
87    if (flags()->log_threads) Report(__VA_ARGS__); \
88  } while (0);
89
90SuppressionContext *suppression_ctx;
91
92void InitializeSuppressions() {
93  CHECK(!suppression_ctx);
94  ALIGNED(64) static char placeholder[sizeof(SuppressionContext)];
95  suppression_ctx = new(placeholder) SuppressionContext;
96  char *suppressions_from_file;
97  uptr buffer_size;
98  if (ReadFileToBuffer(flags()->suppressions, &suppressions_from_file,
99                       &buffer_size, 1 << 26 /* max_len */))
100    suppression_ctx->Parse(suppressions_from_file);
101  if (flags()->suppressions[0] && !buffer_size) {
102    Printf("LeakSanitizer: failed to read suppressions file '%s'\n",
103           flags()->suppressions);
104    Die();
105  }
106  if (&__lsan_default_suppressions)
107    suppression_ctx->Parse(__lsan_default_suppressions());
108}
109
110struct RootRegion {
111  const void *begin;
112  uptr size;
113};
114
115InternalMmapVector<RootRegion> *root_regions;
116
117void InitializeRootRegions() {
118  CHECK(!root_regions);
119  ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
120  root_regions = new(placeholder) InternalMmapVector<RootRegion>(1);
121}
122
123void InitCommonLsan() {
124  InitializeFlags();
125  InitializeRootRegions();
126  if (common_flags()->detect_leaks) {
127    // Initialization which can fail or print warnings should only be done if
128    // LSan is actually enabled.
129    InitializeSuppressions();
130    InitializePlatformSpecificModules();
131  }
132}
133
134class Decorator: public __sanitizer::SanitizerCommonDecorator {
135 public:
136  Decorator() : SanitizerCommonDecorator() { }
137  const char *Error() { return Red(); }
138  const char *Leak() { return Blue(); }
139  const char *End() { return Default(); }
140};
141
142static inline bool CanBeAHeapPointer(uptr p) {
143  // Since our heap is located in mmap-ed memory, we can assume a sensible lower
144  // bound on heap addresses.
145  const uptr kMinAddress = 4 * 4096;
146  if (p < kMinAddress) return false;
147#ifdef __x86_64__
148  // Accept only canonical form user-space addresses.
149  return ((p >> 47) == 0);
150#else
151  return true;
152#endif
153}
154
155// Scans the memory range, looking for byte patterns that point into allocator
156// chunks. Marks those chunks with |tag| and adds them to |frontier|.
157// There are two usage modes for this function: finding reachable or ignored
158// chunks (|tag| = kReachable or kIgnored) and finding indirectly leaked chunks
159// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
160// so |frontier| = 0.
161void ScanRangeForPointers(uptr begin, uptr end,
162                          Frontier *frontier,
163                          const char *region_type, ChunkTag tag) {
164  const uptr alignment = flags()->pointer_alignment();
165  LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
166  uptr pp = begin;
167  if (pp % alignment)
168    pp = pp + alignment - pp % alignment;
169  for (; pp + sizeof(void *) <= end; pp += alignment) {  // NOLINT
170    void *p = *reinterpret_cast<void **>(pp);
171    if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
172    uptr chunk = PointsIntoChunk(p);
173    if (!chunk) continue;
174    // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
175    if (chunk == begin) continue;
176    LsanMetadata m(chunk);
177    // Reachable beats ignored beats leaked.
178    if (m.tag() == kReachable) continue;
179    if (m.tag() == kIgnored && tag != kReachable) continue;
180
181    // Do this check relatively late so we can log only the interesting cases.
182    if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
183      LOG_POINTERS(
184          "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
185          "%zu.\n",
186          pp, p, chunk, chunk + m.requested_size(), m.requested_size());
187      continue;
188    }
189
190    m.set_tag(tag);
191    LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
192                 chunk, chunk + m.requested_size(), m.requested_size());
193    if (frontier)
194      frontier->push_back(chunk);
195  }
196}
197
198void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
199  Frontier *frontier = reinterpret_cast<Frontier *>(arg);
200  ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
201}
202
203// Scans thread data (stacks and TLS) for heap pointers.
204static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
205                           Frontier *frontier) {
206  InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
207  uptr registers_begin = reinterpret_cast<uptr>(registers.data());
208  uptr registers_end = registers_begin + registers.size();
209  for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
210    uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
211    LOG_THREADS("Processing thread %d.\n", os_id);
212    uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
213    bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
214                                              &tls_begin, &tls_end,
215                                              &cache_begin, &cache_end);
216    if (!thread_found) {
217      // If a thread can't be found in the thread registry, it's probably in the
218      // process of destruction. Log this event and move on.
