lsan_common.cc revision c1a1ed62228288155459d39194995a36aca4a8a6
1//=-- lsan_common.cc ------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of LeakSanitizer.
11// Implementation of common leak checking functionality.
12//
13//===----------------------------------------------------------------------===//
14
15#include "lsan_common.h"
16
17#include "sanitizer_common/sanitizer_common.h"
18#include "sanitizer_common/sanitizer_flags.h"
19#include "sanitizer_common/sanitizer_placement_new.h"
20#include "sanitizer_common/sanitizer_stackdepot.h"
21#include "sanitizer_common/sanitizer_stacktrace.h"
22#include "sanitizer_common/sanitizer_stoptheworld.h"
23#include "sanitizer_common/sanitizer_suppressions.h"
24#include "sanitizer_common/sanitizer_report_decorator.h"
25
26#if CAN_SANITIZE_LEAKS
27namespace __lsan {
28
29// This mutex is used to prevent races between DoLeakCheck and IgnoreObject.
30BlockingMutex global_mutex(LINKER_INITIALIZED);
31
32THREADLOCAL int disable_counter;
33bool DisabledInThisThread() { return disable_counter > 0; }
34
35Flags lsan_flags;
36
37static void InitializeFlags() {
38  Flags *f = flags();
39  // Default values.
40  f->report_objects = false;
41  f->resolution = 0;
42  f->max_leaks = 0;
43  f->exitcode = 23;
44  f->suppressions="";
45  f->use_registers = true;
46  f->use_globals = true;
47  f->use_stacks = true;
48  f->use_tls = true;
49  f->use_unaligned = false;
50  f->verbosity = 0;
51  f->log_pointers = false;
52  f->log_threads = false;
53
54  const char *options = GetEnv("LSAN_OPTIONS");
55  if (options) {
56    ParseFlag(options, &f->use_registers, "use_registers");
57    ParseFlag(options, &f->use_globals, "use_globals");
58    ParseFlag(options, &f->use_stacks, "use_stacks");
59    ParseFlag(options, &f->use_tls, "use_tls");
60    ParseFlag(options, &f->use_unaligned, "use_unaligned");
61    ParseFlag(options, &f->report_objects, "report_objects");
62    ParseFlag(options, &f->resolution, "resolution");
63    CHECK_GE(&f->resolution, 0);
64    ParseFlag(options, &f->max_leaks, "max_leaks");
65    CHECK_GE(&f->max_leaks, 0);
66    ParseFlag(options, &f->verbosity, "verbosity");
67    ParseFlag(options, &f->log_pointers, "log_pointers");
68    ParseFlag(options, &f->log_threads, "log_threads");
69    ParseFlag(options, &f->exitcode, "exitcode");
70    ParseFlag(options, &f->suppressions, "suppressions");
71  }
72}
73
74SuppressionContext *suppression_ctx;
75
76void InitializeSuppressions() {
77  CHECK(!suppression_ctx);
78  ALIGNED(64) static char placeholder_[sizeof(SuppressionContext)];
79  suppression_ctx = new(placeholder_) SuppressionContext;
80  char *suppressions_from_file;
81  uptr buffer_size;
82  if (ReadFileToBuffer(flags()->suppressions, &suppressions_from_file,
83                       &buffer_size, 1 << 26 /* max_len */))
84    suppression_ctx->Parse(suppressions_from_file);
85  if (flags()->suppressions[0] && !buffer_size) {
86    Printf("LeakSanitizer: failed to read suppressions file '%s'\n",
87           flags()->suppressions);
88    Die();
89  }
90  if (&__lsan_default_suppressions)
91    suppression_ctx->Parse(__lsan_default_suppressions());
92}
93
94void InitCommonLsan() {
95  InitializeFlags();
96  if (common_flags()->detect_leaks) {
97    // Initialization which can fail or print warnings should only be done if
98    // LSan is actually enabled.
99    InitializeSuppressions();
100    InitializePlatformSpecificModules();
101  }
102}
103
104class Decorator: private __sanitizer::AnsiColorDecorator {
105 public:
106  Decorator() : __sanitizer::AnsiColorDecorator(PrintsToTtyCached()) { }
107  const char *Error() { return Red(); }
108  const char *Leak() { return Blue(); }
109  const char *End() { return Default(); }
110};
111
112static inline bool CanBeAHeapPointer(uptr p) {
113  // Since our heap is located in mmap-ed memory, we can assume a sensible lower
114  // bound on heap addresses.
115  const uptr kMinAddress = 4 * 4096;
116  if (p < kMinAddress) return false;
117#ifdef __x86_64__
118  // Accept only canonical form user-space addresses.
