revoke.c revision 18a1444b4f1e6a0948fd38fa0de382d86cfe04de
1/*
2 * linux/fs/revoke.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5 *
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
14 *
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks.  The revoke mechanism is used in two separate places:
18 *
19 * + Commit: during commit we write the entire list of the current
20 *   transaction's revoked blocks to the journal
21 *
22 * + Recovery: during recovery we record the transaction ID of all
23 *   revoked blocks.  If there are multiple revoke records in the log
24 *   for a single block, only the last one counts, and if there is a log
25 *   entry for a block beyond the last revoke, then that log entry still
26 *   gets replayed.
27 *
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
30 *
31 * Block is revoked and then journaled:
32 *   The desired end result is the journaling of the new block, so we
33 *   cancel the revoke before the transaction commits.
34 *
35 * Block is journaled and then revoked:
36 *   The revoke must take precedence over the write of the block, so we
37 *   need either to cancel the journal entry or to write the revoke
38 *   later in the log than the log block.  In this case, we choose the
39 *   latter: journaling a block cancels any revoke record for that block
40 *   in the current transaction, so any revoke for that block in the
41 *   transaction must have happened after the block was journaled and so
42 *   the revoke must take precedence.
43 *
44 * Block is revoked and then written as data:
45 *   The data write is allowed to succeed, but the revoke is _not_
46 *   cancelled.  We still need to prevent old log records from
47 *   overwriting the new data.  We don't even need to clear the revoke
48 *   bit here.
49 *
50 * Revoke information on buffers is a tri-state value:
51 *
52 * RevokeValid clear:	no cached revoke status, need to look it up
53 * RevokeValid set, Revoked clear:
54 *			buffer has not been revoked, and cancel_revoke
55 *			need do nothing.
56 * RevokeValid set, Revoked set:
57 *			buffer has been revoked.
58 */
59
60#ifndef __KERNEL__
61#include "jfs_user.h"
62#else
63#include <linux/sched.h>
64#include <linux/fs.h>
65#include <linux/jbd.h>
66#include <linux/errno.h>
67#include <linux/slab.h>
68#include <linux/locks.h>
69#include <linux/list.h>
70#include <linux/smp_lock.h>
71#include <linux/init.h>
72#endif
73
74static lkmem_cache_t *revoke_record_cache;
75static lkmem_cache_t *revoke_table_cache;
76
77/* Each revoke record represents one single revoked block.  During
78   journal replay, this involves recording the transaction ID of the
79   last transaction to revoke this block. */
80
81struct jbd_revoke_record_s
82{
83	struct list_head  hash;
84	tid_t		  sequence;	/* Used for recovery only */
85	unsigned long	  blocknr;
86};
87
88
89/* The revoke table is just a simple hash table of revoke records. */
90struct jbd_revoke_table_s
91{
92	/* It is conceivable that we might want a larger hash table
93	 * for recovery.  Must be a power of two. */
94	int		  hash_size;
95	int		  hash_shift;
96	struct list_head *hash_table;
97};
98
99
100#ifdef __KERNEL__
101static void write_one_revoke_record(journal_t *, transaction_t *,
102				    struct journal_head **, int *,
103				    struct jbd_revoke_record_s *);
104static void flush_descriptor(journal_t *, struct journal_head *, int);
105#endif
106
107/* Utility functions to maintain the revoke table */
108
109/* Borrowed from buffer.c: this is a tried and tested block hash function */
110static inline int hash(journal_t *journal, unsigned long block)
111{
112	struct jbd_revoke_table_s *table = journal->j_revoke;
113	int hash_shift = table->hash_shift;
114
115	return ((block << (hash_shift - 6)) ^
116		(block >> 13) ^
117		(block << (hash_shift - 12))) & (table->hash_size - 1);
118}
119
120static int insert_revoke_hash(journal_t *journal, unsigned long blocknr,
121			      tid_t seq)
122{
123	struct list_head *hash_list;
124	struct jbd_revoke_record_s *record;
125
126#ifdef __KERNEL__