219      LOG_THREADS("Thread %d not found in registry.\n", os_id);
220      continue;
221    }
222    uptr sp;
223    bool have_registers =
224        (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
225    if (!have_registers) {
226      Report("Unable to get registers from thread %d.\n");
227      // If unable to get SP, consider the entire stack to be reachable.
228      sp = stack_begin;
229    }
230
231    if (flags()->use_registers && have_registers)
232      ScanRangeForPointers(registers_begin, registers_end, frontier,
233                           "REGISTERS", kReachable);
234
235    if (flags()->use_stacks) {
236      LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
237      if (sp < stack_begin || sp >= stack_end) {
238        // SP is outside the recorded stack range (e.g. the thread is running a
239        // signal handler on alternate stack). Again, consider the entire stack
240        // range to be reachable.
241        LOG_THREADS("WARNING: stack pointer not in stack range.\n");
242      } else {
243        // Shrink the stack range to ignore out-of-scope values.
244        stack_begin = sp;
245      }
246      ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
247                           kReachable);
248      ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
249    }
250
251    if (flags()->use_tls) {
252      LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
253      if (cache_begin == cache_end) {
254        ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
255      } else {
256        // Because LSan should not be loaded with dlopen(), we can assume
257        // that allocator cache will be part of static TLS image.
258        CHECK_LE(tls_begin, cache_begin);
259        CHECK_GE(tls_end, cache_end);
260        if (tls_begin < cache_begin)
261          ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
262                               kReachable);
263        if (tls_end > cache_end)
264          ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
265      }
266    }
267  }
268}
269
270static void ProcessRootRegion(Frontier *frontier, uptr root_begin,
271                              uptr root_end) {
272  MemoryMappingLayout proc_maps(/*cache_enabled*/true);
273  uptr begin, end, prot;
274  while (proc_maps.Next(&begin, &end,
275                        /*offset*/ 0, /*filename*/ 0, /*filename_size*/ 0,
276                        &prot)) {
277    uptr intersection_begin = Max(root_begin, begin);
278    uptr intersection_end = Min(end, root_end);
279    if (intersection_begin >= intersection_end) continue;
280    bool is_readable = prot & MemoryMappingLayout::kProtectionRead;
281    LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
282                 root_begin, root_end, begin, end,
283                 is_readable ? "readable" : "unreadable");
284    if (is_readable)
285      ScanRangeForPointers(intersection_begin, intersection_end, frontier,
286                           "ROOT", kReachable);
287  }
288}
289
290// Scans root regions for heap pointers.
291static void ProcessRootRegions(Frontier *frontier) {
292  if (!flags()->use_root_regions) return;
293  CHECK(root_regions);
294  for (uptr i = 0; i < root_regions->size(); i++) {
295    RootRegion region = (*root_regions)[i];
296    uptr begin_addr = reinterpret_cast<uptr>(region.begin);
297    ProcessRootRegion(frontier, begin_addr, begin_addr + region.size);
298  }
299}
300
301static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
302  while (frontier->size()) {
303    uptr next_chunk = frontier->back();
304    frontier->pop_back();
305    LsanMetadata m(next_chunk);
306    ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
307                         "HEAP", tag);
308  }
309}
310
311// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
312// which are reachable from it as indirectly leaked.
313static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
314  chunk = GetUserBegin(chunk);
315  LsanMetadata m(chunk);
316  if (m.allocated() && m.tag() != kReachable) {
317    ScanRangeForPointers(chunk, chunk + m.requested_size(),
318                         /* frontier */ 0, "HEAP", kIndirectlyLeaked);
319  }
320}
321
322// ForEachChunk callback. If chunk is marked as ignored, adds its address to
323// frontier.
324static void CollectIgnoredCb(uptr chunk, void *arg) {
325  CHECK(arg);
326  chunk = GetUserBegin(chunk);
327  LsanMetadata m(chunk);
328  if (m.allocated() && m.tag() == kIgnored)
329    reinterpret_cast<Frontier *>(arg)->push_back(chunk);
330}
331
332// Sets the appropriate tag on each chunk.
333static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
334  // Holds the flood fill frontier.
335  Frontier frontier(1);
336
337  ProcessGlobalRegions(&frontier);
338  ProcessThreads(suspended_threads, &frontier);
339  ProcessRootRegions(&frontier);
340  FloodFillTag(&frontier, kReachable);
341  // The check here is relatively expensive, so we do this in a separate flood
342  // fill. That way we can skip the check for chunks that are reachable
343  // otherwise.
