1//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12// Main internal TSan header file.
13//
14// Ground rules:
15//   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16//     function-scope locals)
17//   - All functions/classes/etc reside in namespace __tsan, except for those
18//     declared in tsan_interface.h.
19//   - Platform-specific files should be used instead of ifdefs (*).
20//   - No system headers included in header files (*).
21//   - Platform specific headres included only into platform-specific files (*).
22//
23//  (*) Except when inlining is critical for performance.
24//===----------------------------------------------------------------------===//
25
26#ifndef TSAN_RTL_H
27#define TSAN_RTL_H
28
29#include "sanitizer_common/sanitizer_allocator.h"
30#include "sanitizer_common/sanitizer_allocator_internal.h"
31#include "sanitizer_common/sanitizer_asm.h"
32#include "sanitizer_common/sanitizer_common.h"
33#include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
34#include "sanitizer_common/sanitizer_libignore.h"
35#include "sanitizer_common/sanitizer_suppressions.h"
36#include "sanitizer_common/sanitizer_thread_registry.h"
37#include "tsan_clock.h"
38#include "tsan_defs.h"
39#include "tsan_flags.h"
40#include "tsan_sync.h"
41#include "tsan_trace.h"
42#include "tsan_vector.h"
43#include "tsan_report.h"
44#include "tsan_platform.h"
45#include "tsan_mutexset.h"
46#include "tsan_ignoreset.h"
47#include "tsan_stack_trace.h"
48
49#if SANITIZER_WORDSIZE != 64
50# error "ThreadSanitizer is supported only on 64-bit platforms"
51#endif
52
53namespace __tsan {
54
55#ifndef TSAN_GO
56#if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
57const uptr kAllocatorSpace = 0x7d0000000000ULL;
58#else
59const uptr kAllocatorSpace = 0x7d0000000000ULL;
60#endif
61const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T.
62
63struct MapUnmapCallback;
64typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0,
65    DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
66typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
67typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
68typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
69    SecondaryAllocator> Allocator;
70Allocator *allocator();
71#endif
72
73void TsanCheckFailed(const char *file, int line, const char *cond,
74                     u64 v1, u64 v2);
75
76const u64 kShadowRodata = (u64)-1;  // .rodata shadow marker
77
78// FastState (from most significant bit):
79//   ignore          : 1
80//   tid             : kTidBits
81//   unused          : -
82//   history_size    : 3
83//   epoch           : kClkBits
84class FastState {
85 public:
86  FastState(u64 tid, u64 epoch) {
87    x_ = tid << kTidShift;
88    x_ |= epoch;
89    DCHECK_EQ(tid, this->tid());
90    DCHECK_EQ(epoch, this->epoch());
91    DCHECK_EQ(GetIgnoreBit(), false);
92  }
93
94  explicit FastState(u64 x)
95      : x_(x) {
96  }
97
98  u64 raw() const {
99    return x_;
100  }
101
102  u64 tid() const {
103    u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
104    return res;
105  }
106
107  u64 TidWithIgnore() const {
108    u64 res = x_ >> kTidShift;
109    return res;
110  }
111
112  u64 epoch() const {
113    u64 res = x_ & ((1ull << kClkBits) - 1);
114    return res;
115  }
116
117  void IncrementEpoch() {
118    u64 old_epoch = epoch();
119    x_ += 1;
120    DCHECK_EQ(old_epoch + 1, epoch());
121    (void)old_epoch;
122  }
123
124  void SetIgnoreBit() { x_ |= kIgnoreBit; }
125  void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
126  bool GetIgnoreBit() const { return (s64)x_ < 0; }
127
128  void SetHistorySize(int hs) {
129    CHECK_GE(hs, 0);
130    CHECK_LE(hs, 7);
131    x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
132  }
133
134  ALWAYS_INLINE
135  int GetHistorySize() const {
136    return (int)((x_ >> kHistoryShift) & kHistoryMask);
137  }
138
139  void ClearHistorySize() {
140    SetHistorySize(0);
141  }
142
143  ALWAYS_INLINE
144  u64 GetTracePos() const {
145    const int hs = GetHistorySize();
146    // When hs == 0, the trace consists of 2 parts.