127repeat:
128#endif
129	record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
130	if (!record)
131		goto oom;
132
133	record->sequence = seq;
134	record->blocknr = blocknr;
135	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
136	list_add(&record->hash, hash_list);
137	return 0;
138
139oom:
140#ifdef __KERNEL__
141	if (!journal_oom_retry)
142		return -ENOMEM;
143	jbd_debug(1, "ENOMEM in " __FUNCTION__ ", retrying.\n");
144	current->policy |= SCHED_YIELD;
145	schedule();
146	goto repeat;
147#else
148	return -ENOMEM;
149#endif
150}
151
152/* Find a revoke record in the journal's hash table. */
153
154static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
155						      unsigned long blocknr)
156{
157	struct list_head *hash_list;
158	struct jbd_revoke_record_s *record;
159
160	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
161
162	record = (struct jbd_revoke_record_s *) hash_list->next;
163	while (&(record->hash) != hash_list) {
164		if (record->blocknr == blocknr)
165			return record;
166		record = (struct jbd_revoke_record_s *) record->hash.next;
167	}
168	return NULL;
169}
170
171int __init journal_init_revoke_caches(void)
172{
173	revoke_record_cache = kmem_cache_create("revoke_record",
174					   sizeof(struct jbd_revoke_record_s),
175					   0, SLAB_HWCACHE_ALIGN, NULL, NULL);
176	if (revoke_record_cache == 0)
177		return -ENOMEM;
178
179	revoke_table_cache = kmem_cache_create("revoke_table",
180					   sizeof(struct jbd_revoke_table_s),
181					   0, 0, NULL, NULL);
182	if (revoke_table_cache == 0) {
183		kmem_cache_destroy(revoke_record_cache);
184		revoke_record_cache = NULL;
185		return -ENOMEM;
186	}
187	return 0;
188}
189
190void journal_destroy_revoke_caches(void)
191{
192	kmem_cache_destroy(revoke_record_cache);
193	revoke_record_cache = 0;
194	kmem_cache_destroy(revoke_table_cache);
195	revoke_table_cache = 0;
196}
197
198/* Initialise the revoke table for a given journal to a given size. */
199
200int journal_init_revoke(journal_t *journal, int hash_size)
201{
202	int shift, tmp;
203
204	J_ASSERT (journal->j_revoke == NULL);
205
206	journal->j_revoke = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
207	if (!journal->j_revoke)
208		return -ENOMEM;
209
210	/* Check that the hash_size is a power of two */
211	J_ASSERT ((hash_size & (hash_size-1)) == 0);
212
213	journal->j_revoke->hash_size = hash_size;
214
215	shift = 0;
216	tmp = hash_size;
217	while((tmp >>= 1UL) != 0UL)
218		shift++;
219	journal->j_revoke->hash_shift = shift;
220
221	journal->j_revoke->hash_table =
222		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
223	if (!journal->j_revoke->hash_table) {
224		kmem_cache_free(revoke_table_cache, journal->j_revoke);
225		journal->j_revoke = NULL;
226		return -ENOMEM;
227	}
228
229	for (tmp = 0; tmp < hash_size; tmp++)
230		INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
231
232	return 0;
233}
234
235/* Destoy a journal's revoke table.  The table must already be empty! */
236
237void journal_destroy_revoke(journal_t *journal)
238{
239	struct jbd_revoke_table_s *table;
240	struct list_head *hash_list;
241	int i;
242
243	table = journal->j_revoke;
244	if (!table)
245		return;
246
247	for (i=0; i<table->hash_size; i++) {
248		hash_list = &table->hash_table[i];
249		J_ASSERT (list_empty(hash_list));
250	}
251
252	kfree(table->hash_table);
253	kmem_cache_free(revoke_table_cache, table);
254	journal->j_revoke = NULL;
255}
256
257
258#ifdef __KERNEL__
259
260/*
261 * journal_revoke: revoke a given buffer_head from the journal.  This
262 * prevents the block from being replayed during recovery if we take a
263 * crash after this current transaction commits.  Any subsequent
264 * metadata writes of the buffer in this transaction cancel the
265 * revoke.
266 *
267 * Note that this call may block --- it is up to the caller to make
268 * sure that there are no further calls to journal_write_metadata
269 * before the revoke is complete.  In ext3, this implies calling the
270 * revoke before clearing the block bitmap when we are deleting
271 * metadata.