119  return ((p >> 47) == 0);
120#else
121  return true;
122#endif
123}
124
125// Scans the memory range, looking for byte patterns that point into allocator
126// chunks. Marks those chunks with |tag| and adds them to |frontier|.
127// There are two usage modes for this function: finding reachable or ignored
128// chunks (|tag| = kReachable or kIgnored) and finding indirectly leaked chunks
129// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
130// so |frontier| = 0.
131void ScanRangeForPointers(uptr begin, uptr end,
132                          Frontier *frontier,
133                          const char *region_type, ChunkTag tag) {
134  const uptr alignment = flags()->pointer_alignment();
135  if (flags()->log_pointers)
136    Report("Scanning %s range %p-%p.\n", region_type, begin, end);
137  uptr pp = begin;
138  if (pp % alignment)
139    pp = pp + alignment - pp % alignment;
140  for (; pp + sizeof(void *) <= end; pp += alignment) {  // NOLINT
141    void *p = *reinterpret_cast<void **>(pp);
142    if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
143    uptr chunk = PointsIntoChunk(p);
144    if (!chunk) continue;
145    // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
146    if (chunk == begin) continue;
147    LsanMetadata m(chunk);
148    // Reachable beats ignored beats leaked.
149    if (m.tag() == kReachable) continue;
150    if (m.tag() == kIgnored && tag != kReachable) continue;
151    m.set_tag(tag);
152    if (flags()->log_pointers)
153      Report("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
154             chunk, chunk + m.requested_size(), m.requested_size());
155    if (frontier)
156      frontier->push_back(chunk);
157  }
158}
159
160void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
161  Frontier *frontier = reinterpret_cast<Frontier *>(arg);
162  ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
163}
164
165// Scans thread data (stacks and TLS) for heap pointers.
166static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
167                           Frontier *frontier) {
168  InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
169  uptr registers_begin = reinterpret_cast<uptr>(registers.data());
170  uptr registers_end = registers_begin + registers.size();
171  for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
172    uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
173    if (flags()->log_threads) Report("Processing thread %d.\n", os_id);
174    uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
175    bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
176                                              &tls_begin, &tls_end,
177                                              &cache_begin, &cache_end);
178    if (!thread_found) {
179      // If a thread can't be found in the thread registry, it's probably in the
180      // process of destruction. Log this event and move on.
181      if (flags()->log_threads)
182        Report("Thread %d not found in registry.\n", os_id);
183      continue;
184    }
185    uptr sp;
186    bool have_registers =
187        (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
188    if (!have_registers) {
189      Report("Unable to get registers from thread %d.\n");
190      // If unable to get SP, consider the entire stack to be reachable.
191      sp = stack_begin;
192    }
193
194    if (flags()->use_registers && have_registers)
195      ScanRangeForPointers(registers_begin, registers_end, frontier,
196                           "REGISTERS", kReachable);
197
198    if (flags()->use_stacks) {
199      if (flags()->log_threads)
200        Report("Stack at %p-%p, SP = %p.\n", stack_begin, stack_end, sp);
201      if (sp < stack_begin || sp >= stack_end) {
202        // SP is outside the recorded stack range (e.g. the thread is running a
203        // signal handler on alternate stack). Again, consider the entire stack
204        // range to be reachable.
205        if (flags()->log_threads)
206          Report("WARNING: stack pointer not in stack range.\n");
207      } else {
208        // Shrink the stack range to ignore out-of-scope values.
209        stack_begin = sp;
210      }
211      ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
212                           kReachable);
213      ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
214    }
215
216    if (flags()->use_tls) {
217      if (flags()->log_threads) Report("TLS at %p-%p.\n", tls_begin, tls_end);
218      if (cache_begin == cache_end) {
219        ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
220      } else {
221        // Because LSan should not be loaded with dlopen(), we can assume
222        // that allocator cache will be part of static TLS image.
223        CHECK_LE(tls_begin, cache_begin);
224        CHECK_GE(tls_end, cache_end);
225        if (tls_begin < cache_begin)
226          ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
227                               kReachable);
228        if (tls_end > cache_end)
229          ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
230      }
231    }
232  }
233}
234
235static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
236  while (frontier->size()) {
237    uptr next_chunk = frontier->back();
238    frontier->pop_back();
239    LsanMetadata m(next_chunk);
240    ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
241                         "HEAP", tag);
242  }
243}
244
245// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
246// which are reachable from it as indirectly leaked.
