DenseCoeffsBase.h revision 7faaa9f3f0df9d23790277834d426c3d992ac3ba
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_DENSECOEFFSBASE_H
11#define EIGEN_DENSECOEFFSBASE_H
12
13namespace Eigen {
14
15namespace internal {
16template<typename T> struct add_const_on_value_type_if_arithmetic
17{
18  typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
19};
20}
21
22/** \brief Base class providing read-only coefficient access to matrices and arrays.
23  * \ingroup Core_Module
24  * \tparam Derived Type of the derived class
25  * \tparam #ReadOnlyAccessors Constant indicating read-only access
26  *
27  * This class defines the \c operator() \c const function and friends, which can be used to read specific
28  * entries of a matrix or array.
29  *
30  * \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>,
31  *     \ref TopicClassHierarchy
32  */
33template<typename Derived>
34class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
35{
36  public:
37    typedef typename internal::traits<Derived>::StorageKind StorageKind;
38    typedef typename internal::traits<Derived>::Index Index;
39    typedef typename internal::traits<Derived>::Scalar Scalar;
40    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
41
42    // Explanation for this CoeffReturnType typedef.
43    // - This is the return type of the coeff() method.
44    // - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
45    // to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
46    // - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
47    // while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
48    // not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
49    typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
50                         const Scalar&,
51                         typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
52                     >::type CoeffReturnType;
53
54    typedef typename internal::add_const_on_value_type_if_arithmetic<
55                         typename internal::packet_traits<Scalar>::type
56                     >::type PacketReturnType;
57
58    typedef EigenBase<Derived> Base;
59    using Base::rows;
60    using Base::cols;
61    using Base::size;
62    using Base::derived;
63
64    EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const
65    {
66      return int(Derived::RowsAtCompileTime) == 1 ? 0
67          : int(Derived::ColsAtCompileTime) == 1 ? inner
68          : int(Derived::Flags)&RowMajorBit ? outer
69          : inner;
70    }
71
72    EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const
73    {
74      return int(Derived::ColsAtCompileTime) == 1 ? 0
75          : int(Derived::RowsAtCompileTime) == 1 ? inner
76          : int(Derived::Flags)&RowMajorBit ? inner
77          : outer;
78    }
79
80    /** Short version: don't use this function, use
81      * \link operator()(Index,Index) const \endlink instead.
82      *
83      * Long version: this function is similar to
84      * \link operator()(Index,Index) const \endlink, but without the assertion.
85      * Use this for limiting the performance cost of debugging code when doing
86      * repeated coefficient access. Only use this when it is guaranteed that the
87      * parameters \a row and \a col are in range.
88      *
89      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
90      * function equivalent to \link operator()(Index,Index) const \endlink.
91      *
92      * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const
93      */
94    EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
95    {
96      eigen_internal_assert(row >= 0 && row < rows()
97                        && col >= 0 && col < cols());
98      return derived().coeff(row, col);
99    }
100
101    EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
102    {
103      return coeff(rowIndexByOuterInner(outer, inner),
104                   colIndexByOuterInner(outer, inner));
105    }
106
107    /** \returns the coefficient at given the given row and column.
108      *
109      * \sa operator()(Index,Index), operator[](Index)
110      */
111    EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const
112    {
113      eigen_assert(row >= 0 && row < rows()
114          && col >= 0 && col < cols());
115      return derived().coeff(row, col);
116    }
117
118    /** Short version: don't use this function, use
119      * \link operator[](Index) const \endlink instead.
120      *
121      * Long version: this function is similar to
122      * \link operator[](Index) const \endlink, but without the assertion.
123      * Use this for limiting the performance cost of debugging code when doing
124      * repeated coefficient access. Only use this when it is guaranteed that the
125      * parameter \a index is in range.
126      *
127      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
128      * function equivalent to \link operator[](Index) const \endlink.
129      *
130      * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const
131      */
132
133    EIGEN_STRONG_INLINE CoeffReturnType
134    coeff(Index index) const
135    {
136      eigen_internal_assert(index >= 0 && index < size());
137      return derived().coeff(index);
138    }
139
140
141    /** \returns the coefficient at given index.
