tsan_rtl.h revision 5b2d43008240767872d0fe4913b3e5b784954e43
1//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12// Main internal TSan header file.
13//
14// Ground rules:
15//   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16//     function-scope locals)
17//   - All functions/classes/etc reside in namespace __tsan, except for those
18//     declared in tsan_interface.h.
19//   - Platform-specific files should be used instead of ifdefs (*).
20//   - No system headers included in header files (*).
21//   - Platform specific headres included only into platform-specific files (*).
22//
23//  (*) Except when inlining is critical for performance.
24//===----------------------------------------------------------------------===//
25
26#ifndef TSAN_RTL_H
27#define TSAN_RTL_H
28
29#include "sanitizer_common/sanitizer_allocator.h"
30#include "sanitizer_common/sanitizer_allocator_internal.h"
31#include "sanitizer_common/sanitizer_common.h"
32#include "sanitizer_common/sanitizer_libignore.h"
33#include "sanitizer_common/sanitizer_suppressions.h"
34#include "sanitizer_common/sanitizer_thread_registry.h"
35#include "tsan_clock.h"
36#include "tsan_defs.h"
37#include "tsan_flags.h"
38#include "tsan_sync.h"
39#include "tsan_trace.h"
40#include "tsan_vector.h"
41#include "tsan_report.h"
42#include "tsan_platform.h"
43#include "tsan_mutexset.h"
44
45#if SANITIZER_WORDSIZE != 64
46# error "ThreadSanitizer is supported only on 64-bit platforms"
47#endif
48
49namespace __tsan {
50
51// Descriptor of user's memory block.
52struct MBlock {
53  /*
54  u64 mtx : 1;  // must be first
55  u64 lst : 44;
56  u64 stk : 31;  // on word boundary
57  u64 tid : kTidBits;
58  u64 siz : 128 - 1 - 31 - 44 - kTidBits;  // 39
59  */
60  u64 raw[2];
61
62  void Init(uptr siz, u32 tid, u32 stk) {
63    raw[0] = raw[1] = 0;
64    raw[1] |= (u64)siz << ((1 + 44 + 31 + kTidBits) % 64);
65    raw[1] |= (u64)tid << ((1 + 44 + 31) % 64);
66    raw[0] |= (u64)stk << (1 + 44);
67    raw[1] |= (u64)stk >> (64 - 44 - 1);
68    DCHECK_EQ(Size(), siz);
69    DCHECK_EQ(Tid(), tid);
70    DCHECK_EQ(StackId(), stk);
71  }
72
73  u32 Tid() const {
74    return GetLsb(raw[1] >> ((1 + 44 + 31) % 64), kTidBits);
75  }
76
77  uptr Size() const {
78    return raw[1] >> ((1 + 31 + 44 + kTidBits) % 64);
79  }
80
81  u32 StackId() const {
82    return (raw[0] >> (1 + 44)) | GetLsb(raw[1] << (64 - 44 - 1), 31);
83  }
84
85  SyncVar *ListHead() const {
86    return (SyncVar*)(GetLsb(raw[0] >> 1, 44) << 3);
87  }
88
89  void ListPush(SyncVar *v) {
90    SyncVar *lst = ListHead();
91    v->next = lst;
92    u64 x = (u64)v ^ (u64)lst;
93    x = (x >> 3) << 1;
94    raw[0] ^= x;
95    DCHECK_EQ(ListHead(), v);
96  }
97
98  SyncVar *ListPop() {
99    SyncVar *lst = ListHead();
100    SyncVar *nxt = lst->next;
101    lst->next = 0;
102    u64 x = (u64)lst ^ (u64)nxt;
103    x = (x >> 3) << 1;
104    raw[0] ^= x;
105    DCHECK_EQ(ListHead(), nxt);
106    return lst;
107  }
108
109  void ListReset() {
110    SyncVar *lst = ListHead();
111    u64 x = (u64)lst;
112    x = (x >> 3) << 1;
113    raw[0] ^= x;
114    DCHECK_EQ(ListHead(), 0);
115  }
116
117  void Lock();
118  void Unlock();
119  typedef GenericScopedLock<MBlock> ScopedLock;
120};
121
122#ifndef TSAN_GO
123#if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
124const uptr kAllocatorSpace = 0x7d0000000000ULL;
125#else
126const uptr kAllocatorSpace = 0x7d0000000000ULL;
127#endif
128const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T.