247static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
248  chunk = GetUserBegin(chunk);
249  LsanMetadata m(chunk);
250  if (m.allocated() && m.tag() != kReachable) {
251    ScanRangeForPointers(chunk, chunk + m.requested_size(),
252                         /* frontier */ 0, "HEAP", kIndirectlyLeaked);
253  }
254}
255
256// ForEachChunk callback. If chunk is marked as ignored, adds its address to
257// frontier.
258static void CollectIgnoredCb(uptr chunk, void *arg) {
259  CHECK(arg);
260  chunk = GetUserBegin(chunk);
261  LsanMetadata m(chunk);
262  if (m.allocated() && m.tag() == kIgnored)
263    reinterpret_cast<Frontier *>(arg)->push_back(chunk);
264}
265
266// Sets the appropriate tag on each chunk.
267static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
268  // Holds the flood fill frontier.
269  Frontier frontier(GetPageSizeCached());
270
271  if (flags()->use_globals)
272    ProcessGlobalRegions(&frontier);
273  ProcessThreads(suspended_threads, &frontier);
274  FloodFillTag(&frontier, kReachable);
275  // The check here is relatively expensive, so we do this in a separate flood
276  // fill. That way we can skip the check for chunks that are reachable
277  // otherwise.
278  ProcessPlatformSpecificAllocations(&frontier);
279  FloodFillTag(&frontier, kReachable);
280
281  if (flags()->log_pointers)
282    Report("Scanning ignored chunks.\n");
283  CHECK_EQ(0, frontier.size());
284  ForEachChunk(CollectIgnoredCb, &frontier);
285  FloodFillTag(&frontier, kIgnored);
286
287  // Iterate over leaked chunks and mark those that are reachable from other
288  // leaked chunks.
289  if (flags()->log_pointers)
290    Report("Scanning leaked chunks.\n");
291  ForEachChunk(MarkIndirectlyLeakedCb, 0 /* arg */);
292}
293
294static void PrintStackTraceById(u32 stack_trace_id) {
295  CHECK(stack_trace_id);
296  uptr size = 0;
297  const uptr *trace = StackDepotGet(stack_trace_id, &size);
298  StackTrace::PrintStack(trace, size, common_flags()->symbolize, 0);
299}
300
301// ForEachChunk callback. Aggregates unreachable chunks into a LeakReport.
302static void CollectLeaksCb(uptr chunk, void *arg) {
303  CHECK(arg);
304  LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
305  chunk = GetUserBegin(chunk);
306  LsanMetadata m(chunk);
307  if (!m.allocated()) return;
308  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
309    uptr resolution = flags()->resolution;
310    if (resolution > 0) {
311      uptr size = 0;
312      const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
313      size = Min(size, resolution);
314      leak_report->Add(StackDepotPut(trace, size), m.requested_size(), m.tag());
315    } else {
316      leak_report->Add(m.stack_trace_id(), m.requested_size(), m.tag());
317    }
318  }
319}
320
321// ForEachChunkCallback. Prints addresses of unreachable chunks.
322static void PrintLeakedCb(uptr chunk, void *arg) {
323  chunk = GetUserBegin(chunk);
324  LsanMetadata m(chunk);
325  if (!m.allocated()) return;
326  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
327    Printf("%s leaked %zu byte object at %p.\n",
328           m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly",
329           m.requested_size(), chunk);
330  }
331}
332
333static void PrintMatchedSuppressions() {
334  InternalMmapVector<Suppression *> matched(1);
335  suppression_ctx->GetMatched(&matched);
336  if (!matched.size())
337    return;
338  const char *line = "-----------------------------------------------------";
339  Printf("%s\n", line);
340  Printf("Suppressions used:\n");
341  Printf("  count      bytes template\n");
342  for (uptr i = 0; i < matched.size(); i++)
343    Printf("%7zu %10zu %s\n", static_cast<uptr>(matched[i]->hit_count),
344           matched[i]->weight, matched[i]->templ);
345  Printf("%s\n\n", line);
346}
347
348static void PrintLeaked() {
349  Printf("\n");
350  Printf("Reporting individual objects:\n");
351  ForEachChunk(PrintLeakedCb, 0 /* arg */);
352}
353
354struct DoLeakCheckParam {
355  bool success;
356  LeakReport leak_report;
357};
358
359static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
360                                void *arg) {