344  LOG_POINTERS("Processing platform-specific allocations.\n");
345  ProcessPlatformSpecificAllocations(&frontier);
346  FloodFillTag(&frontier, kReachable);
347
348  LOG_POINTERS("Scanning ignored chunks.\n");
349  CHECK_EQ(0, frontier.size());
350  ForEachChunk(CollectIgnoredCb, &frontier);
351  FloodFillTag(&frontier, kIgnored);
352
353  // Iterate over leaked chunks and mark those that are reachable from other
354  // leaked chunks.
355  LOG_POINTERS("Scanning leaked chunks.\n");
356  ForEachChunk(MarkIndirectlyLeakedCb, 0 /* arg */);
357}
358
359static void PrintStackTraceById(u32 stack_trace_id) {
360  CHECK(stack_trace_id);
361  uptr size = 0;
362  const uptr *trace = StackDepotGet(stack_trace_id, &size);
363  StackTrace::PrintStack(trace, size);
364}
365
366// ForEachChunk callback. Aggregates information about unreachable chunks into
367// a LeakReport.
368static void CollectLeaksCb(uptr chunk, void *arg) {
369  CHECK(arg);
370  LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
371  chunk = GetUserBegin(chunk);
372  LsanMetadata m(chunk);
373  if (!m.allocated()) return;
374  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
375    uptr resolution = flags()->resolution;
376    u32 stack_trace_id = 0;
377    if (resolution > 0) {
378      uptr size = 0;
379      const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
380      size = Min(size, resolution);
381      stack_trace_id = StackDepotPut(trace, size);
382    } else {
383      stack_trace_id = m.stack_trace_id();
384    }
385    leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
386                                m.tag());
387  }
388}
389
390static void PrintMatchedSuppressions() {
391  InternalMmapVector<Suppression *> matched(1);
392  suppression_ctx->GetMatched(&matched);
393  if (!matched.size())
394    return;
395  const char *line = "-----------------------------------------------------";
396  Printf("%s\n", line);
397  Printf("Suppressions used:\n");
398  Printf("  count      bytes template\n");
399  for (uptr i = 0; i < matched.size(); i++)
400    Printf("%7zu %10zu %s\n", static_cast<uptr>(matched[i]->hit_count),
401           matched[i]->weight, matched[i]->templ);
402  Printf("%s\n\n", line);
403}
404
405struct DoLeakCheckParam {
406  bool success;
407  LeakReport leak_report;
408};
409
410static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
411                                void *arg) {
412  DoLeakCheckParam *param = reinterpret_cast<DoLeakCheckParam *>(arg);
413  CHECK(param);
414  CHECK(!param->success);
415  ClassifyAllChunks(suspended_threads);
416  ForEachChunk(CollectLeaksCb, &param->leak_report);
417  param->success = true;
418}
419
420void DoLeakCheck() {
421  EnsureMainThreadIDIsCorrect();
422  BlockingMutexLock l(&global_mutex);
423  static bool already_done;
424  if (already_done) return;
425  already_done = true;
426  if (&__lsan_is_turned_off && __lsan_is_turned_off())
427      return;
428
429  DoLeakCheckParam param;
430  param.success = false;
431  LockThreadRegistry();
432  LockAllocator();
433  StopTheWorld(DoLeakCheckCallback, &param);
434  UnlockAllocator();
435  UnlockThreadRegistry();
436
437  if (!param.success) {
438    Report("LeakSanitizer has encountered a fatal error.\n");
439    Die();
440  }
441  param.leak_report.ApplySuppressions();
442  uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
443  if (unsuppressed_count > 0) {
444    Decorator d;
445    Printf("\n"
446           "================================================================="
447           "\n");
448    Printf("%s", d.Error());
449    Report("ERROR: LeakSanitizer: detected memory leaks\n");
450    Printf("%s", d.End());
451    param.leak_report.ReportTopLeaks(flags()->max_leaks);
452  }
453  if (flags()->print_suppressions)
454    PrintMatchedSuppressions();
455  if (unsuppressed_count > 0) {
456    param.leak_report.PrintSummary();
457    if (flags()->exitcode)
458      internal__exit(flags()->exitcode);
459  }
460}
461
462static Suppression *GetSuppressionForAddr(uptr addr) {
463  Suppression *s;
464
465  // Suppress by module name.
466  const char *module_name;
467  uptr module_offset;
468  if (Symbolizer::Get()->GetModuleNameAndOffsetForPC(addr, &module_name,
469                                                     &module_offset) &&
470      suppression_ctx->Match(module_name, SuppressionLeak, &s))
471    return s;
472
473  // Suppress by file or function name.