142      *
143      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
144      *
145      * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
146      * z() const, w() const
147      */
148
149    EIGEN_STRONG_INLINE CoeffReturnType
150    operator[](Index index) const
151    {
152      #ifndef EIGEN2_SUPPORT
153      EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
154                          THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
155      #endif
156      eigen_assert(index >= 0 && index < size());
157      return derived().coeff(index);
158    }
159
160    /** \returns the coefficient at given index.
161      *
162      * This is synonymous to operator[](Index) const.
163      *
164      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
165      *
166      * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
167      * z() const, w() const
168      */
169
170    EIGEN_STRONG_INLINE CoeffReturnType
171    operator()(Index index) const
172    {
173      eigen_assert(index >= 0 && index < size());
174      return derived().coeff(index);
175    }
176
177    /** equivalent to operator[](0).  */
178
179    EIGEN_STRONG_INLINE CoeffReturnType
180    x() const { return (*this)[0]; }
181
182    /** equivalent to operator[](1).  */
183
184    EIGEN_STRONG_INLINE CoeffReturnType
185    y() const { return (*this)[1]; }
186
187    /** equivalent to operator[](2).  */
188
189    EIGEN_STRONG_INLINE CoeffReturnType
190    z() const { return (*this)[2]; }
191
192    /** equivalent to operator[](3).  */
193
194    EIGEN_STRONG_INLINE CoeffReturnType
195    w() const { return (*this)[3]; }
196
197    /** \internal
198      * \returns the packet of coefficients starting at the given row and column. It is your responsibility
199      * to ensure that a packet really starts there. This method is only available on expressions having the
200      * PacketAccessBit.
201      *
202      * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
203      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
204      * starting at an address which is a multiple of the packet size.
205      */
206
207    template<int LoadMode>
208    EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
209    {
210      eigen_internal_assert(row >= 0 && row < rows()
211                      && col >= 0 && col < cols());
212      return derived().template packet<LoadMode>(row,col);
213    }
214
215
216    /** \internal */
217    template<int LoadMode>
218    EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const
219    {
220      return packet<LoadMode>(rowIndexByOuterInner(outer, inner),
221                              colIndexByOuterInner(outer, inner));
222    }
223
224    /** \internal
225      * \returns the packet of coefficients starting at the given index. It is your responsibility
226      * to ensure that a packet really starts there. This method is only available on expressions having the
227      * PacketAccessBit and the LinearAccessBit.
228      *
229      * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
230      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
231      * starting at an address which is a multiple of the packet size.
232      */
233
234    template<int LoadMode>
235    EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
236    {
237      eigen_internal_assert(index >= 0 && index < size());
238      return derived().template packet<LoadMode>(index);
239    }
240
241  protected:
242    // explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase.
243    // But some methods are only available in the DirectAccess case.
244    // So we add dummy methods here with these names, so that "using... " doesn't fail.
245    // It's not private so that the child class DenseBase can access them, and it's not public
246    // either since it's an implementation detail, so has to be protected.
247    void coeffRef();
248    void coeffRefByOuterInner();
249    void writePacket();
250    void writePacketByOuterInner();
251    void copyCoeff();
252    void copyCoeffByOuterInner();
253    void copyPacket();
254    void copyPacketByOuterInner();
255    void stride();
256    void innerStride();
257    void outerStride();
258    void rowStride();
259    void colStride();
260};
261
262/** \brief Base class providing read/write coefficient access to matrices and arrays.
263  * \ingroup Core_Module
264  * \tparam Derived Type of the derived class
265  * \tparam #WriteAccessors Constant indicating read/write access
266  *
267  * This class defines the non-const \c operator() function and friends, which can be used to write specific
268  * entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which
269  * defines the const variant for reading specific entries.
270  *
271  * \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy
272  */
273template<typename Derived>
274class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
275{
276  public:
277
278    typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
279
280    typedef typename internal::traits<Derived>::StorageKind StorageKind;
281    typedef typename internal::traits<Derived>::Index Index;
282    typedef typename internal::traits<Derived>::Scalar Scalar;
283    typedef typename internal::packet_traits<Scalar>::type PacketScalar;
284    typedef typename NumTraits<Scalar>::Real RealScalar;
285
286    using Base::coeff;
287    using Base::rows;
288    using Base::cols;
289    using Base::size;
290    using Base::derived;
291    using Base::rowIndexByOuterInner;
292    using Base::colIndexByOuterInner;
293    using Base::operator[];
294    using Base::operator();
295    using Base::x;
296    using Base::y;
297    using Base::z;
298    using Base::w;
299
300    /** Short version: don't use this function, use
301      * \link operator()(Index,Index) \endlink instead.