129
130struct MapUnmapCallback;
131typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock),
132    DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
133typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
134typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
135typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
136    SecondaryAllocator> Allocator;
137Allocator *allocator();
138#endif
139
140void TsanCheckFailed(const char *file, int line, const char *cond,
141                     u64 v1, u64 v2);
142
143const u64 kShadowRodata = (u64)-1;  // .rodata shadow marker
144
145// FastState (from most significant bit):
146//   ignore          : 1
147//   tid             : kTidBits
148//   epoch           : kClkBits
149//   unused          : -
150//   history_size    : 3
151class FastState {
152 public:
153  FastState(u64 tid, u64 epoch) {
154    x_ = tid << kTidShift;
155    x_ |= epoch << kClkShift;
156    DCHECK_EQ(tid, this->tid());
157    DCHECK_EQ(epoch, this->epoch());
158    DCHECK_EQ(GetIgnoreBit(), false);
159  }
160
161  explicit FastState(u64 x)
162      : x_(x) {
163  }
164
165  u64 raw() const {
166    return x_;
167  }
168
169  u64 tid() const {
170    u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
171    return res;
172  }
173
174  u64 TidWithIgnore() const {
175    u64 res = x_ >> kTidShift;
176    return res;
177  }
178
179  u64 epoch() const {
180    u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits);
181    return res;
182  }
183
184  void IncrementEpoch() {
185    u64 old_epoch = epoch();
186    x_ += 1 << kClkShift;
187    DCHECK_EQ(old_epoch + 1, epoch());
188    (void)old_epoch;
189  }
190
191  void SetIgnoreBit() { x_ |= kIgnoreBit; }
192  void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
193  bool GetIgnoreBit() const { return (s64)x_ < 0; }
194
195  void SetHistorySize(int hs) {
196    CHECK_GE(hs, 0);
197    CHECK_LE(hs, 7);
198    x_ = (x_ & ~7) | hs;
199  }
200
201  int GetHistorySize() const {
202    return (int)(x_ & 7);
203  }
204
205  void ClearHistorySize() {
206    x_ &= ~7;
207  }
208
209  u64 GetTracePos() const {
210    const int hs = GetHistorySize();
211    // When hs == 0, the trace consists of 2 parts.
212    const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
213    return epoch() & mask;
214  }
215
216 private:
217  friend class Shadow;
218  static const int kTidShift = 64 - kTidBits - 1;
219  static const int kClkShift = kTidShift - kClkBits;
220  static const u64 kIgnoreBit = 1ull << 63;
221  static const u64 kFreedBit = 1ull << 63;
222  u64 x_;
223};
224
225// Shadow (from most significant bit):
226//   freed           : 1
227//   tid             : kTidBits
228//   epoch           : kClkBits
229//   is_atomic       : 1
230//   is_read         : 1
231//   size_log        : 2
232//   addr0           : 3
233class Shadow : public FastState {
234 public:
235  explicit Shadow(u64 x)
236      : FastState(x) {
237  }
238
239  explicit Shadow(const FastState &s)
240      : FastState(s.x_) {
241    ClearHistorySize();
242  }
243
244  void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
245    DCHECK_EQ(x_ & 31, 0);
246    DCHECK_LE(addr0, 7);
247    DCHECK_LE(kAccessSizeLog, 3);
248    x_ |= (kAccessSizeLog << 3) | addr0;
249    DCHECK_EQ(kAccessSizeLog, size_log());
250    DCHECK_EQ(addr0, this->addr0());
251  }
252
253  void SetWrite(unsigned kAccessIsWrite) {
254    DCHECK_EQ(x_ & kReadBit, 0);
255    if (!kAccessIsWrite)
256      x_ |= kReadBit;
257    DCHECK_EQ(kAccessIsWrite, IsWrite());
258  }
259
260  void SetAtomic(bool kIsAtomic) {
261    DCHECK(!IsAtomic());
262    if (kIsAtomic)
263      x_ |= kAtomicBit;
264    DCHECK_EQ(IsAtomic(), kIsAtomic);
265  }
266
267  bool IsAtomic() const {
268    return x_ & kAtomicBit;
269  }
270
271  bool IsZero() const {
272    return x_ == 0;
273  }
274
275  static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
276    u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
277    DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
278    return shifted_xor == 0;
279  }
280
281  static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
282    u64 masked_xor = (s1.x_ ^ s2.x_) & 31;
283    return masked_xor == 0;
284  }
285
286  static inline bool TwoRangesIntersect(Shadow s1, Shadow s2,