474  static const uptr kMaxAddrFrames = 16;
475  InternalScopedBuffer<AddressInfo> addr_frames(kMaxAddrFrames);
476  for (uptr i = 0; i < kMaxAddrFrames; i++) new (&addr_frames[i]) AddressInfo();
477  uptr addr_frames_num = Symbolizer::Get()->SymbolizePC(
478      addr, addr_frames.data(), kMaxAddrFrames);
479  for (uptr i = 0; i < addr_frames_num; i++) {
480    if (suppression_ctx->Match(addr_frames[i].function, SuppressionLeak, &s) ||
481        suppression_ctx->Match(addr_frames[i].file, SuppressionLeak, &s))
482      return s;
483  }
484  return 0;
485}
486
487static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
488  uptr size = 0;
489  const uptr *trace = StackDepotGet(stack_trace_id, &size);
490  for (uptr i = 0; i < size; i++) {
491    Suppression *s =
492        GetSuppressionForAddr(StackTrace::GetPreviousInstructionPc(trace[i]));
493    if (s) return s;
494  }
495  return 0;
496}
497
498///// LeakReport implementation. /////
499
500// A hard limit on the number of distinct leaks, to avoid quadratic complexity
501// in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
502// in real-world applications.
503// FIXME: Get rid of this limit by changing the implementation of LeakReport to
504// use a hash table.
505const uptr kMaxLeaksConsidered = 5000;
506
507void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
508                                uptr leaked_size, ChunkTag tag) {
509  CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
510  bool is_directly_leaked = (tag == kDirectlyLeaked);
511  uptr i;
512  for (i = 0; i < leaks_.size(); i++) {
513    if (leaks_[i].stack_trace_id == stack_trace_id &&
514        leaks_[i].is_directly_leaked == is_directly_leaked) {
515      leaks_[i].hit_count++;
516      leaks_[i].total_size += leaked_size;
517      break;
518    }
519  }
520  if (i == leaks_.size()) {
521    if (leaks_.size() == kMaxLeaksConsidered) return;
522    Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
523                  is_directly_leaked, /* is_suppressed */ false };
524    leaks_.push_back(leak);
525  }
526  if (flags()->report_objects) {
527    LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
528    leaked_objects_.push_back(obj);
529  }
530}
531
532static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
533  if (leak1.is_directly_leaked == leak2.is_directly_leaked)
534    return leak1.total_size > leak2.total_size;
535  else
536    return leak1.is_directly_leaked;
537}
538
539void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
540  CHECK(leaks_.size() <= kMaxLeaksConsidered);
541  Printf("\n");
542  if (leaks_.size() == kMaxLeaksConsidered)
543    Printf("Too many leaks! Only the first %zu leaks encountered will be "
544           "reported.\n",
545           kMaxLeaksConsidered);
546
547  uptr unsuppressed_count = UnsuppressedLeakCount();
548  if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
549    Printf("The %zu top leak(s):\n", num_leaks_to_report);
550  InternalSort(&leaks_, leaks_.size(), LeakComparator);
551  uptr leaks_reported = 0;
552  for (uptr i = 0; i < leaks_.size(); i++) {
553    if (leaks_[i].is_suppressed) continue;
554    PrintReportForLeak(i);
555    leaks_reported++;
556    if (leaks_reported == num_leaks_to_report) break;
557  }
558  if (leaks_reported < unsuppressed_count) {
559    uptr remaining = unsuppressed_count - leaks_reported;
560    Printf("Omitting %zu more leak(s).\n", remaining);
561  }
562}
563
564void LeakReport::PrintReportForLeak(uptr index) {
565  Decorator d;
566  Printf("%s", d.Leak());
567  Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
568         leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
569         leaks_[index].total_size, leaks_[index].hit_count);
570  Printf("%s", d.End());
571
572  PrintStackTraceById(leaks_[index].stack_trace_id);
573
574  if (flags()->report_objects) {
575    Printf("Objects leaked above:\n");
576    PrintLeakedObjectsForLeak(index);
577    Printf("\n");
578  }
579}
580
581void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
582  u32 leak_id = leaks_[index].id;
583  for (uptr j = 0; j < leaked_objects_.size(); j++) {
584    if (leaked_objects_[j].leak_id == leak_id)