302      *
303      * Long version: this function is similar to
304      * \link operator()(Index,Index) \endlink, but without the assertion.
305      * Use this for limiting the performance cost of debugging code when doing
306      * repeated coefficient access. Only use this when it is guaranteed that the
307      * parameters \a row and \a col are in range.
308      *
309      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
310      * function equivalent to \link operator()(Index,Index) \endlink.
311      *
312      * \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index)
313      */
314    EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
315    {
316      eigen_internal_assert(row >= 0 && row < rows()
317                        && col >= 0 && col < cols());
318      return derived().coeffRef(row, col);
319    }
320
321    EIGEN_STRONG_INLINE Scalar&
322    coeffRefByOuterInner(Index outer, Index inner)
323    {
324      return coeffRef(rowIndexByOuterInner(outer, inner),
325                      colIndexByOuterInner(outer, inner));
326    }
327
328    /** \returns a reference to the coefficient at given the given row and column.
329      *
330      * \sa operator[](Index)
331      */
332
333    EIGEN_STRONG_INLINE Scalar&
334    operator()(Index row, Index col)
335    {
336      eigen_assert(row >= 0 && row < rows()
337          && col >= 0 && col < cols());
338      return derived().coeffRef(row, col);
339    }
340
341
342    /** Short version: don't use this function, use
343      * \link operator[](Index) \endlink instead.
344      *
345      * Long version: this function is similar to
346      * \link operator[](Index) \endlink, but without the assertion.
347      * Use this for limiting the performance cost of debugging code when doing
348      * repeated coefficient access. Only use this when it is guaranteed that the
349      * parameters \a row and \a col are in range.
350      *
351      * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
352      * function equivalent to \link operator[](Index) \endlink.
353      *
354      * \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index)
355      */
356
357    EIGEN_STRONG_INLINE Scalar&
358    coeffRef(Index index)
359    {
360      eigen_internal_assert(index >= 0 && index < size());
361      return derived().coeffRef(index);
362    }
363
364    /** \returns a reference to the coefficient at given index.
365      *
366      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
367      *
368      * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
369      */
370
371    EIGEN_STRONG_INLINE Scalar&
372    operator[](Index index)
373    {
374      #ifndef EIGEN2_SUPPORT
375      EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
376                          THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
377      #endif
378      eigen_assert(index >= 0 && index < size());
379      return derived().coeffRef(index);
380    }
381
382    /** \returns a reference to the coefficient at given index.
383      *
384      * This is synonymous to operator[](Index).
385      *
386      * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
387      *
388      * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
389      */
390
391    EIGEN_STRONG_INLINE Scalar&
392    operator()(Index index)
393    {
394      eigen_assert(index >= 0 && index < size());
395      return derived().coeffRef(index);
396    }
397
398    /** equivalent to operator[](0).  */
399
400    EIGEN_STRONG_INLINE Scalar&
401    x() { return (*this)[0]; }
402
403    /** equivalent to operator[](1).  */
404
405    EIGEN_STRONG_INLINE Scalar&
406    y() { return (*this)[1]; }
407
408    /** equivalent to operator[](2).  */
409
410    EIGEN_STRONG_INLINE Scalar&
411    z() { return (*this)[2]; }
412
413    /** equivalent to operator[](3).  */
414
415    EIGEN_STRONG_INLINE Scalar&
416    w() { return (*this)[3]; }
417
418    /** \internal
419      * Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility
420      * to ensure that a packet really starts there. This method is only available on expressions having the
421      * PacketAccessBit.
422      *
423      * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
424      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
425      * starting at an address which is a multiple of the packet size.
426      */
427
428    template<int StoreMode>
429    EIGEN_STRONG_INLINE void writePacket
430    (Index row, Index col, const typename internal::packet_traits<Scalar>::type& val)
431    {
432      eigen_internal_assert(row >= 0 && row < rows()
433                        && col >= 0 && col < cols());
434      derived().template writePacket<StoreMode>(row,col,val);
435    }
436
437
438    /** \internal */
439    template<int StoreMode>
440    EIGEN_STRONG_INLINE void writePacketByOuterInner
441    (Index outer, Index inner, const typename internal::packet_traits<Scalar>::type& val)
442    {
443      writePacket<StoreMode>(rowIndexByOuterInner(outer, inner),
444                            colIndexByOuterInner(outer, inner),
445                            val);
446    }
447
448    /** \internal
449      * Stores the given packet of coefficients, at the given index in this expression. It is your responsibility
450      * to ensure that a packet really starts there. This method is only available on expressions having the
451      * PacketAccessBit and the LinearAccessBit.
