1//===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef SANITIZER_ALLOCATOR_H
15#define SANITIZER_ALLOCATOR_H
16
17#include "sanitizer_internal_defs.h"
18#include "sanitizer_common.h"
19#include "sanitizer_libc.h"
20#include "sanitizer_list.h"
21#include "sanitizer_mutex.h"
22#include "sanitizer_lfstack.h"
23
24namespace __sanitizer {
25
26// Depending on allocator_may_return_null either return 0 or crash.
27void *AllocatorReturnNull();
28
29// SizeClassMap maps allocation sizes into size classes and back.
30// Class 0 corresponds to size 0.
31// Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16).
32// Next 4 classes: 256 + i * 64  (i = 1 to 4).
33// Next 4 classes: 512 + i * 128 (i = 1 to 4).
34// ...
35// Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4).
36// Last class corresponds to kMaxSize = 1 << kMaxSizeLog.
37//
38// This structure of the size class map gives us:
39//   - Efficient table-free class-to-size and size-to-class functions.
40//   - Difference between two consequent size classes is betweed 14% and 25%
41//
42// This class also gives a hint to a thread-caching allocator about the amount
43// of chunks that need to be cached per-thread:
44//  - kMaxNumCached is the maximal number of chunks per size class.
45//  - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class.
46//
47// Part of output of SizeClassMap::Print():
48// c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0
49// c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1
50// c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2
51// c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3
52// c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4
53// c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5
54// c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6
55// c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7
56//
57// c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8
58// c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9
59// c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10
60// c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11
61// c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12
62// c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13
63// c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14
64// c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15
65//
66// c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16
67// c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17
68// c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18
69// c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19
70//
71// c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20
72// c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21
73// c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22
74// c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23
75//
76// c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24
77// c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25
78// c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26
79// c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27
80//
81// ...
82//
83// c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48
84// c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49
85// c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50
86// c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51
87//
88// c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52
89
90template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog>
91class SizeClassMap {
92  static const uptr kMinSizeLog = 4;
93  static const uptr kMidSizeLog = kMinSizeLog + 4;
94  static const uptr kMinSize = 1 << kMinSizeLog;
95  static const uptr kMidSize = 1 << kMidSizeLog;
96  static const uptr kMidClass = kMidSize / kMinSize;
97  static const uptr S = 2;
98  static const uptr M = (1 << S) - 1;
99
100 public:
101  static const uptr kMaxNumCached = kMaxNumCachedT;
102  // We transfer chunks between central and thread-local free lists in batches.
103  // For small size classes we allocate batches separately.
104  // For large size classes we use one of the chunks to store the batch.
105  struct TransferBatch {
106    TransferBatch *next;
107    uptr count;
108    void *batch[kMaxNumCached];
109  };
110
111  static const uptr kMaxSize = 1UL << kMaxSizeLog;
112  static const uptr kNumClasses =
113      kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1;
114  COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256);
115  static const uptr kNumClassesRounded =
116      kNumClasses == 32  ? 32 :
117      kNumClasses <= 64  ? 64 :
118      kNumClasses <= 128 ? 128 : 256;
119
120  static uptr Size(uptr class_id) {
121    if (class_id <= kMidClass)
122      return kMinSize * class_id;
123    class_id -= kMidClass;
124    uptr t = kMidSize << (class_id >> S);
125    return t + (t >> S) * (class_id & M);
126  }
127
128  static uptr ClassID(uptr size) {
129    if (size <= kMidSize)
130      return (size + kMinSize - 1) >> kMinSizeLog;
131    if (size > kMaxSize) return 0;
132    uptr l = MostSignificantSetBitIndex(size);
133    uptr hbits = (size >> (l - S)) & M;
134    uptr lbits = size & ((1 << (l - S)) - 1);
135    uptr l1 = l - kMidSizeLog;
136    return kMidClass + (l1 << S) + hbits + (lbits > 0);
137  }
138
139  static uptr MaxCached(uptr class_id) {
140    if (class_id == 0) return 0;
141    uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id);
142    return Max<uptr>(1, Min(kMaxNumCached, n));
143  }
144
145  static void Print() {
146    uptr prev_s = 0;
147    uptr total_cached = 0;
148    for (uptr i = 0; i < kNumClasses; i++) {
149      uptr s = Size(i);
150      if (s >= kMidSize / 2 && (s & (s - 1)) == 0)
151        Printf("\n");
152      uptr d = s - prev_s;
153      uptr p = prev_s ? (d * 100 / prev_s) : 0;
154      uptr l = s ? MostSignificantSetBitIndex(s) : 0;
155      uptr cached = MaxCached(i) * s;
156      Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd "
157             "cached: %zd %zd; id %zd\n",
158             i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s));
159      total_cached += cached;
160      prev_s = s;
161    }
162    Printf("Total cached: %zd\n", total_cached);
163  }
164
165  static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) {
166    return Size(class_id) < sizeof(TransferBatch) -
167        sizeof(uptr) * (kMaxNumCached - MaxCached(class_id));
168  }
169
170  static void Validate() {
171    for (uptr c = 1; c < kNumClasses; c++) {
172      // Printf("Validate: c%zd\n", c);
173      uptr s = Size(c);
174      CHECK_NE(s, 0U);
175      CHECK_EQ(ClassID(s), c);
176      if (c != kNumClasses - 1)
177        CHECK_EQ(ClassID(s + 1), c + 1);
178      CHECK_EQ(ClassID(s - 1), c);
179      if (c)
180        CHECK_GT(Size(c), Size(c-1));
181    }
182    CHECK_EQ(ClassID(kMaxSize + 1), 0);
183
184    for (uptr s = 1; s <= kMaxSize; s++) {
185      uptr c = ClassID(s);
186      // Printf("s%zd => c%zd\n", s, c);
187      CHECK_LT(c, kNumClasses);
188      CHECK_GE(Size(c), s);
189      if (c > 0)
190        CHECK_LT(Size(c-1), s);
191    }
192  }
193};
194
195typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap;
196typedef SizeClassMap<17, 64,  14> CompactSizeClassMap;
197template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache;
198
199// Memory allocator statistics
200enum AllocatorStat {
201  AllocatorStatAllocated,
202  AllocatorStatMapped,
203  AllocatorStatCount
204};
205
206typedef uptr AllocatorStatCounters[AllocatorStatCount];
207
208// Per-thread stats, live in per-thread cache.
