1//===-- sanitizer_deadlock_detector.h ---------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of Sanitizer runtime.
11// The deadlock detector maintains a directed graph of lock acquisitions.
12// When a lock event happens, the detector checks if the locks already held by
13// the current thread are reachable from the newly acquired lock.
14//
15// The detector can handle only a fixed amount of simultaneously live locks
16// (a lock is alive if it has been locked at least once and has not been
17// destroyed). When the maximal number of locks is reached the entire graph
18// is flushed and the new lock epoch is started. The node ids from the old
19// epochs can not be used with any of the detector methods except for
20// nodeBelongsToCurrentEpoch().
21//
22// FIXME: this is work in progress, nothing really works yet.
23//
24//===----------------------------------------------------------------------===//
25
26#ifndef SANITIZER_DEADLOCK_DETECTOR_H
27#define SANITIZER_DEADLOCK_DETECTOR_H
28
29#include "sanitizer_common.h"
30#include "sanitizer_bvgraph.h"
31
32namespace __sanitizer {
33
34// Thread-local state for DeadlockDetector.
35// It contains the locks currently held by the owning thread.
36template <class BV>
37class DeadlockDetectorTLS {
38 public:
39  // No CTOR.
40  void clear() {
41    bv_.clear();
42    epoch_ = 0;
43    n_recursive_locks = 0;
44    n_all_locks_ = 0;
45  }
46
47  bool empty() const { return bv_.empty(); }
48
49  void ensureCurrentEpoch(uptr current_epoch) {
50    if (epoch_ == current_epoch) return;
51    bv_.clear();
52    epoch_ = current_epoch;
53  }
54
55  uptr getEpoch() const { return epoch_; }
56
57  // Returns true if this is the first (non-recursive) acquisition of this lock.
58  bool addLock(uptr lock_id, uptr current_epoch, u32 stk) {
59    // Printf("addLock: %zx %zx stk %u\n", lock_id, current_epoch, stk);
60    CHECK_EQ(epoch_, current_epoch);
61    if (!bv_.setBit(lock_id)) {
62      // The lock is already held by this thread, it must be recursive.
63      CHECK_LT(n_recursive_locks, ARRAY_SIZE(recursive_locks));
64      recursive_locks[n_recursive_locks++] = lock_id;
65      return false;
66    }
67    CHECK_LT(n_all_locks_, ARRAY_SIZE(all_locks_with_contexts_));
68    // lock_id < BV::kSize, can cast to a smaller int.
69    u32 lock_id_short = static_cast<u32>(lock_id);
70    LockWithContext l = {lock_id_short, stk};
71    all_locks_with_contexts_[n_all_locks_++] = l;
72    return true;
73  }
74
75  void removeLock(uptr lock_id) {
76    if (n_recursive_locks) {
77      for (sptr i = n_recursive_locks - 1; i >= 0; i--) {
78        if (recursive_locks[i] == lock_id) {
79          n_recursive_locks--;
80          Swap(recursive_locks[i], recursive_locks[n_recursive_locks]);
81          return;
82        }
83      }
84    }
85    // Printf("remLock: %zx %zx\n", lock_id, epoch_);
86    CHECK(bv_.clearBit(lock_id));
87    if (n_all_locks_) {
88      for (sptr i = n_all_locks_ - 1; i >= 0; i--) {
89        if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id)) {
90          Swap(all_locks_with_contexts_[i],
91               all_locks_with_contexts_[n_all_locks_ - 1]);
92          n_all_locks_--;
93          break;
94        }
95      }
96    }
97  }
98
99  u32 findLockContext(uptr lock_id) {
100    for (uptr i = 0; i < n_all_locks_; i++)
101      if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id))
102        return all_locks_with_contexts_[i].stk;
103    return 0;
104  }
105
106  const BV &getLocks(uptr current_epoch) const {
107    CHECK_EQ(epoch_, current_epoch);
108    return bv_;
109  }
110
111  uptr getNumLocks() const { return n_all_locks_; }
112  uptr getLock(uptr idx) const { return all_locks_with_contexts_[idx].lock; }
113
114 private:
115  BV bv_;
116  uptr epoch_;
117  uptr recursive_locks[64];
118  uptr n_recursive_locks;
119  struct LockWithContext {
120    u32 lock;
121    u32 stk;
122  };
123  LockWithContext all_locks_with_contexts_[64];
124  uptr n_all_locks_;
125};
126
127// DeadlockDetector.
