1//===-- tsan_mman.cc ------------------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12//===----------------------------------------------------------------------===//
13#include "sanitizer_common/sanitizer_allocator_interface.h"
14#include "sanitizer_common/sanitizer_common.h"
15#include "sanitizer_common/sanitizer_placement_new.h"
16#include "tsan_mman.h"
17#include "tsan_rtl.h"
18#include "tsan_report.h"
19#include "tsan_flags.h"
20
21// May be overriden by front-end.
22extern "C" void WEAK __tsan_malloc_hook(void *ptr, uptr size) {
23  (void)ptr;
24  (void)size;
25}
26extern "C" void WEAK __sanitizer_malloc_hook(void *ptr, uptr size) {
27  (void)ptr;
28  (void)size;
29}
30
31extern "C" void WEAK __tsan_free_hook(void *ptr) {
32  (void)ptr;
33}
34extern "C" void WEAK __sanitizer_free_hook(void *ptr) {
35  (void)ptr;
36}
37
38namespace __tsan {
39
40struct MapUnmapCallback {
41  void OnMap(uptr p, uptr size) const { }
42  void OnUnmap(uptr p, uptr size) const {
43    // We are about to unmap a chunk of user memory.
44    // Mark the corresponding shadow memory as not needed.
45    DontNeedShadowFor(p, size);
46  }
47};
48
49static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
50Allocator *allocator() {
51  return reinterpret_cast<Allocator*>(&allocator_placeholder);
52}
53
54void InitializeAllocator() {
55  allocator()->Init();
56}
57
58void AllocatorThreadStart(ThreadState *thr) {
59  allocator()->InitCache(&thr->alloc_cache);
60  internal_allocator()->InitCache(&thr->internal_alloc_cache);
61}
62
63void AllocatorThreadFinish(ThreadState *thr) {
64  allocator()->DestroyCache(&thr->alloc_cache);
65  internal_allocator()->DestroyCache(&thr->internal_alloc_cache);
66}
67
68void AllocatorPrintStats() {
69  allocator()->PrintStats();
70}
71
72static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
73  if (!thr->in_signal_handler || !flags()->report_signal_unsafe)
74    return;
75  StackTrace stack;
76  stack.ObtainCurrent(thr, pc);
77  ThreadRegistryLock l(ctx->thread_registry);
78  ScopedReport rep(ReportTypeSignalUnsafe);
79  if (!IsFiredSuppression(ctx, rep, stack)) {
80    rep.AddStack(&stack, true);
81    OutputReport(thr, rep);
82  }
83}
84
85void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align) {
86  if ((sz >= (1ull << 40)) || (align >= (1ull << 40)))
87    return AllocatorReturnNull();
88  void *p = allocator()->Allocate(&thr->alloc_cache, sz, align);
89  if (p == 0)
90    return 0;
91  if (ctx && ctx->initialized)
92    OnUserAlloc(thr, pc, (uptr)p, sz, true);
93  SignalUnsafeCall(thr, pc);
94  return p;
95}
96
97void user_free(ThreadState *thr, uptr pc, void *p) {
98  if (ctx && ctx->initialized)
99    OnUserFree(thr, pc, (uptr)p, true);
100  allocator()->Deallocate(&thr->alloc_cache, p);
101  SignalUnsafeCall(thr, pc);
102}
103
104void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
105  DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
106  ctx->metamap.AllocBlock(thr, pc, p, sz);
107  if (write && thr->ignore_reads_and_writes == 0)
108    MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
109  else
110    MemoryResetRange(thr, pc, (uptr)p, sz);
111}
112
113void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
114  CHECK_NE(p, (void*)0);
115  uptr sz = ctx->metamap.FreeBlock(thr, pc, p);
116  DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
117  if (write && thr->ignore_reads_and_writes == 0)
118    MemoryRangeFreed(thr, pc, (uptr)p, sz);
119}
120
121void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
122  void *p2 = 0;
123  // FIXME: Handle "shrinking" more efficiently,
124  // it seems that some software actually does this.