209class AllocatorStats {
210 public:
211  void Init() {
212    internal_memset(this, 0, sizeof(*this));
213  }
214
215  void Add(AllocatorStat i, uptr v) {
216    v += atomic_load(&stats_[i], memory_order_relaxed);
217    atomic_store(&stats_[i], v, memory_order_relaxed);
218  }
219
220  void Sub(AllocatorStat i, uptr v) {
221    v = atomic_load(&stats_[i], memory_order_relaxed) - v;
222    atomic_store(&stats_[i], v, memory_order_relaxed);
223  }
224
225  void Set(AllocatorStat i, uptr v) {
226    atomic_store(&stats_[i], v, memory_order_relaxed);
227  }
228
229  uptr Get(AllocatorStat i) const {
230    return atomic_load(&stats_[i], memory_order_relaxed);
231  }
232
233 private:
234  friend class AllocatorGlobalStats;
235  AllocatorStats *next_;
236  AllocatorStats *prev_;
237  atomic_uintptr_t stats_[AllocatorStatCount];
238};
239
240// Global stats, used for aggregation and querying.
241class AllocatorGlobalStats : public AllocatorStats {
242 public:
243  void Init() {
244    internal_memset(this, 0, sizeof(*this));
245    next_ = this;
246    prev_ = this;
247  }
248
249  void Register(AllocatorStats *s) {
250    SpinMutexLock l(&mu_);
251    s->next_ = next_;
252    s->prev_ = this;
253    next_->prev_ = s;
254    next_ = s;
255  }
256
257  void Unregister(AllocatorStats *s) {
258    SpinMutexLock l(&mu_);
259    s->prev_->next_ = s->next_;
260    s->next_->prev_ = s->prev_;
261    for (int i = 0; i < AllocatorStatCount; i++)
262      Add(AllocatorStat(i), s->Get(AllocatorStat(i)));
263  }
264
265  void Get(AllocatorStatCounters s) const {
266    internal_memset(s, 0, AllocatorStatCount * sizeof(uptr));
267    SpinMutexLock l(&mu_);
268    const AllocatorStats *stats = this;
269    for (;;) {
270      for (int i = 0; i < AllocatorStatCount; i++)
271        s[i] += stats->Get(AllocatorStat(i));
272      stats = stats->next_;
273      if (stats == this)
274        break;
275    }
276    // All stats must be non-negative.
277    for (int i = 0; i < AllocatorStatCount; i++)
278      s[i] = ((sptr)s[i]) >= 0 ? s[i] : 0;
279  }
280
281 private:
282  mutable SpinMutex mu_;
283};
284
285// Allocators call these callbacks on mmap/munmap.
286struct NoOpMapUnmapCallback {
287  void OnMap(uptr p, uptr size) const { }
288  void OnUnmap(uptr p, uptr size) const { }
289};
290
291// Callback type for iterating over chunks.
292typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
293
294// SizeClassAllocator64 -- allocator for 64-bit address space.
295//
296// Space: a portion of address space of kSpaceSize bytes starting at
297// a fixed address (kSpaceBeg). Both constants are powers of two and
298// kSpaceBeg is kSpaceSize-aligned.
299// At the beginning the entire space is mprotect-ed, then small parts of it
300// are mapped on demand.
301//
302// Region: a part of Space dedicated to a single size class.
303// There are kNumClasses Regions of equal size.
304//
305// UserChunk: a piece of memory returned to user.
306// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
307//
308// A Region looks like this:
309// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
310template <const uptr kSpaceBeg, const uptr kSpaceSize,
311          const uptr kMetadataSize, class SizeClassMap,
312          class MapUnmapCallback = NoOpMapUnmapCallback>
313class SizeClassAllocator64 {
314 public:
315  typedef typename SizeClassMap::TransferBatch Batch;
316  typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
317      SizeClassMap, MapUnmapCallback> ThisT;
318  typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
319
320  void Init() {
321    CHECK_EQ(kSpaceBeg,
322             reinterpret_cast<uptr>(Mprotect(kSpaceBeg, kSpaceSize)));
323    MapWithCallback(kSpaceEnd, AdditionalSize());
324  }
325
326  void MapWithCallback(uptr beg, uptr size) {
327    CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
328    MapUnmapCallback().OnMap(beg, size);
329  }
330
331  void UnmapWithCallback(uptr beg, uptr size) {
332    MapUnmapCallback().OnUnmap(beg, size);
333    UnmapOrDie(reinterpret_cast<void *>(beg), size);
334  }
335
336  static bool CanAllocate(uptr size, uptr alignment) {
337    return size <= SizeClassMap::kMaxSize &&
338      alignment <= SizeClassMap::kMaxSize;
339  }
340
341  NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
342                                uptr class_id) {
343    CHECK_LT(class_id, kNumClasses);
344    RegionInfo *region = GetRegionInfo(class_id);
345    Batch *b = region->free_list.Pop();
346    if (b == 0)
347      b = PopulateFreeList(stat, c, class_id, region);
348    region->n_allocated += b->count;
349    return b;
350  }
351
352  NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
353    RegionInfo *region = GetRegionInfo(class_id);
354    CHECK_GT(b->count, 0);
355    region->free_list.Push(b);
356    region->n_freed += b->count;
357  }
358
359  static bool PointerIsMine(const void *p) {
360    return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
361  }
362
363  static uptr GetSizeClass(const void *p) {
364    return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClassesRounded;
365  }
366
367  void *GetBlockBegin(const void *p) {
368    uptr class_id = GetSizeClass(p);
369    uptr size = SizeClassMap::Size(class_id);
370    if (!size) return 0;
371    uptr chunk_idx = GetChunkIdx((uptr)p, size);
372    uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
373    uptr beg = chunk_idx * size;
374    uptr next_beg = beg + size;
375    if (class_id >= kNumClasses) return 0;
376    RegionInfo *region = GetRegionInfo(class_id);
377    if (region->mapped_user >= next_beg)
378      return reinterpret_cast<void*>(reg_beg + beg);
379    return 0;
380  }
381
382  static uptr GetActuallyAllocatedSize(void *p) {
383    CHECK(PointerIsMine(p));
384    return SizeClassMap::Size(GetSizeClass(p));
385  }
386
387  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
388
389  void *GetMetaData(const void *p) {
390    uptr class_id = GetSizeClass(p);
391    uptr size = SizeClassMap::Size(class_id);
392    uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
393    return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
394                                   (1 + chunk_idx) * kMetadataSize);
395  }
396
397  uptr TotalMemoryUsed() {
398    uptr res = 0;
399    for (uptr i = 0; i < kNumClasses; i++)
400      res += GetRegionInfo(i)->allocated_user;
401    return res;
402  }
403
404  // Test-only.