128// For deadlock detection to work we need one global DeadlockDetector object
129// and one DeadlockDetectorTLS object per evey thread.
130// This class is not thread safe, all concurrent accesses should be guarded
131// by an external lock.
132// Most of the methods of this class are not thread-safe (i.e. should
133// be protected by an external lock) unless explicitly told otherwise.
134template <class BV>
135class DeadlockDetector {
136 public:
137  typedef BV BitVector;
138
139  uptr size() const { return g_.size(); }
140
141  // No CTOR.
142  void clear() {
143    current_epoch_ = 0;
144    available_nodes_.clear();
145    recycled_nodes_.clear();
146    g_.clear();
147    n_edges_ = 0;
148  }
149
150  // Allocate new deadlock detector node.
151  // If we are out of available nodes first try to recycle some.
152  // If there is nothing to recycle, flush the graph and increment the epoch.
153  // Associate 'data' (opaque user's object) with the new node.
154  uptr newNode(uptr data) {
155    if (!available_nodes_.empty())
156      return getAvailableNode(data);
157    if (!recycled_nodes_.empty()) {
158      // Printf("recycling: n_edges_ %zd\n", n_edges_);
159      for (sptr i = n_edges_ - 1; i >= 0; i--) {
160        if (recycled_nodes_.getBit(edges_[i].from) ||
161            recycled_nodes_.getBit(edges_[i].to)) {
162          Swap(edges_[i], edges_[n_edges_ - 1]);
163          n_edges_--;
164        }
165      }
166      CHECK(available_nodes_.empty());
167      // removeEdgesFrom was called in removeNode.
168      g_.removeEdgesTo(recycled_nodes_);
169      available_nodes_.setUnion(recycled_nodes_);
170      recycled_nodes_.clear();
171      return getAvailableNode(data);
172    }
173    // We are out of vacant nodes. Flush and increment the current_epoch_.
174    current_epoch_ += size();
175    recycled_nodes_.clear();
176    available_nodes_.setAll();
177    g_.clear();
178    return getAvailableNode(data);
179  }
180
181  // Get data associated with the node created by newNode().
182  uptr getData(uptr node) const { return data_[nodeToIndex(node)]; }
183
184  bool nodeBelongsToCurrentEpoch(uptr node) {
185    return node && (node / size() * size()) == current_epoch_;
186  }
187
188  void removeNode(uptr node) {
189    uptr idx = nodeToIndex(node);
190    CHECK(!available_nodes_.getBit(idx));
191    CHECK(recycled_nodes_.setBit(idx));
192    g_.removeEdgesFrom(idx);
193  }
194
195  void ensureCurrentEpoch(DeadlockDetectorTLS<BV> *dtls) {
196    dtls->ensureCurrentEpoch(current_epoch_);
197  }
198
199  // Returns true if there is a cycle in the graph after this lock event.
200  // Ideally should be called before the lock is acquired so that we can
201  // report a deadlock before a real deadlock happens.
202  bool onLockBefore(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
203    ensureCurrentEpoch(dtls);
204    uptr cur_idx = nodeToIndex(cur_node);
205    return g_.isReachable(cur_idx, dtls->getLocks(current_epoch_));
206  }
207
208  u32 findLockContext(DeadlockDetectorTLS<BV> *dtls, uptr node) {
209    return dtls->findLockContext(nodeToIndex(node));
210  }
211
212  // Add cur_node to the set of locks held currently by dtls.