361  DoLeakCheckParam *param = reinterpret_cast<DoLeakCheckParam *>(arg);
362  CHECK(param);
363  CHECK(!param->success);
364  CHECK(param->leak_report.IsEmpty());
365  ClassifyAllChunks(suspended_threads);
366  ForEachChunk(CollectLeaksCb, &param->leak_report);
367  if (!param->leak_report.IsEmpty() && flags()->report_objects)
368    PrintLeaked();
369  param->success = true;
370}
371
372void DoLeakCheck() {
373  EnsureMainThreadIDIsCorrect();
374  BlockingMutexLock l(&global_mutex);
375  static bool already_done;
376  if (already_done) return;
377  already_done = true;
378  if (&__lsan_is_turned_off && __lsan_is_turned_off())
379    return;
380
381  DoLeakCheckParam param;
382  param.success = false;
383  LockThreadRegistry();
384  LockAllocator();
385  StopTheWorld(DoLeakCheckCallback, &param);
386  UnlockAllocator();
387  UnlockThreadRegistry();
388
389  if (!param.success) {
390    Report("LeakSanitizer has encountered a fatal error.\n");
391    Die();
392  }
393  uptr have_unsuppressed = param.leak_report.ApplySuppressions();
394  if (have_unsuppressed) {
395    Decorator d;
396    Printf("\n"
397           "================================================================="
398           "\n");
399    Printf("%s", d.Error());
400    Report("ERROR: LeakSanitizer: detected memory leaks\n");
401    Printf("%s", d.End());
402    param.leak_report.PrintLargest(flags()->max_leaks);
403  }
404  if (have_unsuppressed || (flags()->verbosity >= 1)) {
405    PrintMatchedSuppressions();
406    param.leak_report.PrintSummary();
407  }
408  if (have_unsuppressed && flags()->exitcode)
409    internal__exit(flags()->exitcode);
410}
411
412static Suppression *GetSuppressionForAddr(uptr addr) {
413  static const uptr kMaxAddrFrames = 16;
414  InternalScopedBuffer<AddressInfo> addr_frames(kMaxAddrFrames);
415  for (uptr i = 0; i < kMaxAddrFrames; i++) new (&addr_frames[i]) AddressInfo();
416  uptr addr_frames_num = Symbolizer::Get()->SymbolizeCode(
417      addr, addr_frames.data(), kMaxAddrFrames);
418  for (uptr i = 0; i < addr_frames_num; i++) {
419    Suppression* s;
420    if (suppression_ctx->Match(addr_frames[i].function, SuppressionLeak, &s) ||
421        suppression_ctx->Match(addr_frames[i].file, SuppressionLeak, &s) ||
422        suppression_ctx->Match(addr_frames[i].module, SuppressionLeak, &s))
423      return s;
424  }
425  return 0;
426}
427
428static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
429  uptr size = 0;
430  const uptr *trace = StackDepotGet(stack_trace_id, &size);
431  for (uptr i = 0; i < size; i++) {
432    Suppression *s =
433        GetSuppressionForAddr(StackTrace::GetPreviousInstructionPc(trace[i]));
434    if (s) return s;
435  }
436  return 0;
437}
438
439///// LeakReport implementation. /////
440
441// A hard limit on the number of distinct leaks, to avoid quadratic complexity
442// in LeakReport::Add(). We don't expect to ever see this many leaks in
443// real-world applications.
444// FIXME: Get rid of this limit by changing the implementation of LeakReport to
445// use a hash table.
446const uptr kMaxLeaksConsidered = 5000;
447
448void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) {
449  CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
450  bool is_directly_leaked = (tag == kDirectlyLeaked);
451  for (uptr i = 0; i < leaks_.size(); i++)
452    if (leaks_[i].stack_trace_id == stack_trace_id &&
453        leaks_[i].is_directly_leaked == is_directly_leaked) {
454      leaks_[i].hit_count++;
455      leaks_[i].total_size += leaked_size;
456      return;
457    }
458  if (leaks_.size() == kMaxLeaksConsidered) return;
459  Leak leak = { /* hit_count */ 1, leaked_size, stack_trace_id,
460                is_directly_leaked, /* is_suppressed */ false };
461  leaks_.push_back(leak);
462}
463
464static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
465  if (leak1.is_directly_leaked == leak2.is_directly_leaked)
466    return leak1.total_size > leak2.total_size;
467  else
468    return leak1.is_directly_leaked;
469}
470
471void LeakReport::PrintLargest(uptr num_leaks_to_print) {
472  CHECK(leaks_.size() <= kMaxLeaksConsidered);