147    const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
148    return epoch() & mask;
149  }
150
151 private:
152  friend class Shadow;
153  static const int kTidShift = 64 - kTidBits - 1;
154  static const u64 kIgnoreBit = 1ull << 63;
155  static const u64 kFreedBit = 1ull << 63;
156  static const u64 kHistoryShift = kClkBits;
157  static const u64 kHistoryMask = 7;
158  u64 x_;
159};
160
161// Shadow (from most significant bit):
162//   freed           : 1
163//   tid             : kTidBits
164//   is_atomic       : 1
165//   is_read         : 1
166//   size_log        : 2
167//   addr0           : 3
168//   epoch           : kClkBits
169class Shadow : public FastState {
170 public:
171  explicit Shadow(u64 x)
172      : FastState(x) {
173  }
174
175  explicit Shadow(const FastState &s)
176      : FastState(s.x_) {
177    ClearHistorySize();
178  }
179
180  void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
181    DCHECK_EQ((x_ >> kClkBits) & 31, 0);
182    DCHECK_LE(addr0, 7);
183    DCHECK_LE(kAccessSizeLog, 3);
184    x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
185    DCHECK_EQ(kAccessSizeLog, size_log());
186    DCHECK_EQ(addr0, this->addr0());
187  }
188
189  void SetWrite(unsigned kAccessIsWrite) {
190    DCHECK_EQ(x_ & kReadBit, 0);
191    if (!kAccessIsWrite)
192      x_ |= kReadBit;
193    DCHECK_EQ(kAccessIsWrite, IsWrite());
194  }
195
196  void SetAtomic(bool kIsAtomic) {
197    DCHECK(!IsAtomic());
198    if (kIsAtomic)
199      x_ |= kAtomicBit;
200    DCHECK_EQ(IsAtomic(), kIsAtomic);
201  }
202
203  bool IsAtomic() const {
204    return x_ & kAtomicBit;
205  }
206
207  bool IsZero() const {
208    return x_ == 0;
209  }
210
211  static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
212    u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
213    DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
214    return shifted_xor == 0;
215  }
216
217  static ALWAYS_INLINE
218  bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
219    u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
220    return masked_xor == 0;
221  }
222
223  static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
224      unsigned kS2AccessSize) {
225    bool res = false;
226    u64 diff = s1.addr0() - s2.addr0();
227    if ((s64)diff < 0) {  // s1.addr0 < s2.addr0  // NOLINT
228      // if (s1.addr0() + size1) > s2.addr0()) return true;
229      if (s1.size() > -diff)
230        res = true;
231    } else {
232      // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
233      if (kS2AccessSize > diff)
234        res = true;
235    }
236    DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
237    DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
238    return res;
239  }
240
241  u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
242  u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
243  bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
244  bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
245
246  // The idea behind the freed bit is as follows.
247  // When the memory is freed (or otherwise unaccessible) we write to the shadow
248  // values with tid/epoch related to the free and the freed bit set.
249  // During memory accesses processing the freed bit is considered
250  // as msb of tid. So any access races with shadow with freed bit set
251  // (it is as if write from a thread with which we never synchronized before).
252  // This allows us to detect accesses to freed memory w/o additional
253  // overheads in memory access processing and at the same time restore
254  // tid/epoch of free.
255  void MarkAsFreed() {
256     x_ |= kFreedBit;
257  }
258
259  bool IsFreed() const {
260    return x_ & kFreedBit;
261  }
262
263  bool GetFreedAndReset() {
264    bool res = x_ & kFreedBit;
265    x_ &= ~kFreedBit;
266    return res;
267  }
268
269  bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
270    bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
271        | (u64(kIsAtomic) << kAtomicShift));
272    DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
273    return v;
274  }
275
276  bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
277    bool v = ((x_ >> kReadShift) & 3)
278        <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
279    DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
280        (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
281    return v;
282  }
283
284  bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
285    bool v = ((x_ >> kReadShift) & 3)
286        >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
287    DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
288        (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
289    return v;
290  }
291
292 private:
293  static const u64 kReadShift   = 5 + kClkBits;
294  static const u64 kReadBit     = 1ull << kReadShift;
295  static const u64 kAtomicShift = 6 + kClkBits;
296  static const u64 kAtomicBit   = 1ull << kAtomicShift;
297
298  u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
299
300  static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
301    if (s1.addr0() == s2.addr0()) return true;
302    if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
303      return true;
304    if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
305      return true;
306    return false;
307  }
308};
309
310struct SignalContext;
311
312struct JmpBuf {
313  uptr sp;
314  uptr mangled_sp;
315  uptr *shadow_stack_pos;
316};
317
318// This struct is stored in TLS.