287      unsigned kS2AccessSize) {
288    bool res = false;
289    u64 diff = s1.addr0() - s2.addr0();
290    if ((s64)diff < 0) {  // s1.addr0 < s2.addr0  // NOLINT
291      // if (s1.addr0() + size1) > s2.addr0()) return true;
292      if (s1.size() > -diff)  res = true;
293    } else {
294      // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
295      if (kS2AccessSize > diff) res = true;
296    }
297    DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2));
298    DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1));
299    return res;
300  }
301
302  // The idea behind the offset is as follows.
303  // Consider that we have 8 bool's contained within a single 8-byte block
304  // (mapped to a single shadow "cell"). Now consider that we write to the bools
305  // from a single thread (which we consider the common case).
306  // W/o offsetting each access will have to scan 4 shadow values at average
307  // to find the corresponding shadow value for the bool.
308  // With offsetting we start scanning shadow with the offset so that
309  // each access hits necessary shadow straight off (at least in an expected
310  // optimistic case).
311  // This logic works seamlessly for any layout of user data. For example,
312  // if user data is {int, short, char, char}, then accesses to the int are
313  // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses
314  // from a single thread won't need to scan all 8 shadow values.
315  unsigned ComputeSearchOffset() {
316    return x_ & 7;
317  }
318  u64 addr0() const { return x_ & 7; }
319  u64 size() const { return 1ull << size_log(); }
320  bool IsWrite() const { return !IsRead(); }
321  bool IsRead() const { return x_ & kReadBit; }
322
323  // The idea behind the freed bit is as follows.
324  // When the memory is freed (or otherwise unaccessible) we write to the shadow
325  // values with tid/epoch related to the free and the freed bit set.
326  // During memory accesses processing the freed bit is considered
327  // as msb of tid. So any access races with shadow with freed bit set
328  // (it is as if write from a thread with which we never synchronized before).
329  // This allows us to detect accesses to freed memory w/o additional
330  // overheads in memory access processing and at the same time restore
331  // tid/epoch of free.
332  void MarkAsFreed() {
333     x_ |= kFreedBit;
334  }
335
336  bool IsFreed() const {
337    return x_ & kFreedBit;
338  }
339
340  bool GetFreedAndReset() {
341    bool res = x_ & kFreedBit;
342    x_ &= ~kFreedBit;
343    return res;
344  }
345
346  bool IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
347    // analyzes 5-th bit (is_read) and 6-th bit (is_atomic)
348    bool v = x_ & u64(((kIsWrite ^ 1) << kReadShift)
349        | (kIsAtomic << kAtomicShift));
350    DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
351    return v;
352  }
353
354  bool IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
355    bool v = ((x_ >> kReadShift) & 3)
356        <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
357    DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
358        (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
359    return v;
360  }
361
362  bool IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
363    bool v = ((x_ >> kReadShift) & 3)
364        >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
365    DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
366        (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
367    return v;
368  }
369
370 private:
371  static const u64 kReadShift   = 5;
372  static const u64 kReadBit     = 1ull << kReadShift;
373  static const u64 kAtomicShift = 6;
374  static const u64 kAtomicBit   = 1ull << kAtomicShift;
375
376  u64 size_log() const { return (x_ >> 3) & 3; }
377
378  static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) {
379    if (s1.addr0() == s2.addr0()) return true;
380    if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
381      return true;
382    if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
383      return true;
384    return false;
385  }
386};
387
388struct SignalContext;
389
390struct JmpBuf {
391  uptr sp;
392  uptr mangled_sp;
393  uptr *shadow_stack_pos;
394};
395
396// This struct is stored in TLS.