405  void TestOnlyUnmap() {
406    UnmapWithCallback(kSpaceBeg, kSpaceSize + AdditionalSize());
407  }
408
409  void PrintStats() {
410    uptr total_mapped = 0;
411    uptr n_allocated = 0;
412    uptr n_freed = 0;
413    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
414      RegionInfo *region = GetRegionInfo(class_id);
415      total_mapped += region->mapped_user;
416      n_allocated += region->n_allocated;
417      n_freed += region->n_freed;
418    }
419    Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
420           "remains %zd\n",
421           total_mapped >> 20, n_allocated, n_allocated - n_freed);
422    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
423      RegionInfo *region = GetRegionInfo(class_id);
424      if (region->mapped_user == 0) continue;
425      Printf("  %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n",
426             class_id,
427             SizeClassMap::Size(class_id),
428             region->mapped_user >> 10,
429             region->n_allocated,
430             region->n_allocated - region->n_freed);
431    }
432  }
433
434  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
435  // introspection API.
436  void ForceLock() {
437    for (uptr i = 0; i < kNumClasses; i++) {
438      GetRegionInfo(i)->mutex.Lock();
439    }
440  }
441
442  void ForceUnlock() {
443    for (int i = (int)kNumClasses - 1; i >= 0; i--) {
444      GetRegionInfo(i)->mutex.Unlock();
445    }
446  }
447
448  // Iterate over all existing chunks.
449  // The allocator must be locked when calling this function.
450  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
451    for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
452      RegionInfo *region = GetRegionInfo(class_id);
453      uptr chunk_size = SizeClassMap::Size(class_id);
454      uptr region_beg = kSpaceBeg + class_id * kRegionSize;
455      for (uptr chunk = region_beg;
456           chunk < region_beg + region->allocated_user;
457           chunk += chunk_size) {
458        // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
459        callback(chunk, arg);
460      }
461    }
462  }
463
464  typedef SizeClassMap SizeClassMapT;
465  static const uptr kNumClasses = SizeClassMap::kNumClasses;
466  static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
467
468 private:
469  static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
470  static const uptr kSpaceEnd = kSpaceBeg + kSpaceSize;
471  COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
472  // kRegionSize must be >= 2^32.
473  COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
474  // Populate the free list with at most this number of bytes at once
475  // or with one element if its size is greater.
476  static const uptr kPopulateSize = 1 << 14;
477  // Call mmap for user memory with at least this size.
478  static const uptr kUserMapSize = 1 << 16;
479  // Call mmap for metadata memory with at least this size.
480  static const uptr kMetaMapSize = 1 << 16;
481
482  struct RegionInfo {
483    BlockingMutex mutex;
484    LFStack<Batch> free_list;
485    uptr allocated_user;  // Bytes allocated for user memory.
486    uptr allocated_meta;  // Bytes allocated for metadata.
487    uptr mapped_user;  // Bytes mapped for user memory.
488    uptr mapped_meta;  // Bytes mapped for metadata.
489    uptr n_allocated, n_freed;  // Just stats.
490  };
491  COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
492
493  static uptr AdditionalSize() {
494    return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
495                     GetPageSizeCached());
496  }
497
498  RegionInfo *GetRegionInfo(uptr class_id) {
499    CHECK_LT(class_id, kNumClasses);
500    RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize);
501    return &regions[class_id];
502  }
503
504  static uptr GetChunkIdx(uptr chunk, uptr size) {
505    uptr offset = chunk % kRegionSize;
506    // Here we divide by a non-constant. This is costly.
507    // size always fits into 32-bits. If the offset fits too, use 32-bit div.
508    if (offset >> (SANITIZER_WORDSIZE / 2))
509      return offset / size;
510    return (u32)offset / (u32)size;
511  }
512
513  NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
514                                   uptr class_id, RegionInfo *region) {
515    BlockingMutexLock l(&region->mutex);
516    Batch *b = region->free_list.Pop();
517    if (b)
518      return b;
519    uptr size = SizeClassMap::Size(class_id);
520    uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1;
521    uptr beg_idx = region->allocated_user;
522    uptr end_idx = beg_idx + count * size;
523    uptr region_beg = kSpaceBeg + kRegionSize * class_id;
524    if (end_idx + size > region->mapped_user) {
525      // Do the mmap for the user memory.
526      uptr map_size = kUserMapSize;
527      while (end_idx + size > region->mapped_user + map_size)
528        map_size += kUserMapSize;
529      CHECK_GE(region->mapped_user + map_size, end_idx);
530      MapWithCallback(region_beg + region->mapped_user, map_size);
531      stat->Add(AllocatorStatMapped, map_size);
532      region->mapped_user += map_size;
533    }
534    uptr total_count = (region->mapped_user - beg_idx - size)
535        / size / count * count;
536    region->allocated_meta += total_count * kMetadataSize;
537    if (region->allocated_meta > region->mapped_meta) {
538      uptr map_size = kMetaMapSize;
539      while (region->allocated_meta > region->mapped_meta + map_size)
540        map_size += kMetaMapSize;
541      // Do the mmap for the metadata.