452      *
453      * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
454      * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
455      * starting at an address which is a multiple of the packet size.
456      */
457    template<int StoreMode>
458    EIGEN_STRONG_INLINE void writePacket
459    (Index index, const typename internal::packet_traits<Scalar>::type& val)
460    {
461      eigen_internal_assert(index >= 0 && index < size());
462      derived().template writePacket<StoreMode>(index,val);
463    }
464
465#ifndef EIGEN_PARSED_BY_DOXYGEN
466
467    /** \internal Copies the coefficient at position (row,col) of other into *this.
468      *
469      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
470      * with usual assignments.
471      *
472      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
473      */
474
475    template<typename OtherDerived>
476    EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
477    {
478      eigen_internal_assert(row >= 0 && row < rows()
479                        && col >= 0 && col < cols());
480      derived().coeffRef(row, col) = other.derived().coeff(row, col);
481    }
482
483    /** \internal Copies the coefficient at the given index of other into *this.
484      *
485      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
486      * with usual assignments.
487      *
488      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
489      */
490
491    template<typename OtherDerived>
492    EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
493    {
494      eigen_internal_assert(index >= 0 && index < size());
495      derived().coeffRef(index) = other.derived().coeff(index);
496    }
497
498
499    template<typename OtherDerived>
500    EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
501    {
502      const Index row = rowIndexByOuterInner(outer,inner);
503      const Index col = colIndexByOuterInner(outer,inner);
504      // derived() is important here: copyCoeff() may be reimplemented in Derived!
505      derived().copyCoeff(row, col, other);
506    }
507
508    /** \internal Copies the packet at position (row,col) of other into *this.
509      *
510      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
511      * with usual assignments.
512      *
513      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
514      */
515
516    template<typename OtherDerived, int StoreMode, int LoadMode>
517    EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
518    {
519      eigen_internal_assert(row >= 0 && row < rows()
520                        && col >= 0 && col < cols());
521      derived().template writePacket<StoreMode>(row, col,
522        other.derived().template packet<LoadMode>(row, col));
523    }
524
525    /** \internal Copies the packet at the given index of other into *this.
526      *
527      * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
528      * with usual assignments.
529      *
530      * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
531      */
532
533    template<typename OtherDerived, int StoreMode, int LoadMode>
534    EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase<OtherDerived>& other)
535    {
536      eigen_internal_assert(index >= 0 && index < size());
537      derived().template writePacket<StoreMode>(index,
538        other.derived().template packet<LoadMode>(index));
539    }
540
541    /** \internal */
542    template<typename OtherDerived, int StoreMode, int LoadMode>
543    EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
544    {
545      const Index row = rowIndexByOuterInner(outer,inner);
546      const Index col = colIndexByOuterInner(outer,inner);
547      // derived() is important here: copyCoeff() may be reimplemented in Derived!
548      derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other);
549    }
550#endif
551
552};
553
554/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
555  * \ingroup Core_Module
556  * \tparam Derived Type of the derived class
557  * \tparam #DirectAccessors Constant indicating direct access
558  *
559  * This class defines functions to work with strides which can be used to access entries directly. This class
560  * inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using
561  * \c operator() .
562  *
563  * \sa \ref TopicClassHierarchy
564  */
565template<typename Derived>
566class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
567{
568  public:
569
570    typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
571    typedef typename internal::traits<Derived>::Index Index;
572    typedef typename internal::traits<Derived>::Scalar Scalar;
573    typedef typename NumTraits<Scalar>::Real RealScalar;
574
575    using Base::rows;
576    using Base::cols;
577    using Base::size;
578    using Base::derived;
579
580    /** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
581      *
582      * \sa outerStride(), rowStride(), colStride()
583      */
584    inline Index innerStride() const
585    {
586      return derived().innerStride();
587    }
588
589    /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
590      *          in a column-major matrix).