397struct ThreadState {
398  FastState fast_state;
399  // Synch epoch represents the threads's epoch before the last synchronization
400  // action. It allows to reduce number of shadow state updates.
401  // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
402  // if we are processing write to X from the same thread at epoch=200,
403  // we do nothing, because both writes happen in the same 'synch epoch'.
404  // That is, if another memory access does not race with the former write,
405  // it does not race with the latter as well.
406  // QUESTION: can we can squeeze this into ThreadState::Fast?
407  // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
408  // taken by epoch between synchs.
409  // This way we can save one load from tls.
410  u64 fast_synch_epoch;
411  // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
412  // We do not distinguish beteween ignoring reads and writes
413  // for better performance.
414  int ignore_reads_and_writes;
415  int ignore_sync;
416  // C/C++ uses fixed size shadow stack embed into Trace.
417  // Go uses malloc-allocated shadow stack with dynamic size.
418  uptr *shadow_stack;
419  uptr *shadow_stack_end;
420  uptr *shadow_stack_pos;
421  u64 *racy_shadow_addr;
422  u64 racy_state[2];
423  MutexSet mset;
424  ThreadClock clock;
425#ifndef TSAN_GO
426  AllocatorCache alloc_cache;
427  InternalAllocatorCache internal_alloc_cache;
428  Vector<JmpBuf> jmp_bufs;
429#endif
430  u64 stat[StatCnt];
431  const int tid;
432  const int unique_id;
433  int in_rtl;
434  bool in_symbolizer;
435  bool in_ignored_lib;
436  bool is_alive;
437  bool is_freeing;
438  bool is_vptr_access;
439  const uptr stk_addr;
440  const uptr stk_size;
441  const uptr tls_addr;
442  const uptr tls_size;
443
444  DeadlockDetector deadlock_detector;
445
446  bool in_signal_handler;
447  SignalContext *signal_ctx;
448
449#ifndef TSAN_GO
450  u32 last_sleep_stack_id;
451  ThreadClock last_sleep_clock;
452#endif
453
454  // Set in regions of runtime that must be signal-safe and fork-safe.
455  // If set, malloc must not be called.
456  int nomalloc;
457
458  explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
459                       uptr stk_addr, uptr stk_size,
460                       uptr tls_addr, uptr tls_size);
461};
462
463Context *CTX();
464
465#ifndef TSAN_GO
466extern THREADLOCAL char cur_thread_placeholder[];
467INLINE ThreadState *cur_thread() {
468  return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
469}
470#endif
471
472class ThreadContext : public ThreadContextBase {
473 public:
474  explicit ThreadContext(int tid);
475  ~ThreadContext();
476  ThreadState *thr;
477#ifdef TSAN_GO
478  StackTrace creation_stack;
479#else
480  u32 creation_stack_id;
481#endif
482  SyncClock sync;
483  // Epoch at which the thread had started.
484  // If we see an event from the thread stamped by an older epoch,
485  // the event is from a dead thread that shared tid with this thread.
486  u64 epoch0;
487  u64 epoch1;
488
489  // Override superclass callbacks.
490  void OnDead();
491  void OnJoined(void *arg);
492  void OnFinished();
493  void OnStarted(void *arg);
494  void OnCreated(void *arg);
495  void OnReset();
496};
497
498struct RacyStacks {
499  MD5Hash hash[2];
500  bool operator==(const RacyStacks &other) const {
501    if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
502      return true;
503    if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
504      return true;
505    return false;
506  }
507};
508
509struct RacyAddress {
510  uptr addr_min;
511  uptr addr_max;
512};
513
514struct FiredSuppression {
515  ReportType type;
516  uptr pc;
517  Suppression *supp;
518};
519
520struct Context {
521  Context();
522
523  bool initialized;
524
525  SyncTab synctab;
526
527  Mutex report_mtx;
528  int nreported;
529  int nmissed_expected;
530  atomic_uint64_t last_symbolize_time_ns;
531
532  ThreadRegistry *thread_registry;
533
534  Vector<RacyStacks> racy_stacks;
535  Vector<RacyAddress> racy_addresses;
536  // Number of fired suppressions may be large enough.