542      CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
543      MapWithCallback(region_beg + kRegionSize -
544                      region->mapped_meta - map_size, map_size);
545      region->mapped_meta += map_size;
546    }
547    CHECK_LE(region->allocated_meta, region->mapped_meta);
548    if (region->mapped_user + region->mapped_meta > kRegionSize) {
549      Printf("%s: Out of memory. Dying. ", SanitizerToolName);
550      Printf("The process has exhausted %zuMB for size class %zu.\n",
551          kRegionSize / 1024 / 1024, size);
552      Die();
553    }
554    for (;;) {
555      if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
556        b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
557      else
558        b = (Batch*)(region_beg + beg_idx);
559      b->count = count;
560      for (uptr i = 0; i < count; i++)
561        b->batch[i] = (void*)(region_beg + beg_idx + i * size);
562      region->allocated_user += count * size;
563      CHECK_LE(region->allocated_user, region->mapped_user);
564      beg_idx += count * size;
565      if (beg_idx + count * size + size > region->mapped_user)
566        break;
567      CHECK_GT(b->count, 0);
568      region->free_list.Push(b);
569    }
570    return b;
571  }
572};
573
574// Maps integers in rage [0, kSize) to u8 values.
575template<u64 kSize>
576class FlatByteMap {
577 public:
578  void TestOnlyInit() {
579    internal_memset(map_, 0, sizeof(map_));
580  }
581
582  void set(uptr idx, u8 val) {
583    CHECK_LT(idx, kSize);
584    CHECK_EQ(0U, map_[idx]);
585    map_[idx] = val;
586  }
587  u8 operator[] (uptr idx) {
588    CHECK_LT(idx, kSize);
589    // FIXME: CHECK may be too expensive here.
590    return map_[idx];
591  }
592 private:
593  u8 map_[kSize];
594};
595
596// TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values.
597// It is implemented as a two-dimensional array: array of kSize1 pointers
598// to kSize2-byte arrays. The secondary arrays are mmaped on demand.
599// Each value is initially zero and can be set to something else only once.
600// Setting and getting values from multiple threads is safe w/o extra locking.
601template <u64 kSize1, u64 kSize2, class MapUnmapCallback = NoOpMapUnmapCallback>
602class TwoLevelByteMap {
603 public:
604  void TestOnlyInit() {
605    internal_memset(map1_, 0, sizeof(map1_));
606    mu_.Init();
607  }
608  void TestOnlyUnmap() {
609    for (uptr i = 0; i < kSize1; i++) {
610      u8 *p = Get(i);
611      if (!p) continue;
612      MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2);
613      UnmapOrDie(p, kSize2);
614    }
615  }
616
617  uptr size() const { return kSize1 * kSize2; }
618  uptr size1() const { return kSize1; }
619  uptr size2() const { return kSize2; }
620
621  void set(uptr idx, u8 val) {
622    CHECK_LT(idx, kSize1 * kSize2);
623    u8 *map2 = GetOrCreate(idx / kSize2);
624    CHECK_EQ(0U, map2[idx % kSize2]);
625    map2[idx % kSize2] = val;
626  }
627
628  u8 operator[] (uptr idx) const {
629    CHECK_LT(idx, kSize1 * kSize2);
630    u8 *map2 = Get(idx / kSize2);
631    if (!map2) return 0;
632    return map2[idx % kSize2];
633  }
634
635 private:
636  u8 *Get(uptr idx) const {
637    CHECK_LT(idx, kSize1);
638    return reinterpret_cast<u8 *>(
639        atomic_load(&map1_[idx], memory_order_acquire));
640  }
641
642  u8 *GetOrCreate(uptr idx) {
643    u8 *res = Get(idx);
644    if (!res) {
645      SpinMutexLock l(&mu_);
646      if (!(res = Get(idx))) {
647        res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap");
648        MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
649        atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
650                     memory_order_release);
651      }
652    }
653    return res;
654  }
655
656  atomic_uintptr_t map1_[kSize1];
657  StaticSpinMutex mu_;
658};
659
660// SizeClassAllocator32 -- allocator for 32-bit address space.
661// This allocator can theoretically be used on 64-bit arch, but there it is less
662// efficient than SizeClassAllocator64.
663//
664// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
665// be returned by MmapOrDie().
666//
667// Region:
668//   a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
669// Since the regions are aligned by kRegionSize, there are exactly
670// kNumPossibleRegions possible regions in the address space and so we keep
671// a ByteMap possible_regions to store the size classes of each Region.
672// 0 size class means the region is not used by the allocator.
673//
674// One Region is used to allocate chunks of a single size class.
675// A Region looks like this:
676// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
677//
678// In order to avoid false sharing the objects of this class should be
679// chache-line aligned.
