tsan_fd.cc revision 48e54204b82ba982ed7992847413dd0043fdc700
1//===-- tsan_fd.cc --------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12//===----------------------------------------------------------------------===//
13
14#include "tsan_fd.h"
15#include "tsan_rtl.h"
16#include <sanitizer_common/sanitizer_atomic.h>
17
18namespace __tsan {
19
20const int kTableSizeL1 = 1024;
21const int kTableSizeL2 = 1024;
22const int kTableSize = kTableSizeL1 * kTableSizeL2;
23
24struct FdSync {
25  atomic_uint64_t rc;
26};
27
28struct FdDesc {
29  FdSync *sync;
30  int creation_tid;
31  u32 creation_stack;
32};
33
34struct FdContext {
35  atomic_uintptr_t tab[kTableSizeL1];
36  // Addresses used for synchronization.
37  FdSync globsync;
38  FdSync filesync;
39  FdSync socksync;
40  u64 connectsync;
41};
42
43static FdContext fdctx;
44
45static FdSync *allocsync() {
46  FdSync *s = (FdSync*)internal_alloc(MBlockFD, sizeof(FdSync));
47  atomic_store(&s->rc, 1, memory_order_relaxed);
48  return s;
49}
50
51static FdSync *ref(FdSync *s) {
52  if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
53    atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
54  return s;
55}
56
57static void unref(ThreadState *thr, uptr pc, FdSync *s) {
58  if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
59    if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
60      CHECK_NE(s, &fdctx.globsync);
61      CHECK_NE(s, &fdctx.filesync);
62      CHECK_NE(s, &fdctx.socksync);
63      SyncVar *v = CTX()->synctab.GetAndRemove(thr, pc, (uptr)s);
64      if (v)
65        DestroyAndFree(v);
66      internal_free(s);
67    }
68  }
69}
70
71static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
72  CHECK_LT(fd, kTableSize);
73  atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
74  uptr l1 = atomic_load(pl1, memory_order_consume);
75  if (l1 == 0) {
76    uptr size = kTableSizeL2 * sizeof(FdDesc);
77    // We need this to reside in user memory to properly catch races on it.
78    void *p = user_alloc(thr, pc, size);
79    internal_memset(p, 0, size);
80    MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
81    if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
82      l1 = (uptr)p;
83    else
84      user_free(thr, pc, p);
85  }
86  return &((FdDesc*)l1)[fd % kTableSizeL2];  // NOLINT
87}
88
89// pd must be already ref'ed.
90static void init(ThreadState *thr, uptr pc, int fd, FdSync *s) {
91  FdDesc *d = fddesc(thr, pc, fd);
92  // As a matter of fact, we don't intercept all close calls.
93  // See e.g. libc __res_iclose().
94  if (d->sync) {
95    unref(thr, pc, d->sync);
96    d->sync = 0;
97  }
98  if (flags()->io_sync == 0) {
99    unref(thr, pc, s);
100  } else if (flags()->io_sync == 1) {
101    d->sync = s;
102  } else if (flags()->io_sync == 2) {
103    unref(thr, pc, s);
104    d->sync = &fdctx.globsync;
105  }
106  d->creation_tid = thr->tid;
107  d->creation_stack = CurrentStackId(thr, pc);
108  // To catch races between fd usage and open.
109  MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
110}
111
112void FdInit() {
113  atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
114  atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
115  atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
116}
117
118void FdOnFork(ThreadState *thr, uptr pc) {
119  // On fork() we need to reset all fd's, because the child is going
120  // close all them, and that will cause races between previous read/write
121  // and the close.