537  InternalMmapVector<FiredSuppression> fired_suppressions;
538
539  Flags flags;
540
541  u64 stat[StatCnt];
542  u64 int_alloc_cnt[MBlockTypeCount];
543  u64 int_alloc_siz[MBlockTypeCount];
544};
545
546class ScopedInRtl {
547 public:
548  ScopedInRtl();
549  ~ScopedInRtl();
550 private:
551  ThreadState*thr_;
552  int in_rtl_;
553  int errno_;
554};
555
556class ScopedReport {
557 public:
558  explicit ScopedReport(ReportType typ);
559  ~ScopedReport();
560
561  void AddStack(const StackTrace *stack);
562  void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
563                       const MutexSet *mset);
564  void AddThread(const ThreadContext *tctx);
565  void AddMutex(const SyncVar *s);
566  void AddLocation(uptr addr, uptr size);
567  void AddSleep(u32 stack_id);
568  void SetCount(int count);
569
570  const ReportDesc *GetReport() const;
571
572 private:
573  Context *ctx_;
574  ReportDesc *rep_;
575
576  void AddMutex(u64 id);
577
578  ScopedReport(const ScopedReport&);
579  void operator = (const ScopedReport&);
580};
581
582void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
583
584void StatAggregate(u64 *dst, u64 *src);
585void StatOutput(u64 *stat);
586void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
587  if (kCollectStats)
588    thr->stat[typ] += n;
589}
590void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
591  if (kCollectStats)
592    thr->stat[typ] = n;
593}
594
595void MapShadow(uptr addr, uptr size);
596void MapThreadTrace(uptr addr, uptr size);
597void DontNeedShadowFor(uptr addr, uptr size);
598void InitializeShadowMemory();
599void InitializeInterceptors();
600void InitializeLibIgnore();
601void InitializeDynamicAnnotations();
602
603void ReportRace(ThreadState *thr);
604bool OutputReport(Context *ctx,
605                  const ScopedReport &srep,
606                  const ReportStack *suppress_stack1 = 0,
607                  const ReportStack *suppress_stack2 = 0,
608                  const ReportLocation *suppress_loc = 0);
609bool IsFiredSuppression(Context *ctx,
610                        const ScopedReport &srep,
611                        const StackTrace &trace);
612bool IsExpectedReport(uptr addr, uptr size);
613void PrintMatchedBenignRaces();
614bool FrameIsInternal(const ReportStack *frame);
615ReportStack *SkipTsanInternalFrames(ReportStack *ent);
616
617#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
618# define DPrintf Printf
619#else
620# define DPrintf(...)
621#endif
622
623#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
624# define DPrintf2 Printf
625#else
626# define DPrintf2(...)