680template <const uptr kSpaceBeg, const u64 kSpaceSize,
681          const uptr kMetadataSize, class SizeClassMap,
682          const uptr kRegionSizeLog,
683          class ByteMap,
684          class MapUnmapCallback = NoOpMapUnmapCallback>
685class SizeClassAllocator32 {
686 public:
687  typedef typename SizeClassMap::TransferBatch Batch;
688  typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
689      SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT;
690  typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
691
692  void Init() {
693    possible_regions.TestOnlyInit();
694    internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
695  }
696
697  void *MapWithCallback(uptr size) {
698    size = RoundUpTo(size, GetPageSizeCached());
699    void *res = MmapOrDie(size, "SizeClassAllocator32");
700    MapUnmapCallback().OnMap((uptr)res, size);
701    return res;
702  }
703
704  void UnmapWithCallback(uptr beg, uptr size) {
705    MapUnmapCallback().OnUnmap(beg, size);
706    UnmapOrDie(reinterpret_cast<void *>(beg), size);
707  }
708
709  static bool CanAllocate(uptr size, uptr alignment) {
710    return size <= SizeClassMap::kMaxSize &&
711      alignment <= SizeClassMap::kMaxSize;
712  }
713
714  void *GetMetaData(const void *p) {
715    CHECK(PointerIsMine(p));
716    uptr mem = reinterpret_cast<uptr>(p);
717    uptr beg = ComputeRegionBeg(mem);
718    uptr size = SizeClassMap::Size(GetSizeClass(p));
719    u32 offset = mem - beg;
720    uptr n = offset / (u32)size;  // 32-bit division
721    uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
722    return reinterpret_cast<void*>(meta);
723  }
724
725  NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
726                                uptr class_id) {
727    CHECK_LT(class_id, kNumClasses);
728    SizeClassInfo *sci = GetSizeClassInfo(class_id);
729    SpinMutexLock l(&sci->mutex);
730    if (sci->free_list.empty())
731      PopulateFreeList(stat, c, sci, class_id);
732    CHECK(!sci->free_list.empty());
733    Batch *b = sci->free_list.front();
734    sci->free_list.pop_front();
735    return b;
736  }
737
738  NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
739    CHECK_LT(class_id, kNumClasses);
740    SizeClassInfo *sci = GetSizeClassInfo(class_id);
741    SpinMutexLock l(&sci->mutex);
742    CHECK_GT(b->count, 0);
743    sci->free_list.push_front(b);
744  }
745
746  bool PointerIsMine(const void *p) {
747    return GetSizeClass(p) != 0;
748  }
749
750  uptr GetSizeClass(const void *p) {
751    return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
752  }
753
754  void *GetBlockBegin(const void *p) {
755    CHECK(PointerIsMine(p));
756    uptr mem = reinterpret_cast<uptr>(p);
757    uptr beg = ComputeRegionBeg(mem);
758    uptr size = SizeClassMap::Size(GetSizeClass(p));
759    u32 offset = mem - beg;
760    u32 n = offset / (u32)size;  // 32-bit division
761    uptr res = beg + (n * (u32)size);
762    return reinterpret_cast<void*>(res);
763  }
764
765  uptr GetActuallyAllocatedSize(void *p) {
766    CHECK(PointerIsMine(p));
767    return SizeClassMap::Size(GetSizeClass(p));
768  }
769
770  uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
771
772  uptr TotalMemoryUsed() {
773    // No need to lock here.
774    uptr res = 0;
775    for (uptr i = 0; i < kNumPossibleRegions; i++)
776      if (possible_regions[i])
777        res += kRegionSize;
778    return res;
779  }
780
781  void TestOnlyUnmap() {
782    for (uptr i = 0; i < kNumPossibleRegions; i++)
783      if (possible_regions[i])
784        UnmapWithCallback((i * kRegionSize), kRegionSize);
785  }
786
787  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
788  // introspection API.
789  void ForceLock() {
790    for (uptr i = 0; i < kNumClasses; i++) {
791      GetSizeClassInfo(i)->mutex.Lock();
792    }
793  }
794
795  void ForceUnlock() {
796    for (int i = kNumClasses - 1; i >= 0; i--) {
797      GetSizeClassInfo(i)->mutex.Unlock();
798    }
799  }
800
801  // Iterate over all existing chunks.
802  // The allocator must be locked when calling this function.
803  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
804    for (uptr region = 0; region < kNumPossibleRegions; region++)
805      if (possible_regions[region]) {
806        uptr chunk_size = SizeClassMap::Size(possible_regions[region]);
807        uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
808        uptr region_beg = region * kRegionSize;
809        for (uptr chunk = region_beg;
810             chunk < region_beg + max_chunks_in_region * chunk_size;
811             chunk += chunk_size) {
812          // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
813          callback(chunk, arg);
814        }
815      }
816  }
817
818  void PrintStats() {
819  }
820
821  typedef SizeClassMap SizeClassMapT;
822  static const uptr kNumClasses = SizeClassMap::kNumClasses;
823
824 private:
825  static const uptr kRegionSize = 1 << kRegionSizeLog;
826  static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
827
828  struct SizeClassInfo {
829    SpinMutex mutex;
830    IntrusiveList<Batch> free_list;
831    char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)];
832  };
833  COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
834
835  uptr ComputeRegionId(uptr mem) {
836    uptr res = mem >> kRegionSizeLog;
837    CHECK_LT(res, kNumPossibleRegions);
838    return res;
839  }
840
841  uptr ComputeRegionBeg(uptr mem) {
842    return mem & ~(kRegionSize - 1);
843  }
844
845  uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
846    CHECK_LT(class_id, kNumClasses);
847    uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
848                                      "SizeClassAllocator32"));
849    MapUnmapCallback().OnMap(res, kRegionSize);
850    stat->Add(AllocatorStatMapped, kRegionSize);
851    CHECK_EQ(0U, (res & (kRegionSize - 1)));
852    possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
853    return res;
854  }
855
856  SizeClassInfo *GetSizeClassInfo(uptr class_id) {
857    CHECK_LT(class_id, kNumClasses);
858    return &size_class_info_array[class_id];
859  }
860
861  void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
862                        SizeClassInfo *sci, uptr class_id) {
863    uptr size = SizeClassMap::Size(class_id);
864    uptr reg = AllocateRegion(stat, class_id);
865    uptr n_chunks = kRegionSize / (size + kMetadataSize);
866    uptr max_count = SizeClassMap::MaxCached(class_id);
867    Batch *b = 0;
868    for (uptr i = reg; i < reg + n_chunks * size; i += size) {
869      if (b == 0) {
870        if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
871          b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
872        else
873          b = (Batch*)i;
874        b->count = 0;
875      }
876      b->batch[b->count++] = (void*)i;
877      if (b->count == max_count) {
878        CHECK_GT(b->count, 0);
879        sci->free_list.push_back(b);
880        b = 0;
881      }
882    }
883    if (b) {
884      CHECK_GT(b->count, 0);
885      sci->free_list.push_back(b);
886    }
887  }
888
889  ByteMap possible_regions;
890  SizeClassInfo size_class_info_array[kNumClasses];
891};
892
893// Objects of this type should be used as local caches for SizeClassAllocator64
894// or SizeClassAllocator32. Since the typical use of this class is to have one
895// object per thread in TLS, is has to be POD.