473  Printf("\n");
474  if (leaks_.size() == kMaxLeaksConsidered)
475    Printf("Too many leaks! Only the first %zu leaks encountered will be "
476           "reported.\n",
477           kMaxLeaksConsidered);
478
479  uptr unsuppressed_count = 0;
480  for (uptr i = 0; i < leaks_.size(); i++)
481    if (!leaks_[i].is_suppressed) unsuppressed_count++;
482  if (num_leaks_to_print > 0 && num_leaks_to_print < unsuppressed_count)
483    Printf("The %zu largest leak(s):\n", num_leaks_to_print);
484  InternalSort(&leaks_, leaks_.size(), LeakComparator);
485  uptr leaks_printed = 0;
486  Decorator d;
487  for (uptr i = 0; i < leaks_.size(); i++) {
488    if (leaks_[i].is_suppressed) continue;
489    Printf("%s", d.Leak());
490    Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
491           leaks_[i].is_directly_leaked ? "Direct" : "Indirect",
492           leaks_[i].total_size, leaks_[i].hit_count);
493    Printf("%s", d.End());
494    PrintStackTraceById(leaks_[i].stack_trace_id);
495    Printf("\n");
496    leaks_printed++;
497    if (leaks_printed == num_leaks_to_print) break;
498  }
499  if (leaks_printed < unsuppressed_count) {
500    uptr remaining = unsuppressed_count - leaks_printed;
501    Printf("Omitting %zu more leak(s).\n", remaining);
502  }
503}
504
505void LeakReport::PrintSummary() {
506  CHECK(leaks_.size() <= kMaxLeaksConsidered);
507  uptr bytes = 0, allocations = 0;
508  for (uptr i = 0; i < leaks_.size(); i++) {
509      if (leaks_[i].is_suppressed) continue;
510      bytes += leaks_[i].total_size;
511      allocations += leaks_[i].hit_count;
512  }
513  const int kMaxSummaryLength = 128;
514  InternalScopedBuffer<char> summary(kMaxSummaryLength);
515  internal_snprintf(summary.data(), kMaxSummaryLength,
516                    "SUMMARY: LeakSanitizer: %zu byte(s) leaked in %zu "
517                    "allocation(s).",
518                    bytes, allocations);
519  __sanitizer_report_error_summary(summary.data());
520}
521
522uptr LeakReport::ApplySuppressions() {
523  uptr unsuppressed_count = 0;
524  for (uptr i = 0; i < leaks_.size(); i++) {
525    Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
526    if (s) {
527      s->weight += leaks_[i].total_size;
528      s->hit_count += leaks_[i].hit_count;
529      leaks_[i].is_suppressed = true;
530    } else {
531    unsuppressed_count++;
532    }
533  }
534  return unsuppressed_count;
535}
536}  // namespace __lsan
537#endif  // CAN_SANITIZE_LEAKS
538
539using namespace __lsan;  // NOLINT
540
541extern "C" {
542SANITIZER_INTERFACE_ATTRIBUTE
543void __lsan_ignore_object(const void *p) {
544#if CAN_SANITIZE_LEAKS
545  if (!common_flags()->detect_leaks)
546    return;
547  // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
548  // locked.
549  BlockingMutexLock l(&global_mutex);
550  IgnoreObjectResult res = IgnoreObjectLocked(p);
551  if (res == kIgnoreObjectInvalid && flags()->verbosity >= 2)
552    Report("__lsan_ignore_object(): no heap object found at %p", p);
553  if (res == kIgnoreObjectAlreadyIgnored && flags()->verbosity >= 2)
554    Report("__lsan_ignore_object(): "
555           "heap object at %p is already being ignored\n", p);
556  if (res == kIgnoreObjectSuccess && flags()->verbosity >= 3)
557    Report("__lsan_ignore_object(): ignoring heap object at %p\n", p);
558#endif  // CAN_SANITIZE_LEAKS
559}
560
561SANITIZER_INTERFACE_ATTRIBUTE
562void __lsan_disable() {
563#if CAN_SANITIZE_LEAKS
564  __lsan::disable_counter++;
565#endif
566}
567
568SANITIZER_INTERFACE_ATTRIBUTE
569void __lsan_enable() {
570#if CAN_SANITIZE_LEAKS
571  if (!__lsan::disable_counter && common_flags()->detect_leaks) {
572    Report("Unmatched call to __lsan_enable().\n");
573    Die();
574  }
575  __lsan::disable_counter--;
576#endif
577}
578
579SANITIZER_INTERFACE_ATTRIBUTE
580void __lsan_do_leak_check() {
581#if CAN_SANITIZE_LEAKS
582  if (common_flags()->detect_leaks)
583    __lsan::DoLeakCheck();
584#endif  // CAN_SANITIZE_LEAKS
585}
586
587#if !SANITIZER_SUPPORTS_WEAK_HOOKS
588SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
589int __lsan_is_turned_off() {
590  return 0;
591}
592#endif
593}  // extern "C"
594