319struct ThreadState {
320  FastState fast_state;
321  // Synch epoch represents the threads's epoch before the last synchronization
322  // action. It allows to reduce number of shadow state updates.
323  // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
324  // if we are processing write to X from the same thread at epoch=200,
325  // we do nothing, because both writes happen in the same 'synch epoch'.
326  // That is, if another memory access does not race with the former write,
327  // it does not race with the latter as well.
328  // QUESTION: can we can squeeze this into ThreadState::Fast?
329  // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
330  // taken by epoch between synchs.
331  // This way we can save one load from tls.
332  u64 fast_synch_epoch;
333  // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
334  // We do not distinguish beteween ignoring reads and writes
335  // for better performance.
336  int ignore_reads_and_writes;
337  int ignore_sync;
338  // Go does not support ignores.
339#ifndef TSAN_GO
340  IgnoreSet mop_ignore_set;
341  IgnoreSet sync_ignore_set;
342#endif
343  // C/C++ uses fixed size shadow stack embed into Trace.
344  // Go uses malloc-allocated shadow stack with dynamic size.
345  uptr *shadow_stack;
346  uptr *shadow_stack_end;
347  uptr *shadow_stack_pos;
348  u64 *racy_shadow_addr;
349  u64 racy_state[2];
350  MutexSet mset;
351  ThreadClock clock;
352#ifndef TSAN_GO
353  AllocatorCache alloc_cache;
354  InternalAllocatorCache internal_alloc_cache;
355  Vector<JmpBuf> jmp_bufs;
356  int ignore_interceptors;
357#endif
358  u64 stat[StatCnt];
359  const int tid;
360  const int unique_id;
361  bool in_symbolizer;
362  bool in_ignored_lib;
363  bool is_alive;
364  bool is_freeing;
365  bool is_vptr_access;
366  const uptr stk_addr;
367  const uptr stk_size;
368  const uptr tls_addr;
369  const uptr tls_size;
370  ThreadContext *tctx;
371
372  InternalDeadlockDetector internal_deadlock_detector;
373  DDPhysicalThread *dd_pt;
374  DDLogicalThread *dd_lt;
375
376  bool in_signal_handler;
377  SignalContext *signal_ctx;
378
379  DenseSlabAllocCache block_cache;
380  DenseSlabAllocCache sync_cache;
381
382#ifndef TSAN_GO
383  u32 last_sleep_stack_id;
384  ThreadClock last_sleep_clock;
385#endif
386
387  // Set in regions of runtime that must be signal-safe and fork-safe.
388  // If set, malloc must not be called.
389  int nomalloc;
390
391  explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
392                       unsigned reuse_count,
393                       uptr stk_addr, uptr stk_size,
394                       uptr tls_addr, uptr tls_size);
395};
396
397#ifndef TSAN_GO
398__attribute__((tls_model("initial-exec")))
399extern THREADLOCAL char cur_thread_placeholder[];
400INLINE ThreadState *cur_thread() {
401  return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
402}
403#endif
404
405class ThreadContext : public ThreadContextBase {
406 public:
407  explicit ThreadContext(int tid);
408  ~ThreadContext();
409  ThreadState *thr;
410  u32 creation_stack_id;
411  SyncClock sync;
412  // Epoch at which the thread had started.
413  // If we see an event from the thread stamped by an older epoch,
414  // the event is from a dead thread that shared tid with this thread.
415  u64 epoch0;
416  u64 epoch1;
417
418  // Override superclass callbacks.