896template<class SizeClassAllocator>
897struct SizeClassAllocatorLocalCache {
898  typedef SizeClassAllocator Allocator;
899  static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
900
901  void Init(AllocatorGlobalStats *s) {
902    stats_.Init();
903    if (s)
904      s->Register(&stats_);
905  }
906
907  void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
908    Drain(allocator);
909    if (s)
910      s->Unregister(&stats_);
911  }
912
913  void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
914    CHECK_NE(class_id, 0UL);
915    CHECK_LT(class_id, kNumClasses);
916    stats_.Add(AllocatorStatAllocated, SizeClassMap::Size(class_id));
917    PerClass *c = &per_class_[class_id];
918    if (UNLIKELY(c->count == 0))
919      Refill(allocator, class_id);
920    void *res = c->batch[--c->count];
921    PREFETCH(c->batch[c->count - 1]);
922    return res;
923  }
924
925  void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
926    CHECK_NE(class_id, 0UL);
927    CHECK_LT(class_id, kNumClasses);
928    // If the first allocator call on a new thread is a deallocation, then
929    // max_count will be zero, leading to check failure.
930    InitCache();
931    stats_.Sub(AllocatorStatAllocated, SizeClassMap::Size(class_id));
932    PerClass *c = &per_class_[class_id];
933    CHECK_NE(c->max_count, 0UL);
934    if (UNLIKELY(c->count == c->max_count))
935      Drain(allocator, class_id);
936    c->batch[c->count++] = p;
937  }
938
939  void Drain(SizeClassAllocator *allocator) {
940    for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
941      PerClass *c = &per_class_[class_id];
942      while (c->count > 0)
943        Drain(allocator, class_id);
944    }
945  }
946
947  // private:
948  typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
949  typedef typename SizeClassMap::TransferBatch Batch;
950  struct PerClass {
951    uptr count;
952    uptr max_count;
953    void *batch[2 * SizeClassMap::kMaxNumCached];
954  };
955  PerClass per_class_[kNumClasses];
956  AllocatorStats stats_;
957
958  void InitCache() {
959    if (per_class_[1].max_count)
960      return;
961    for (uptr i = 0; i < kNumClasses; i++) {
962      PerClass *c = &per_class_[i];
963      c->max_count = 2 * SizeClassMap::MaxCached(i);
964    }
965  }
966
967  NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
968    InitCache();
969    PerClass *c = &per_class_[class_id];
970    Batch *b = allocator->AllocateBatch(&stats_, this, class_id);
971    CHECK_GT(b->count, 0);
972    for (uptr i = 0; i < b->count; i++)
973      c->batch[i] = b->batch[i];
974    c->count = b->count;
975    if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
976      Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b);
977  }
978
979  NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
980    InitCache();
981    PerClass *c = &per_class_[class_id];
982    Batch *b;
983    if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
984      b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch)));
985    else
986      b = (Batch*)c->batch[0];
987    uptr cnt = Min(c->max_count / 2, c->count);
988    for (uptr i = 0; i < cnt; i++) {
989      b->batch[i] = c->batch[i];
990      c->batch[i] = c->batch[i + c->max_count / 2];
991    }
992    b->count = cnt;
993    c->count -= cnt;
994    CHECK_GT(b->count, 0);
995    allocator->DeallocateBatch(&stats_, class_id, b);
996  }
997};
998
999// This class can (de)allocate only large chunks of memory using mmap/unmap.
1000// The main purpose of this allocator is to cover large and rare allocation
1001// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
1002template <class MapUnmapCallback = NoOpMapUnmapCallback>
1003class LargeMmapAllocator {
1004 public:
1005  void Init() {
1006    internal_memset(this, 0, sizeof(*this));
1007    page_size_ = GetPageSizeCached();
1008  }
1009
1010  void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
1011    CHECK(IsPowerOfTwo(alignment));
1012    uptr map_size = RoundUpMapSize(size);
1013    if (alignment > page_size_)
1014      map_size += alignment;
1015    if (map_size < size) return AllocatorReturnNull();  // Overflow.
1016    uptr map_beg = reinterpret_cast<uptr>(
1017        MmapOrDie(map_size, "LargeMmapAllocator"));
1018    MapUnmapCallback().OnMap(map_beg, map_size);
1019    uptr map_end = map_beg + map_size;
1020    uptr res = map_beg + page_size_;
1021    if (res & (alignment - 1))  // Align.