627#endif
628
629u32 CurrentStackId(ThreadState *thr, uptr pc);
630void PrintCurrentStack(ThreadState *thr, uptr pc);
631void PrintCurrentStackSlow();  // uses libunwind
632
633void Initialize(ThreadState *thr);
634int Finalize(ThreadState *thr);
635
636SyncVar* GetJavaSync(ThreadState *thr, uptr pc, uptr addr,
637                     bool write_lock, bool create);
638SyncVar* GetAndRemoveJavaSync(ThreadState *thr, uptr pc, uptr addr);
639
640void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
641    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
642void MemoryAccessImpl(ThreadState *thr, uptr addr,
643    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
644    u64 *shadow_mem, Shadow cur);
645void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
646    uptr size, bool is_write);
647void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
648    uptr size, uptr step, bool is_write);
649void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
650    int size, bool kAccessIsWrite, bool kIsAtomic);
651
652const int kSizeLog1 = 0;
653const int kSizeLog2 = 1;
654const int kSizeLog4 = 2;
655const int kSizeLog8 = 3;
656
657void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
658                                     uptr addr, int kAccessSizeLog) {
659  MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
660}
661
662void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
663                                      uptr addr, int kAccessSizeLog) {
664  MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
665}
666
667void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
668                                           uptr addr, int kAccessSizeLog) {
669  MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
670}
671
672void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
673                                            uptr addr, int kAccessSizeLog) {
674  MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
675}
676
677void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
678void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
679void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
680
681void ThreadIgnoreBegin(ThreadState *thr);
682void ThreadIgnoreEnd(ThreadState *thr);
683void ThreadIgnoreSyncBegin(ThreadState *thr);
684void ThreadIgnoreSyncEnd(ThreadState *thr);
685
686void FuncEntry(ThreadState *thr, uptr pc);
687void FuncExit(ThreadState *thr);
688
689int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
690void ThreadStart(ThreadState *thr, int tid, uptr os_id);
691void ThreadFinish(ThreadState *thr);
692int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
693void ThreadJoin(ThreadState *thr, uptr pc, int tid);
694void ThreadDetach(ThreadState *thr, uptr pc, int tid);
695void ThreadFinalize(ThreadState *thr);
696void ThreadSetName(ThreadState *thr, const char *name);
697int ThreadCount(ThreadState *thr);
698void ProcessPendingSignals(ThreadState *thr);
699
700void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
701                 bool rw, bool recursive, bool linker_init);
702void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
703void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1);
704int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
705void MutexReadLock(ThreadState *thr, uptr pc, uptr addr);
706void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
707void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
708
709void Acquire(ThreadState *thr, uptr pc, uptr addr);
710void AcquireGlobal(ThreadState *thr, uptr pc);
711void Release(ThreadState *thr, uptr pc, uptr addr);
712void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
713void AfterSleep(ThreadState *thr, uptr pc);
714void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
715void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
716void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
717void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
718
719// The hacky call uses custom calling convention and an assembly thunk.
720// It is considerably faster that a normal call for the caller
721// if it is not executed (it is intended for slow paths from hot functions).
722// The trick is that the call preserves all registers and the compiler
723// does not treat it as a call.
724// If it does not work for you, use normal call.
725#if TSAN_DEBUG == 0
726// The caller may not create the stack frame for itself at all,
727// so we create a reserve stack frame for it (1024b must be enough).
728#define HACKY_CALL(f) \
729  __asm__ __volatile__("sub $1024, %%rsp;" \
730                       ".cfi_adjust_cfa_offset 1024;" \
731                       ".hidden " #f "_thunk;" \
732                       "call " #f "_thunk;" \
733                       "add $1024, %%rsp;" \
734                       ".cfi_adjust_cfa_offset -1024;" \
735                       ::: "memory", "cc");
736#else
737#define HACKY_CALL(f) f()
738#endif
739
740void TraceSwitch(ThreadState *thr);
741uptr TraceTopPC(ThreadState *thr);
742uptr TraceSize();
743uptr TraceParts();
744Trace *ThreadTrace(int tid);
745
746extern "C" void __tsan_trace_switch();
747void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
748                                        EventType typ, u64 addr) {
749  DCHECK_GE((int)typ, 0);
750  DCHECK_LE((int)typ, 7);
751  DCHECK_EQ(GetLsb(addr, 61), addr);
752  StatInc(thr, StatEvents);
753  u64 pos = fs.GetTracePos();
754  if (UNLIKELY((pos % kTracePartSize) == 0)) {
755#ifndef TSAN_GO
756    HACKY_CALL(__tsan_trace_switch);
757#else
758    TraceSwitch(thr);
759#endif
760  }
761  Event *trace = (Event*)GetThreadTrace(fs.tid());
762  Event *evp = &trace[pos];
763  Event ev = (u64)addr | ((u64)typ << 61);
764  *evp = ev;
765}
766
767}  // namespace __tsan
768
769#endif  // TSAN_RTL_H
770