122  for (int l1 = 0; l1 < kTableSizeL1; l1++) {
123    FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
124    if (tab == 0)
125      break;
126    for (int l2 = 0; l2 < kTableSizeL2; l2++) {
127      FdDesc *d = &tab[l2];
128      MemoryResetRange(thr, pc, (uptr)d, 8);
129    }
130  }
131}
132
133bool FdLocation(uptr addr, int *fd, int *tid, u32 *stack) {
134  for (int l1 = 0; l1 < kTableSizeL1; l1++) {
135    FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
136    if (tab == 0)
137      break;
138    if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
139      int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
140      FdDesc *d = &tab[l2];
141      *fd = l1 * kTableSizeL1 + l2;
142      *tid = d->creation_tid;
143      *stack = d->creation_stack;
144      return true;
145    }
146  }
147  return false;
148}
149
150void FdAcquire(ThreadState *thr, uptr pc, int fd) {
151  FdDesc *d = fddesc(thr, pc, fd);
152  FdSync *s = d->sync;
153  DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
154  MemoryRead(thr, pc, (uptr)d, kSizeLog8);
155  if (s)
156    Acquire(thr, pc, (uptr)s);
157}
158
159void FdRelease(ThreadState *thr, uptr pc, int fd) {
160  FdDesc *d = fddesc(thr, pc, fd);
161  FdSync *s = d->sync;
162  DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
163  MemoryRead(thr, pc, (uptr)d, kSizeLog8);
164  if (s)
165    Release(thr, pc, (uptr)s);
166}
167
168void FdAccess(ThreadState *thr, uptr pc, int fd) {
169  DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
170  FdDesc *d = fddesc(thr, pc, fd);
171  MemoryRead(thr, pc, (uptr)d, kSizeLog8);
172}
173
174void FdClose(ThreadState *thr, uptr pc, int fd) {
175  DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
176  FdDesc *d = fddesc(thr, pc, fd);
177  // To catch races between fd usage and close.
178  MemoryWrite(thr, pc, (uptr)d, kSizeLog8);
179  // We need to clear it, because if we do not intercept any call out there
180  // that creates fd, we will hit false postives.
181  MemoryResetRange(thr, pc, (uptr)d, 8);
182  unref(thr, pc, d->sync);
183  d->sync = 0;
184  d->creation_tid = 0;
185  d->creation_stack = 0;
186}
187
188void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
189  DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
190  init(thr, pc, fd, &fdctx.filesync);
191}
192
193void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd) {
194  DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
195  // Ignore the case when user dups not yet connected socket.
196  FdDesc *od = fddesc(thr, pc, oldfd);
197  MemoryRead(thr, pc, (uptr)od, kSizeLog8);
198  FdClose(thr, pc, newfd);
199  init(thr, pc, newfd, ref(od->sync));
200}
201
202void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
203  DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
204  FdSync *s = allocsync();
205  init(thr, pc, rfd, ref(s));
206  init(thr, pc, wfd, ref(s));
207  unref(thr, pc, s);
208}
209
210void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
211  DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
212  init(thr, pc, fd, allocsync());
213}
214
215void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
216  DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
217  init(thr, pc, fd, 0);
218}
219
220void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
221  DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
222  init(thr, pc, fd, 0);
223}
224
225void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
226  DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
227  init(thr, pc, fd, allocsync());
228}
229
230void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
231  DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
232  // It can be a UDP socket.
233  init(thr, pc, fd, &fdctx.socksync);
234}
235
236void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
237  DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
238  // Synchronize connect->accept.
239  Acquire(thr, pc, (uptr)&fdctx.connectsync);
240  init(thr, pc, newfd, &fdctx.socksync);
241}
242
243void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
244  DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
245  // Synchronize connect->accept.
246  Release(thr, pc, (uptr)&fdctx.connectsync);
247}
248
249void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
250  DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
251  init(thr, pc, fd, &fdctx.socksync);
252}
253
254uptr File2addr(char *path) {
255  (void)path;
256  static u64 addr;
257  return (uptr)&addr;
258}
259
260uptr Dir2addr(char *path) {
261  (void)path;
262  static u64 addr;
263  return (uptr)&addr;
264}
265
266}  //  namespace __tsan
267