1022      res += alignment - (res & (alignment - 1));
1023    CHECK_EQ(0, res & (alignment - 1));
1024    CHECK_LE(res + size, map_end);
1025    Header *h = GetHeader(res);
1026    h->size = size;
1027    h->map_beg = map_beg;
1028    h->map_size = map_size;
1029    uptr size_log = MostSignificantSetBitIndex(map_size);
1030    CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
1031    {
1032      SpinMutexLock l(&mutex_);
1033      uptr idx = n_chunks_++;
1034      chunks_sorted_ = false;
1035      CHECK_LT(idx, kMaxNumChunks);
1036      h->chunk_idx = idx;
1037      chunks_[idx] = h;
1038      stats.n_allocs++;
1039      stats.currently_allocated += map_size;
1040      stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
1041      stats.by_size_log[size_log]++;
1042      stat->Add(AllocatorStatAllocated, map_size);
1043      stat->Add(AllocatorStatMapped, map_size);
1044    }
1045    return reinterpret_cast<void*>(res);
1046  }
1047
1048  void Deallocate(AllocatorStats *stat, void *p) {
1049    Header *h = GetHeader(p);
1050    {
1051      SpinMutexLock l(&mutex_);
1052      uptr idx = h->chunk_idx;
1053      CHECK_EQ(chunks_[idx], h);
1054      CHECK_LT(idx, n_chunks_);
1055      chunks_[idx] = chunks_[n_chunks_ - 1];
1056      chunks_[idx]->chunk_idx = idx;
1057      n_chunks_--;
1058      chunks_sorted_ = false;
1059      stats.n_frees++;
1060      stats.currently_allocated -= h->map_size;
1061      stat->Sub(AllocatorStatAllocated, h->map_size);
1062      stat->Sub(AllocatorStatMapped, h->map_size);
1063    }
1064    MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
1065    UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
1066  }
1067
1068  uptr TotalMemoryUsed() {
1069    SpinMutexLock l(&mutex_);
1070    uptr res = 0;
1071    for (uptr i = 0; i < n_chunks_; i++) {
1072      Header *h = chunks_[i];
1073      CHECK_EQ(h->chunk_idx, i);
1074      res += RoundUpMapSize(h->size);
1075    }
1076    return res;
1077  }
1078
1079  bool PointerIsMine(const void *p) {
1080    return GetBlockBegin(p) != 0;
1081  }
1082
1083  uptr GetActuallyAllocatedSize(void *p) {
1084    return RoundUpTo(GetHeader(p)->size, page_size_);
1085  }
1086
1087  // At least page_size_/2 metadata bytes is available.
1088  void *GetMetaData(const void *p) {
1089    // Too slow: CHECK_EQ(p, GetBlockBegin(p));
1090    if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
1091      Printf("%s: bad pointer %p\n", SanitizerToolName, p);
1092      CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
1093    }
1094    return GetHeader(p) + 1;
1095  }
1096
1097  void *GetBlockBegin(const void *ptr) {
1098    uptr p = reinterpret_cast<uptr>(ptr);
1099    SpinMutexLock l(&mutex_);
1100    uptr nearest_chunk = 0;
1101    // Cache-friendly linear search.
1102    for (uptr i = 0; i < n_chunks_; i++) {
1103      uptr ch = reinterpret_cast<uptr>(chunks_[i]);
1104      if (p < ch) continue;  // p is at left to this chunk, skip it.
1105      if (p - ch < p - nearest_chunk)
1106        nearest_chunk = ch;
1107    }
1108    if (!nearest_chunk)
1109      return 0;
1110    Header *h = reinterpret_cast<Header *>(nearest_chunk);
1111    CHECK_GE(nearest_chunk, h->map_beg);
1112    CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
1113    CHECK_LE(nearest_chunk, p);
1114    if (h->map_beg + h->map_size <= p)
1115      return 0;
1116    return GetUser(h);
1117  }
1118
1119  // This function does the same as GetBlockBegin, but is much faster.
1120  // Must be called with the allocator locked.
1121  void *GetBlockBeginFastLocked(void *ptr) {
1122    mutex_.CheckLocked();
1123    uptr p = reinterpret_cast<uptr>(ptr);
1124    uptr n = n_chunks_;
1125    if (!n) return 0;
1126    if (!chunks_sorted_) {
1127      // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
1128      SortArray(reinterpret_cast<uptr*>(chunks_), n);
1129      for (uptr i = 0; i < n; i++)
1130        chunks_[i]->chunk_idx = i;
1131      chunks_sorted_ = true;
1132      min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
1133      max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
1134          chunks_[n - 1]->map_size;
1135    }
1136    if (p < min_mmap_ || p >= max_mmap_)
1137      return 0;
1138    uptr beg = 0, end = n - 1;
1139    // This loop is a log(n) lower_bound. It does not check for the exact match
1140    // to avoid expensive cache-thrashing loads.
1141    while (end - beg >= 2) {
1142      uptr mid = (beg + end) / 2;  // Invariant: mid >= beg + 1
1143      if (p < reinterpret_cast<uptr>(chunks_[mid]))
1144        end = mid - 1;  // We are not interested in chunks_[mid].
1145      else
1146        beg = mid;  // chunks_[mid] may still be what we want.
1147    }
1148
1149    if (beg < end) {
1150      CHECK_EQ(beg + 1, end);
1151      // There are 2 chunks left, choose one.
1152      if (p >= reinterpret_cast<uptr>(chunks_[end]))
1153        beg = end;
1154    }
1155
1156    Header *h = chunks_[beg];
1157    if (h->map_beg + h->map_size <= p || p < h->map_beg)
1158      return 0;
1159    return GetUser(h);
1160  }
1161
1162  void PrintStats() {
1163    Printf("Stats: LargeMmapAllocator: allocated %zd times, "
1164           "remains %zd (%zd K) max %zd M; by size logs: ",
1165           stats.n_allocs, stats.n_allocs - stats.n_frees,
1166           stats.currently_allocated >> 10, stats.max_allocated >> 20);
1167    for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
1168      uptr c = stats.by_size_log[i];
1169      if (!c) continue;
1170      Printf("%zd:%zd; ", i, c);
1171    }
1172    Printf("\n");
1173  }
1174
1175  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1176  // introspection API.
1177  void ForceLock() {
1178    mutex_.Lock();
1179  }
1180
1181  void ForceUnlock() {
1182    mutex_.Unlock();
1183  }
1184
1185  // Iterate over all existing chunks.
1186  // The allocator must be locked when calling this function.