591      *
592      * \sa innerStride(), rowStride(), colStride()
593      */
594    inline Index outerStride() const
595    {
596      return derived().outerStride();
597    }
598
599    // FIXME shall we remove it ?
600    inline Index stride() const
601    {
602      return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
603    }
604
605    /** \returns the pointer increment between two consecutive rows.
606      *
607      * \sa innerStride(), outerStride(), colStride()
608      */
609    inline Index rowStride() const
610    {
611      return Derived::IsRowMajor ? outerStride() : innerStride();
612    }
613
614    /** \returns the pointer increment between two consecutive columns.
615      *
616      * \sa innerStride(), outerStride(), rowStride()
617      */
618    inline Index colStride() const
619    {
620      return Derived::IsRowMajor ? innerStride() : outerStride();
621    }
622};
623
624/** \brief Base class providing direct read/write coefficient access to matrices and arrays.
625  * \ingroup Core_Module
626  * \tparam Derived Type of the derived class
627  * \tparam #DirectWriteAccessors Constant indicating direct access
628  *
629  * This class defines functions to work with strides which can be used to access entries directly. This class
630  * inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using
631  * \c operator().
632  *
633  * \sa \ref TopicClassHierarchy
634  */
635template<typename Derived>
636class DenseCoeffsBase<Derived, DirectWriteAccessors>
637  : public DenseCoeffsBase<Derived, WriteAccessors>
638{
639  public:
640
641    typedef DenseCoeffsBase<Derived, WriteAccessors> Base;
642    typedef typename internal::traits<Derived>::Index Index;
643    typedef typename internal::traits<Derived>::Scalar Scalar;
644    typedef typename NumTraits<Scalar>::Real RealScalar;
645
646    using Base::rows;
647    using Base::cols;
648    using Base::size;
649    using Base::derived;
650
651    /** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
652      *
653      * \sa outerStride(), rowStride(), colStride()
654      */
655    inline Index innerStride() const
656    {
657      return derived().innerStride();
658    }
659
660    /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
661      *          in a column-major matrix).
662      *
663      * \sa innerStride(), rowStride(), colStride()
664      */
665    inline Index outerStride() const
666    {
667      return derived().outerStride();
668    }
669
670    // FIXME shall we remove it ?
671    inline Index stride() const
672    {
673      return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
674    }
675
676    /** \returns the pointer increment between two consecutive rows.
677      *
678      * \sa innerStride(), outerStride(), colStride()
679      */
680    inline Index rowStride() const
681    {
682      return Derived::IsRowMajor ? outerStride() : innerStride();
683    }
684
685    /** \returns the pointer increment between two consecutive columns.
686      *
687      * \sa innerStride(), outerStride(), rowStride()
688      */
689    inline Index colStride() const
690    {
691      return Derived::IsRowMajor ? innerStride() : outerStride();
692    }
693};
694
695namespace internal {
696
697template<typename Derived, bool JustReturnZero>
698struct first_aligned_impl
699{
700  static inline typename Derived::Index run(const Derived&)
701  { return 0; }
702};
703
704template<typename Derived>
705struct first_aligned_impl<Derived, false>
706{
707  static inline typename Derived::Index run(const Derived& m)
708  {
709    return internal::first_aligned(&m.const_cast_derived().coeffRef(0,0), m.size());
710  }
711};
712
713/** \internal \returns the index of the first element of the array that is well aligned for vectorization.
714  *
715  * There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more
716  * documentation.
717  */
718template<typename Derived>
719static inline typename Derived::Index first_aligned(const Derived& m)
720{
721  return first_aligned_impl
722          <Derived, (Derived::Flags & AlignedBit) || !(Derived::Flags & DirectAccessBit)>
723          ::run(m);
724}
725
726template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
727struct inner_stride_at_compile_time
728{
729  enum { ret = traits<Derived>::InnerStrideAtCompileTime };
730};
731
732template<typename Derived>
733struct inner_stride_at_compile_time<Derived, false>
734{
735  enum { ret = 0 };
736};
737
738template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
739struct outer_stride_at_compile_time
740{
741  enum { ret = traits<Derived>::OuterStrideAtCompileTime };
742};
743
744template<typename Derived>
745struct outer_stride_at_compile_time<Derived, false>
746{
747  enum { ret = 0 };
748};
749
750} // end namespace internal
751
752} // end namespace Eigen
753
754#endif // EIGEN_DENSECOEFFSBASE_H
755