585      Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
586             leaked_objects_[j].size);
587  }
588}
589
590void LeakReport::PrintSummary() {
591  CHECK(leaks_.size() <= kMaxLeaksConsidered);
592  uptr bytes = 0, allocations = 0;
593  for (uptr i = 0; i < leaks_.size(); i++) {
594      if (leaks_[i].is_suppressed) continue;
595      bytes += leaks_[i].total_size;
596      allocations += leaks_[i].hit_count;
597  }
598  InternalScopedBuffer<char> summary(kMaxSummaryLength);
599  internal_snprintf(summary.data(), summary.size(),
600                    "%zu byte(s) leaked in %zu allocation(s).", bytes,
601                    allocations);
602  ReportErrorSummary(summary.data());
603}
604
605void LeakReport::ApplySuppressions() {
606  for (uptr i = 0; i < leaks_.size(); i++) {
607    Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
608    if (s) {
609      s->weight += leaks_[i].total_size;
610      s->hit_count += leaks_[i].hit_count;
611      leaks_[i].is_suppressed = true;
612    }
613  }
614}
615
616uptr LeakReport::UnsuppressedLeakCount() {
617  uptr result = 0;
618  for (uptr i = 0; i < leaks_.size(); i++)
619    if (!leaks_[i].is_suppressed) result++;
620  return result;
621}
622
623}  // namespace __lsan
624#endif  // CAN_SANITIZE_LEAKS
625
626using namespace __lsan;  // NOLINT
627
628extern "C" {
629SANITIZER_INTERFACE_ATTRIBUTE
630void __lsan_ignore_object(const void *p) {
631#if CAN_SANITIZE_LEAKS
632  if (!common_flags()->detect_leaks)
633    return;
634  // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
635  // locked.
636  BlockingMutexLock l(&global_mutex);
637  IgnoreObjectResult res = IgnoreObjectLocked(p);
638  if (res == kIgnoreObjectInvalid)
639    VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
640  if (res == kIgnoreObjectAlreadyIgnored)
641    VReport(1, "__lsan_ignore_object(): "
642           "heap object at %p is already being ignored\n", p);
643  if (res == kIgnoreObjectSuccess)
644    VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
645#endif  // CAN_SANITIZE_LEAKS
646}
647
648SANITIZER_INTERFACE_ATTRIBUTE
649void __lsan_register_root_region(const void *begin, uptr size) {
650#if CAN_SANITIZE_LEAKS
651  BlockingMutexLock l(&global_mutex);
652  CHECK(root_regions);
653  RootRegion region = {begin, size};
654  root_regions->push_back(region);
655  VReport(1, "Registered root region at %p of size %llu\n", begin, size);
656#endif  // CAN_SANITIZE_LEAKS
657}
658
659SANITIZER_INTERFACE_ATTRIBUTE
660void __lsan_unregister_root_region(const void *begin, uptr size) {
661#if CAN_SANITIZE_LEAKS
662  BlockingMutexLock l(&global_mutex);
663  CHECK(root_regions);
664  bool removed = false;
665  for (uptr i = 0; i < root_regions->size(); i++) {
666    RootRegion region = (*root_regions)[i];
667    if (region.begin == begin && region.size == size) {
668      removed = true;
669      uptr last_index = root_regions->size() - 1;
670      (*root_regions)[i] = (*root_regions)[last_index];
671      root_regions->pop_back();
672      VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
673      break;
674    }
675  }
676  if (!removed) {
677    Report(
678        "__lsan_unregister_root_region(): region at %p of size %llu has not "
679        "been registered.\n",
680        begin, size);
681    Die();
682  }
683#endif  // CAN_SANITIZE_LEAKS
684}
685
686SANITIZER_INTERFACE_ATTRIBUTE
687void __lsan_disable() {
688#if CAN_SANITIZE_LEAKS
689  __lsan::disable_counter++;
690#endif
691}
692
693SANITIZER_INTERFACE_ATTRIBUTE
694void __lsan_enable() {
695#if CAN_SANITIZE_LEAKS
696  if (!__lsan::disable_counter && common_flags()->detect_leaks) {
697    Report("Unmatched call to __lsan_enable().\n");
698    Die();
699  }
700  __lsan::disable_counter--;
701#endif
702}
703
704SANITIZER_INTERFACE_ATTRIBUTE
705void __lsan_do_leak_check() {
706#if CAN_SANITIZE_LEAKS
707  if (common_flags()->detect_leaks)
708    __lsan::DoLeakCheck();
709#endif  // CAN_SANITIZE_LEAKS
710}
711
712#if !SANITIZER_SUPPORTS_WEAK_HOOKS
713SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
714int __lsan_is_turned_off() {
715  return 0;
716}
717#endif
718}  // extern "C"
719