1187  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1188    for (uptr i = 0; i < n_chunks_; i++)
1189      callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
1190  }
1191
1192 private:
1193  static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
1194  struct Header {
1195    uptr map_beg;
1196    uptr map_size;
1197    uptr size;
1198    uptr chunk_idx;
1199  };
1200
1201  Header *GetHeader(uptr p) {
1202    CHECK(IsAligned(p, page_size_));
1203    return reinterpret_cast<Header*>(p - page_size_);
1204  }
1205  Header *GetHeader(const void *p) {
1206    return GetHeader(reinterpret_cast<uptr>(p));
1207  }
1208
1209  void *GetUser(Header *h) {
1210    CHECK(IsAligned((uptr)h, page_size_));
1211    return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
1212  }
1213
1214  uptr RoundUpMapSize(uptr size) {
1215    return RoundUpTo(size, page_size_) + page_size_;
1216  }
1217
1218  uptr page_size_;
1219  Header *chunks_[kMaxNumChunks];
1220  uptr n_chunks_;
1221  uptr min_mmap_, max_mmap_;
1222  bool chunks_sorted_;
1223  struct Stats {
1224    uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
1225  } stats;
1226  SpinMutex mutex_;
1227};
1228
1229// This class implements a complete memory allocator by using two
1230// internal allocators:
1231// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
1232//  When allocating 2^x bytes it should return 2^x aligned chunk.
1233// PrimaryAllocator is used via a local AllocatorCache.
1234// SecondaryAllocator can allocate anything, but is not efficient.
1235template <class PrimaryAllocator, class AllocatorCache,
1236          class SecondaryAllocator>  // NOLINT
1237class CombinedAllocator {
1238 public:
1239  void Init() {
1240    primary_.Init();
1241    secondary_.Init();
1242    stats_.Init();
1243  }
1244
1245  void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
1246                 bool cleared = false) {
1247    // Returning 0 on malloc(0) may break a lot of code.
1248    if (size == 0)
1249      size = 1;
1250    if (size + alignment < size)
1251      return AllocatorReturnNull();
1252    if (alignment > 8)
1253      size = RoundUpTo(size, alignment);
1254    void *res;
1255    bool from_primary = primary_.CanAllocate(size, alignment);
1256    if (from_primary)
1257      res = cache->Allocate(&primary_, primary_.ClassID(size));
1258    else
1259      res = secondary_.Allocate(&stats_, size, alignment);
1260    if (alignment > 8)
1261      CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
1262    if (cleared && res && from_primary)
1263      internal_bzero_aligned16(res, RoundUpTo(size, 16));
1264    return res;
1265  }
1266
1267  void Deallocate(AllocatorCache *cache, void *p) {
1268    if (!p) return;
1269    if (primary_.PointerIsMine(p))
1270      cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
1271    else
1272      secondary_.Deallocate(&stats_, p);
1273  }
1274
1275  void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
1276                   uptr alignment) {
1277    if (!p)
1278      return Allocate(cache, new_size, alignment);
1279    if (!new_size) {
1280      Deallocate(cache, p);
1281      return 0;
1282    }
1283    CHECK(PointerIsMine(p));
1284    uptr old_size = GetActuallyAllocatedSize(p);
1285    uptr memcpy_size = Min(new_size, old_size);
1286    void *new_p = Allocate(cache, new_size, alignment);
1287    if (new_p)
1288      internal_memcpy(new_p, p, memcpy_size);
1289    Deallocate(cache, p);
1290    return new_p;
1291  }
1292
1293  bool PointerIsMine(void *p) {
1294    if (primary_.PointerIsMine(p))
1295      return true;
1296    return secondary_.PointerIsMine(p);
1297  }
1298
1299  bool FromPrimary(void *p) {
1300    return primary_.PointerIsMine(p);
1301  }
1302
1303  void *GetMetaData(const void *p) {
1304    if (primary_.PointerIsMine(p))
1305      return primary_.GetMetaData(p);
1306    return secondary_.GetMetaData(p);
1307  }
1308
1309  void *GetBlockBegin(const void *p) {
1310    if (primary_.PointerIsMine(p))
1311      return primary_.GetBlockBegin(p);
1312    return secondary_.GetBlockBegin(p);
1313  }
1314
1315  // This function does the same as GetBlockBegin, but is much faster.
1316  // Must be called with the allocator locked.
1317  void *GetBlockBeginFastLocked(void *p) {
1318    if (primary_.PointerIsMine(p))
1319      return primary_.GetBlockBegin(p);
1320    return secondary_.GetBlockBeginFastLocked(p);
1321  }
1322
1323  uptr GetActuallyAllocatedSize(void *p) {
1324    if (primary_.PointerIsMine(p))
1325      return primary_.GetActuallyAllocatedSize(p);
1326    return secondary_.GetActuallyAllocatedSize(p);
1327  }
1328
1329  uptr TotalMemoryUsed() {
1330    return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
1331  }
1332
1333  void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
1334
1335  void InitCache(AllocatorCache *cache) {
1336    cache->Init(&stats_);
1337  }
1338
1339  void DestroyCache(AllocatorCache *cache) {
1340    cache->Destroy(&primary_, &stats_);
1341  }
1342
1343  void SwallowCache(AllocatorCache *cache) {
1344    cache->Drain(&primary_);
1345  }
1346
1347  void GetStats(AllocatorStatCounters s) const {
1348    stats_.Get(s);
1349  }
1350
1351  void PrintStats() {
1352    primary_.PrintStats();
1353    secondary_.PrintStats();
1354  }
1355
1356  // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1357  // introspection API.
1358  void ForceLock() {
1359    primary_.ForceLock();
1360    secondary_.ForceLock();
1361  }
1362
1363  void ForceUnlock() {
1364    secondary_.ForceUnlock();
1365    primary_.ForceUnlock();
1366  }
1367
1368  // Iterate over all existing chunks.
1369  // The allocator must be locked when calling this function.
1370  void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1371    primary_.ForEachChunk(callback, arg);
1372    secondary_.ForEachChunk(callback, arg);
1373  }
1374
1375 private:
1376  PrimaryAllocator primary_;
1377  SecondaryAllocator secondary_;
1378  AllocatorGlobalStats stats_;
1379};
1380
1381// Returns true if calloc(size, n) should return 0 due to overflow in size*n.
1382bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n);
1383
1384}  // namespace __sanitizer
1385
1386#endif  // SANITIZER_ALLOCATOR_H
1387
1388