419  void OnDead();
420  void OnJoined(void *arg);
421  void OnFinished();
422  void OnStarted(void *arg);
423  void OnCreated(void *arg);
424  void OnReset();
425};
426
427struct RacyStacks {
428  MD5Hash hash[2];
429  bool operator==(const RacyStacks &other) const {
430    if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
431      return true;
432    if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
433      return true;
434    return false;
435  }
436};
437
438struct RacyAddress {
439  uptr addr_min;
440  uptr addr_max;
441};
442
443struct FiredSuppression {
444  ReportType type;
445  uptr pc;
446  Suppression *supp;
447};
448
449struct Context {
450  Context();
451
452  bool initialized;
453  bool after_multithreaded_fork;
454
455  MetaMap metamap;
456
457  Mutex report_mtx;
458  int nreported;
459  int nmissed_expected;
460  atomic_uint64_t last_symbolize_time_ns;
461
462  void *background_thread;
463  atomic_uint32_t stop_background_thread;
464
465  ThreadRegistry *thread_registry;
466
467  Vector<RacyStacks> racy_stacks;
468  Vector<RacyAddress> racy_addresses;
469  // Number of fired suppressions may be large enough.
470  InternalMmapVector<FiredSuppression> fired_suppressions;
471  DDetector *dd;
472
473  Flags flags;
474
475  u64 stat[StatCnt];
476  u64 int_alloc_cnt[MBlockTypeCount];
477  u64 int_alloc_siz[MBlockTypeCount];
478};
479
480extern Context *ctx;  // The one and the only global runtime context.
481
482struct ScopedIgnoreInterceptors {
483  ScopedIgnoreInterceptors() {
484#ifndef TSAN_GO
485    cur_thread()->ignore_interceptors++;
486#endif
487  }
488
489  ~ScopedIgnoreInterceptors() {
490#ifndef TSAN_GO
491    cur_thread()->ignore_interceptors--;
492#endif
493  }
494};
495
496class ScopedReport {
497 public:
498  explicit ScopedReport(ReportType typ);
499  ~ScopedReport();
500
501  void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
502                       const MutexSet *mset);
503  void AddStack(const StackTrace *stack, bool suppressable = false);
504  void AddThread(const ThreadContext *tctx, bool suppressable = false);
505  void AddThread(int unique_tid, bool suppressable = false);
506  void AddUniqueTid(int unique_tid);
507  void AddMutex(const SyncVar *s);
508  u64 AddMutex(u64 id);
509  void AddLocation(uptr addr, uptr size);
510  void AddSleep(u32 stack_id);
511  void SetCount(int count);
512
513  const ReportDesc *GetReport() const;
514
515 private:
516  ReportDesc *rep_;
517  // Symbolizer makes lots of intercepted calls. If we try to process them,
518  // at best it will cause deadlocks on internal mutexes.
519  ScopedIgnoreInterceptors ignore_interceptors_;
520
521  void AddDeadMutex(u64 id);
522
523  ScopedReport(const ScopedReport&);
524  void operator = (const ScopedReport&);
525};
526
527void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
528
529void StatAggregate(u64 *dst, u64 *src);
530void StatOutput(u64 *stat);
531void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
532  if (kCollectStats)
533    thr->stat[typ] += n;
534}
535void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
536  if (kCollectStats)
537    thr->stat[typ] = n;
538}
539
540void MapShadow(uptr addr, uptr size);
541void MapThreadTrace(uptr addr, uptr size);
542void DontNeedShadowFor(uptr addr, uptr size);
543void InitializeShadowMemory();
544void InitializeInterceptors();
545void InitializeLibIgnore();
546void InitializeDynamicAnnotations();
547
548void ForkBefore(ThreadState *thr, uptr pc);
549void ForkParentAfter(ThreadState *thr, uptr pc);
550void ForkChildAfter(ThreadState *thr, uptr pc);
551
552void ReportRace(ThreadState *thr);
553bool OutputReport(ThreadState *thr, const ScopedReport &srep);
554bool IsFiredSuppression(Context *ctx,
555                        const ScopedReport &srep,
556                        const StackTrace &trace);
557bool IsExpectedReport(uptr addr, uptr size);
558void PrintMatchedBenignRaces();
559bool FrameIsInternal(const ReportStack *frame);
560ReportStack *SkipTsanInternalFrames(ReportStack *ent);
561
562#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
563# define DPrintf Printf
564#else
565# define DPrintf(...)
566#endif
567
568#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
569# define DPrintf2 Printf
570#else
571# define DPrintf2(...)