272 *
273 * Revoke performs a journal_forget on any buffer_head passed in as a
274 * parameter, but does _not_ forget the buffer_head if the bh was only
275 * found implicitly.
276 *
277 * bh_in may not be a journalled buffer - it may have come off
278 * the hash tables without an attached journal_head.
279 *
280 * If bh_in is non-zero, journal_revoke() will decrement its b_count
281 * by one.
282 */
283
284int journal_revoke(handle_t *handle, unsigned long blocknr,
285		   struct buffer_head *bh_in)
286{
287	struct buffer_head *bh = NULL;
288	journal_t *journal;
289	kdev_t dev;
290	int err;
291
292	if (bh_in)
293		BUFFER_TRACE(bh_in, "enter");
294
295	journal = handle->h_transaction->t_journal;
296	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
297		J_ASSERT (!"Cannot set revoke feature!");
298		return -EINVAL;
299	}
300
301	dev = journal->j_fs_dev;
302	bh = bh_in;
303
304	if (!bh) {
305		bh = get_hash_table(dev, blocknr, journal->j_blocksize);
306		if (bh)
307			BUFFER_TRACE(bh, "found on hash");
308	}
309#ifdef JBD_EXPENSIVE_CHECKING
310	else {
311		struct buffer_head *bh2;
312
313		/* If there is a different buffer_head lying around in
314		 * memory anywhere... */
315		bh2 = get_hash_table(dev, blocknr, journal->j_blocksize);
316		if (bh2) {
317			/* ... and it has RevokeValid status... */
318			if ((bh2 != bh) &&
319			    test_bit(BH_RevokeValid, &bh2->b_state))
320				/* ...then it better be revoked too,
321				 * since it's illegal to create a revoke
322				 * record against a buffer_head which is
323				 * not marked revoked --- that would
324				 * risk missing a subsequent revoke
325				 * cancel. */
326				J_ASSERT_BH(bh2, test_bit(BH_Revoked, &
327							  bh2->b_state));
328			__brelse(bh2);
329		}
330	}
331#endif
332
333	/* We really ought not ever to revoke twice in a row without
334           first having the revoke cancelled: it's illegal to free a
335           block twice without allocating it in between! */
336	if (bh) {
337		J_ASSERT_BH(bh, !test_bit(BH_Revoked, &bh->b_state));
338		set_bit(BH_Revoked, &bh->b_state);
339		set_bit(BH_RevokeValid, &bh->b_state);
340		if (bh_in) {
341			BUFFER_TRACE(bh_in, "call journal_forget");
342			journal_forget(handle, bh_in);
343		} else {
344			BUFFER_TRACE(bh, "call brelse");
345			__brelse(bh);
346		}
347	}
348
349	lock_journal(journal);
350	jbd_debug(2, "insert revoke for block %lu, bh_in=%p\n", blocknr, bh_in);
351	err = insert_revoke_hash(journal, blocknr,
352				handle->h_transaction->t_tid);
353	unlock_journal(journal);
354	BUFFER_TRACE(bh_in, "exit");
355	return err;
356}
357
358/*
359 * Cancel an outstanding revoke.  For use only internally by the
360 * journaling code (called from journal_get_write_access).
361 *
362 * We trust the BH_Revoked bit on the buffer if the buffer is already
363 * being journaled: if there is no revoke pending on the buffer, then we
364 * don't do anything here.
365 *
366 * This would break if it were possible for a buffer to be revoked and
367 * discarded, and then reallocated within the same transaction.  In such
368 * a case we would have lost the revoked bit, but when we arrived here
369 * the second time we would still have a pending revoke to cancel.  So,
370 * do not trust the Revoked bit on buffers unless RevokeValid is also
371 * set.
372 *
373 * The caller must have the journal locked.