125  if (sz) {
126    p2 = user_alloc(thr, pc, sz);
127    if (p2 == 0)
128      return 0;
129    if (p) {
130      uptr oldsz = user_alloc_usable_size(p);
131      internal_memcpy(p2, p, min(oldsz, sz));
132    }
133  }
134  if (p)
135    user_free(thr, pc, p);
136  return p2;
137}
138
139uptr user_alloc_usable_size(const void *p) {
140  if (p == 0)
141    return 0;
142  MBlock *b = ctx->metamap.GetBlock((uptr)p);
143  return b ? b->siz : 0;
144}
145
146void invoke_malloc_hook(void *ptr, uptr size) {
147  ThreadState *thr = cur_thread();
148  if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
149    return;
150  __tsan_malloc_hook(ptr, size);
151  __sanitizer_malloc_hook(ptr, size);
152}
153
154void invoke_free_hook(void *ptr) {
155  ThreadState *thr = cur_thread();
156  if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
157    return;
158  __tsan_free_hook(ptr);
159  __sanitizer_free_hook(ptr);
160}
161
162void *internal_alloc(MBlockType typ, uptr sz) {
163  ThreadState *thr = cur_thread();
164  CHECK_LE(sz, InternalSizeClassMap::kMaxSize);
165  if (thr->nomalloc) {
166    thr->nomalloc = 0;  // CHECK calls internal_malloc().
167    CHECK(0);
168  }
169  return InternalAlloc(sz, &thr->internal_alloc_cache);
170}
171
172void internal_free(void *p) {
173  ThreadState *thr = cur_thread();
174  if (thr->nomalloc) {
175    thr->nomalloc = 0;  // CHECK calls internal_malloc().
176    CHECK(0);
177  }
178  InternalFree(p, &thr->internal_alloc_cache);
179}
180
181}  // namespace __tsan
182
183using namespace __tsan;
184
185extern "C" {
186uptr __sanitizer_get_current_allocated_bytes() {
187  uptr stats[AllocatorStatCount];
188  allocator()->GetStats(stats);
189  return stats[AllocatorStatAllocated];
190}
191uptr __tsan_get_current_allocated_bytes() {
192  return __sanitizer_get_current_allocated_bytes();
193}
194
195uptr __sanitizer_get_heap_size() {
196  uptr stats[AllocatorStatCount];
197  allocator()->GetStats(stats);
198  return stats[AllocatorStatMapped];
199}
200uptr __tsan_get_heap_size() {
201  return __sanitizer_get_heap_size();
202}
203
204uptr __sanitizer_get_free_bytes() {
205  return 1;
206}
207uptr __tsan_get_free_bytes() {
208  return __sanitizer_get_free_bytes();
209}
210
211uptr __sanitizer_get_unmapped_bytes() {
212  return 1;
213}
214uptr __tsan_get_unmapped_bytes() {
215  return __sanitizer_get_unmapped_bytes();
216}
217
218uptr __sanitizer_get_estimated_allocated_size(uptr size) {
219  return size;
220}
221uptr __tsan_get_estimated_allocated_size(uptr size) {
222  return __sanitizer_get_estimated_allocated_size(size);
223}
224
225int __sanitizer_get_ownership(const void *p) {
226  return allocator()->GetBlockBegin(p) != 0;
227}
228int __tsan_get_ownership(const void *p) {
229  return __sanitizer_get_ownership(p);
230}
231
232uptr __sanitizer_get_allocated_size(const void *p) {
233  return user_alloc_usable_size(p);
234}
235uptr __tsan_get_allocated_size(const void *p) {
236  return __sanitizer_get_allocated_size(p);
237}
238
239void __tsan_on_thread_idle() {
240  ThreadState *thr = cur_thread();
241  allocator()->SwallowCache(&thr->alloc_cache);
242  internal_allocator()->SwallowCache(&thr->internal_alloc_cache);
243  ctx->metamap.OnThreadIdle(thr);
244}
245}  // extern "C"
246