213  void onLockAfter(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
214    ensureCurrentEpoch(dtls);
215    uptr cur_idx = nodeToIndex(cur_node);
216    dtls->addLock(cur_idx, current_epoch_, stk);
217  }
218
219  // Experimental *racy* fast path function.
220  // Returns true if all edges from the currently held locks to cur_node exist.
221  bool hasAllEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
222    uptr local_epoch = dtls->getEpoch();
223    // Read from current_epoch_ is racy.
224    if (cur_node && local_epoch == current_epoch_ &&
225        local_epoch == nodeToEpoch(cur_node)) {
226      uptr cur_idx = nodeToIndexUnchecked(cur_node);
227      for (uptr i = 0, n = dtls->getNumLocks(); i < n; i++) {
228        if (!g_.hasEdge(dtls->getLock(i), cur_idx))
229          return false;
230      }
231      return true;
232    }
233    return false;
234  }
235
236  // Adds edges from currently held locks to cur_node,
237  // returns the number of added edges, and puts the sources of added edges
238  // into added_edges[].
239  // Should be called before onLockAfter.
240  uptr addEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk,
241                int unique_tid) {
242    ensureCurrentEpoch(dtls);
243    uptr cur_idx = nodeToIndex(cur_node);
244    uptr added_edges[40];
245    uptr n_added_edges = g_.addEdges(dtls->getLocks(current_epoch_), cur_idx,
246                                     added_edges, ARRAY_SIZE(added_edges));
247    for (uptr i = 0; i < n_added_edges; i++) {
248      if (n_edges_ < ARRAY_SIZE(edges_)) {
249        Edge e = {(u16)added_edges[i], (u16)cur_idx,
250                  dtls->findLockContext(added_edges[i]), stk,
251                  unique_tid};
252        edges_[n_edges_++] = e;
253      }
254      // Printf("Edge%zd: %u %zd=>%zd in T%d\n",
255      //        n_edges_, stk, added_edges[i], cur_idx, unique_tid);
256    }
257    return n_added_edges;
258  }
259
260  bool findEdge(uptr from_node, uptr to_node, u32 *stk_from, u32 *stk_to,
261                int *unique_tid) {
262    uptr from_idx = nodeToIndex(from_node);
263    uptr to_idx = nodeToIndex(to_node);
264    for (uptr i = 0; i < n_edges_; i++) {
265      if (edges_[i].from == from_idx && edges_[i].to == to_idx) {
266        *stk_from = edges_[i].stk_from;
267        *stk_to = edges_[i].stk_to;
268        *unique_tid = edges_[i].unique_tid;
269        return true;
270      }
271    }
272    return false;
273  }
274
275  // Test-only function. Handles the before/after lock events,
276  // returns true if there is a cycle.
277  bool onLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
278    ensureCurrentEpoch(dtls);
279    bool is_reachable = !isHeld(dtls, cur_node) && onLockBefore(dtls, cur_node);
280    addEdges(dtls, cur_node, stk, 0);
281    onLockAfter(dtls, cur_node, stk);
282    return is_reachable;
283  }
284
285  // Handles the try_lock event, returns false.
286  // When a try_lock event happens (i.e. a try_lock call succeeds) we need
287  // to add this lock to the currently held locks, but we should not try to
288  // change the lock graph or to detect a cycle.  We may want to investigate
289  // whether a more aggressive strategy is possible for try_lock.
290  bool onTryLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
291    ensureCurrentEpoch(dtls);
292    uptr cur_idx = nodeToIndex(cur_node);
293    dtls->addLock(cur_idx, current_epoch_, stk);
294    return false;
295  }
296
297  // Returns true iff dtls is empty (no locks are currently held) and we can
298  // add the node to the currently held locks w/o chanding the global state.
299  // This operation is thread-safe as it only touches the dtls.