374 */
375int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
376{
377	struct jbd_revoke_record_s *record;
378	journal_t *journal = handle->h_transaction->t_journal;
379	int need_cancel;
380	int did_revoke = 0;	/* akpm: debug */
381	struct buffer_head *bh = jh2bh(jh);
382
383	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
384
385	/* Is the existing Revoke bit valid?  If so, we trust it, and
386	 * only perform the full cancel if the revoke bit is set.  If
387	 * not, we can't trust the revoke bit, and we need to do the
388	 * full search for a revoke record. */
389	if (test_and_set_bit(BH_RevokeValid, &bh->b_state))
390		need_cancel = (test_and_clear_bit(BH_Revoked, &bh->b_state));
391	else {
392		need_cancel = 1;
393		clear_bit(BH_Revoked, &bh->b_state);
394	}
395
396	if (need_cancel) {
397		record = find_revoke_record(journal, bh->b_blocknr);
398		if (record) {
399			jbd_debug(4, "cancelled existing revoke on "
400				  "blocknr %lu\n", bh->b_blocknr);
401			list_del(&record->hash);
402			kmem_cache_free(revoke_record_cache, record);
403			did_revoke = 1;
404		}
405	}
406
407#ifdef JBD_EXPENSIVE_CHECKING
408	/* There better not be one left behind by now! */
409	record = find_revoke_record(journal, bh->b_blocknr);
410	J_ASSERT_JH(jh, record == NULL);
411#endif
412
413	/* Finally, have we just cleared revoke on an unhashed
414	 * buffer_head?  If so, we'd better make sure we clear the
415	 * revoked status on any hashed alias too, otherwise the revoke
416	 * state machine will get very upset later on. */
417	if (need_cancel && !bh->b_pprev) {
418		struct buffer_head *bh2;
419		bh2 = get_hash_table(bh->b_dev, bh->b_blocknr, bh->b_size);
420		if (bh2) {
421			clear_bit(BH_Revoked, &bh2->b_state);
422			__brelse(bh2);
423		}
424	}
425
426	return did_revoke;
427}
428
429
430/*
431 * Write revoke records to the journal for all entries in the current
432 * revoke hash, deleting the entries as we go.
433 *
434 * Called with the journal lock held.
435 */
436
437void journal_write_revoke_records(journal_t *journal,
438				  transaction_t *transaction)
439{
440	struct journal_head *descriptor;
441	struct jbd_revoke_record_s *record;
442	struct jbd_revoke_table_s *revoke;
443	struct list_head *hash_list;
444	int i, offset, count;
445
446	descriptor = NULL;
447	offset = 0;
448	count = 0;
449	revoke = journal->j_revoke;
450
451	for (i = 0; i < revoke->hash_size; i++) {
452		hash_list = &revoke->hash_table[i];
453
454		while (!list_empty(hash_list)) {
455			record = (struct jbd_revoke_record_s *)
456				hash_list->next;
457			write_one_revoke_record(journal, transaction,
458						&descriptor, &offset,
459						record);
460			count++;
461			list_del(&record->hash);
462			kmem_cache_free(revoke_record_cache, record);
463		}
464	}
465	if (descriptor)
466		flush_descriptor(journal, descriptor, offset);
467	jbd_debug(1, "Wrote %d revoke records\n", count);
468}
469
470/*
471 * Write out one revoke record.  We need to create a new descriptor
472 * block if the old one is full or if we have not already created one.
473 */
474
475static void write_one_revoke_record(journal_t *journal,
476				    transaction_t *transaction,
477				    struct journal_head **descriptorp,
478				    int *offsetp,
479				    struct jbd_revoke_record_s *record)
480{
481	struct journal_head *descriptor;
482	int offset;
483	journal_header_t *header;
484
485	/* If we are already aborting, this all becomes a noop.  We
486           still need to go round the loop in
487           journal_write_revoke_records in order to free all of the
488           revoke records: only the IO to the journal is omitted. */
489	if (is_journal_aborted(journal))
490		return;
491
492	descriptor = *descriptorp;
493	offset = *offsetp;
494
495	/* Make sure we have a descriptor with space left for the record */
496	if (descriptor) {
497		if (offset == journal->j_blocksize) {
498			flush_descriptor(journal, descriptor, offset);
499			descriptor = NULL;
500		}
501	}
502
503	if (!descriptor) {
504		descriptor = journal_get_descriptor_buffer(journal);
505		if (!descriptor)
506			return;
507		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
508		header->h_magic     = htonl(JFS_MAGIC_NUMBER);
509		header->h_blocktype = htonl(JFS_REVOKE_BLOCK);
510		header->h_sequence  = htonl(transaction->t_tid);
511
512		/* Record it so that we can wait for IO completion later */
513		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
514		journal_file_buffer(descriptor, transaction, BJ_LogCtl);
515
516		offset = sizeof(journal_revoke_header_t);
517		*descriptorp = descriptor;
518	}
519
520	* ((unsigned int *)(&jh2bh(descriptor)->b_data[offset])) =
521		htonl(record->blocknr);
522	offset += 4;
523	*offsetp = offset;
524}
525
526/*
527 * Flush a revoke descriptor out to the journal.  If we are aborting,
528 * this is a noop; otherwise we are generating a buffer which needs to
529 * be waited for during commit, so it has to go onto the appropriate
530 * journal buffer list.