572#endif
573
574u32 CurrentStackId(ThreadState *thr, uptr pc);
575ReportStack *SymbolizeStackId(u32 stack_id);
576void PrintCurrentStack(ThreadState *thr, uptr pc);
577void PrintCurrentStackSlow();  // uses libunwind
578
579void Initialize(ThreadState *thr);
580int Finalize(ThreadState *thr);
581
582void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
583void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
584
585void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
586    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
587void MemoryAccessImpl(ThreadState *thr, uptr addr,
588    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
589    u64 *shadow_mem, Shadow cur);
590void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
591    uptr size, bool is_write);
592void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
593    uptr size, uptr step, bool is_write);
594void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
595    int size, bool kAccessIsWrite, bool kIsAtomic);
596
597const int kSizeLog1 = 0;
598const int kSizeLog2 = 1;
599const int kSizeLog4 = 2;
600const int kSizeLog8 = 3;
601
602void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
603                                     uptr addr, int kAccessSizeLog) {
604  MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
605}
606
607void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
608                                      uptr addr, int kAccessSizeLog) {
609  MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
610}
611
612void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
613                                           uptr addr, int kAccessSizeLog) {
614  MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
615}
616
617void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
618                                            uptr addr, int kAccessSizeLog) {
619  MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
620}
621
622void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
623void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
624void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
625
626void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
627void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
628void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
629void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
630
631void FuncEntry(ThreadState *thr, uptr pc);
632void FuncExit(ThreadState *thr);
633
634int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
635void ThreadStart(ThreadState *thr, int tid, uptr os_id);
636void ThreadFinish(ThreadState *thr);
637int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
638void ThreadJoin(ThreadState *thr, uptr pc, int tid);
639void ThreadDetach(ThreadState *thr, uptr pc, int tid);
640void ThreadFinalize(ThreadState *thr);
641void ThreadSetName(ThreadState *thr, const char *name);
642int ThreadCount(ThreadState *thr);
643void ProcessPendingSignals(ThreadState *thr);
644
645void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
646                 bool rw, bool recursive, bool linker_init);
647void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
648void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1,
649               bool try_lock = false);
650int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
651void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false);
652void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
653void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
654void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
655
656void Acquire(ThreadState *thr, uptr pc, uptr addr);
657void AcquireGlobal(ThreadState *thr, uptr pc);
658void Release(ThreadState *thr, uptr pc, uptr addr);
659void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
660void AfterSleep(ThreadState *thr, uptr pc);
661void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
662void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
663void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
664void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
665
666// The hacky call uses custom calling convention and an assembly thunk.
667// It is considerably faster that a normal call for the caller
668// if it is not executed (it is intended for slow paths from hot functions).
669// The trick is that the call preserves all registers and the compiler
670// does not treat it as a call.
671// If it does not work for you, use normal call.
672#if TSAN_DEBUG == 0
673// The caller may not create the stack frame for itself at all,
674// so we create a reserve stack frame for it (1024b must be enough).
675#define HACKY_CALL(f) \
676  __asm__ __volatile__("sub $1024, %%rsp;" \
677                       CFI_INL_ADJUST_CFA_OFFSET(1024) \
678                       ".hidden " #f "_thunk;" \
679                       "call " #f "_thunk;" \
680                       "add $1024, %%rsp;" \
681                       CFI_INL_ADJUST_CFA_OFFSET(-1024) \
682                       ::: "memory", "cc");
683#else
684#define HACKY_CALL(f) f()
685#endif
686
687void TraceSwitch(ThreadState *thr);
688uptr TraceTopPC(ThreadState *thr);
689uptr TraceSize();
690uptr TraceParts();
691Trace *ThreadTrace(int tid);
692
693extern "C" void __tsan_trace_switch();
694void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
695                                        EventType typ, u64 addr) {
696  if (!kCollectHistory)
697    return;
698  DCHECK_GE((int)typ, 0);
699  DCHECK_LE((int)typ, 7);
700  DCHECK_EQ(GetLsb(addr, 61), addr);
701  StatInc(thr, StatEvents);
702  u64 pos = fs.GetTracePos();
703  if (UNLIKELY((pos % kTracePartSize) == 0)) {
704#ifndef TSAN_GO
705    HACKY_CALL(__tsan_trace_switch);
706#else
707    TraceSwitch(thr);
708#endif
709  }
710  Event *trace = (Event*)GetThreadTrace(fs.tid());
711  Event *evp = &trace[pos];
712  Event ev = (u64)addr | ((u64)typ << 61);
713  *evp = ev;
714}
715
716}  // namespace __tsan
717
718#endif  // TSAN_RTL_H
719