300  bool onFirstLock(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
301    if (!dtls->empty()) return false;
302    if (dtls->getEpoch() && dtls->getEpoch() == nodeToEpoch(node)) {
303      dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
304      return true;
305    }
306    return false;
307  }
308
309  // Finds a path between the lock 'cur_node' (currently not held in dtls)
310  // and some currently held lock, returns the length of the path
311  // or 0 on failure.
312  uptr findPathToLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, uptr *path,
313                      uptr path_size) {
314    tmp_bv_.copyFrom(dtls->getLocks(current_epoch_));
315    uptr idx = nodeToIndex(cur_node);
316    CHECK(!tmp_bv_.getBit(idx));
317    uptr res = g_.findShortestPath(idx, tmp_bv_, path, path_size);
318    for (uptr i = 0; i < res; i++)
319      path[i] = indexToNode(path[i]);
320    if (res)
321      CHECK_EQ(path[0], cur_node);
322    return res;
323  }
324
325  // Handle the unlock event.
326  // This operation is thread-safe as it only touches the dtls.
327  void onUnlock(DeadlockDetectorTLS<BV> *dtls, uptr node) {
328    if (dtls->getEpoch() == nodeToEpoch(node))
329      dtls->removeLock(nodeToIndexUnchecked(node));
330  }
331
332  // Tries to handle the lock event w/o writing to global state.
333  // Returns true on success.
334  // This operation is thread-safe as it only touches the dtls
335  // (modulo racy nature of hasAllEdges).
336  bool onLockFast(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
337    if (hasAllEdges(dtls, node)) {
338      dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
339      return true;
340    }
341    return false;
342  }
343
344  bool isHeld(DeadlockDetectorTLS<BV> *dtls, uptr node) const {
345    return dtls->getLocks(current_epoch_).getBit(nodeToIndex(node));
346  }
347
348  uptr testOnlyGetEpoch() const { return current_epoch_; }
349  bool testOnlyHasEdge(uptr l1, uptr l2) {
350    return g_.hasEdge(nodeToIndex(l1), nodeToIndex(l2));
351  }
352  // idx1 and idx2 are raw indices to g_, not lock IDs.
353  bool testOnlyHasEdgeRaw(uptr idx1, uptr idx2) {
354    return g_.hasEdge(idx1, idx2);
355  }
356
357  void Print() {
358    for (uptr from = 0; from < size(); from++)
359      for (uptr to = 0; to < size(); to++)
360        if (g_.hasEdge(from, to))
361          Printf("  %zx => %zx\n", from, to);
362  }
363
364 private:
365  void check_idx(uptr idx) const { CHECK_LT(idx, size()); }
366
367  void check_node(uptr node) const {
368    CHECK_GE(node, size());
369    CHECK_EQ(current_epoch_, nodeToEpoch(node));
370  }
371
372  uptr indexToNode(uptr idx) const {
373    check_idx(idx);
374    return idx + current_epoch_;
375  }
376
377  uptr nodeToIndexUnchecked(uptr node) const { return node % size(); }
378
379  uptr nodeToIndex(uptr node) const {
380    check_node(node);
381    return nodeToIndexUnchecked(node);
382  }
383
384  uptr nodeToEpoch(uptr node) const { return node / size() * size(); }
385
386  uptr getAvailableNode(uptr data) {
387    uptr idx = available_nodes_.getAndClearFirstOne();
388    data_[idx] = data;
389    return indexToNode(idx);
390  }
391
392  struct Edge {
393    u16 from;
394    u16 to;
395    u32 stk_from;
396    u32 stk_to;
397    int unique_tid;
398  };
399
400  uptr current_epoch_;
401  BV available_nodes_;
402  BV recycled_nodes_;
403  BV tmp_bv_;
404  BVGraph<BV> g_;
405  uptr data_[BV::kSize];
406  Edge edges_[BV::kSize * 32];
407  uptr n_edges_;
408};
409
410} // namespace __sanitizer
411
412#endif // SANITIZER_DEADLOCK_DETECTOR_H
413