531 */
532
533static void flush_descriptor(journal_t *journal,
534			     struct journal_head *descriptor,
535			     int offset)
536{
537	journal_revoke_header_t *header;
538
539	if (is_journal_aborted(journal)) {
540		JBUFFER_TRACE(descriptor, "brelse");
541		__brelse(jh2bh(descriptor));
542		return;
543	}
544
545	header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
546	header->r_count = htonl(offset);
547	set_bit(BH_JWrite, &jh2bh(descriptor)->b_state);
548	{
549		struct buffer_head *bh = jh2bh(descriptor);
550		BUFFER_TRACE(bh, "write");
551		ll_rw_block (WRITE, 1, &bh);
552	}
553}
554
555#endif
556
557/*
558 * Revoke support for recovery.
559 *
560 * Recovery needs to be able to:
561 *
562 *  record all revoke records, including the tid of the latest instance
563 *  of each revoke in the journal
564 *
565 *  check whether a given block in a given transaction should be replayed
566 *  (ie. has not been revoked by a revoke record in that or a subsequent
567 *  transaction)
568 *
569 *  empty the revoke table after recovery.
570 */
571
572/*
573 * First, setting revoke records.  We create a new revoke record for
574 * every block ever revoked in the log as we scan it for recovery, and
575 * we update the existing records if we find multiple revokes for a
576 * single block.
577 */
578
579int journal_set_revoke(journal_t *journal,
580		       unsigned long blocknr,
581		       tid_t sequence)
582{
583	struct jbd_revoke_record_s *record;
584
585	record = find_revoke_record(journal, blocknr);
586	if (record) {
587		/* If we have multiple occurences, only record the
588		 * latest sequence number in the hashed record */
589		if (tid_gt(sequence, record->sequence))
590			record->sequence = sequence;
591		return 0;
592	}
593	return insert_revoke_hash(journal, blocknr, sequence);
594}
595
596/*
597 * Test revoke records.  For a given block referenced in the log, has
598 * that block been revoked?  A revoke record with a given transaction
599 * sequence number revokes all blocks in that transaction and earlier
600 * ones, but later transactions still need replayed.
601 */
602
603int journal_test_revoke(journal_t *journal,
604			unsigned long blocknr,
605			tid_t sequence)
606{
607	struct jbd_revoke_record_s *record;
608
609	record = find_revoke_record(journal, blocknr);
610	if (!record)
611		return 0;
612	if (tid_gt(sequence, record->sequence))
613		return 0;
614	return 1;
615}
616
617/*
618 * Finally, once recovery is over, we need to clear the revoke table so
619 * that it can be reused by the running filesystem.
620 */
621
622void journal_clear_revoke(journal_t *journal)
623{
624	int i;
625	struct list_head *hash_list;
626	struct jbd_revoke_record_s *record;
627	struct jbd_revoke_table_s *revoke;
628
629	revoke = journal->j_revoke;
630
631	for (i = 0; i < revoke->hash_size; i++) {
632		hash_list = &revoke->hash_table[i];
633		while (!list_empty(hash_list)) {
634			record = (struct jbd_revoke_record_s*) hash_list->next;
635			list_del(&record->hash);
636			kmem_cache_free(revoke_record_cache, record);
637		}
638	}
639}
640
641