Complex.h revision c981c48f5bc9aefeffc0bcb0cc3934c2fae179dd
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_COMPLEX_NEON_H
11#define EIGEN_COMPLEX_NEON_H
12
13namespace Eigen {
14
15namespace internal {
16
17static uint32x4_t p4ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET4(0x00000000, 0x80000000, 0x00000000, 0x80000000);
18static uint32x2_t p2ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x00000000, 0x80000000);
19
20//---------- float ----------
21struct Packet2cf
22{
23  EIGEN_STRONG_INLINE Packet2cf() {}
24  EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {}
25  Packet4f  v;
26};
27
28template<> struct packet_traits<std::complex<float> >  : default_packet_traits
29{
30  typedef Packet2cf type;
31  enum {
32    Vectorizable = 1,
33    AlignedOnScalar = 1,
34    size = 2,
35
36    HasAdd    = 1,
37    HasSub    = 1,
38    HasMul    = 1,
39    HasDiv    = 1,
40    HasNegate = 1,
41    HasAbs    = 0,
42    HasAbs2   = 0,
43    HasMin    = 0,
44    HasMax    = 0,
45    HasSetLinear = 0
46  };
47};
48
49template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
50
51template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>&  from)
52{
53  float32x2_t r64;
54  r64 = vld1_f32((float *)&from);
55
56  return Packet2cf(vcombine_f32(r64, r64));
57}
58
59template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(padd<Packet4f>(a.v,b.v)); }
60template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(psub<Packet4f>(a.v,b.v)); }
61template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate<Packet4f>(a.v)); }
62template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
63{
64  Packet4ui b = vreinterpretq_u32_f32(a.v);
65  return Packet2cf(vreinterpretq_f32_u32(veorq_u32(b, p4ui_CONJ_XOR)));
66}
67
68template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
69{
70  Packet4f v1, v2;
71  float32x2_t a_lo, a_hi;
72
73  // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
74  v1 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 0), vdup_lane_f32(vget_high_f32(a.v), 0));
75  // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
76  v2 = vcombine_f32(vdup_lane_f32(vget_low_f32(a.v), 1), vdup_lane_f32(vget_high_f32(a.v), 1));
77  // Multiply the real a with b
78  v1 = vmulq_f32(v1, b.v);
79  // Multiply the imag a with b
80  v2 = vmulq_f32(v2, b.v);
81  // Conjugate v2
82  v2 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(v2), p4ui_CONJ_XOR));
83  // Swap real/imag elements in v2.
84  a_lo = vrev64_f32(vget_low_f32(v2));
85  a_hi = vrev64_f32(vget_high_f32(v2));
86  v2 = vcombine_f32(a_lo, a_hi);
87  // Add and return the result
88  return Packet2cf(vaddq_f32(v1, v2));
89}
90
91template<> EIGEN_STRONG_INLINE Packet2cf pand   <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
92{
93  return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
94}
95template<> EIGEN_STRONG_INLINE Packet2cf por    <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
96{
97  return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
98}
99template<> EIGEN_STRONG_INLINE Packet2cf pxor   <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
100{
101  return Packet2cf(vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
102}
103template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
104{
105  return Packet2cf(vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
106}
107
108template<> EIGEN_STRONG_INLINE Packet2cf pload<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>((const float*)from)); }
109template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>((const float*)from)); }
110
111template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
112
113template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); }
114template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> *   to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); }
115
116template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> *   addr) { __pld((float *)addr); }
117
118template<> EIGEN_STRONG_INLINE std::complex<float>  pfirst<Packet2cf>(const Packet2cf& a)
119{
120  std::complex<float> EIGEN_ALIGN16 x[2];
121  vst1q_f32((float *)x, a.v);
122  return x[0];
123}
124
125template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
126{
127  float32x2_t a_lo, a_hi;
128  Packet4f a_r128;
129
130  a_lo = vget_low_f32(a.v);
131  a_hi = vget_high_f32(a.v);
132  a_r128 = vcombine_f32(a_hi, a_lo);
133
134  return Packet2cf(a_r128);
135}
136
137template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& a)
138{
139  return Packet2cf(vrev64q_f32(a.v));
140}
141
142template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
143{
144  float32x2_t a1, a2;
145  std::complex<float> s;
146
147  a1 = vget_low_f32(a.v);
148  a2 = vget_high_f32(a.v);
149  a2 = vadd_f32(a1, a2);
150  vst1_f32((float *)&s, a2);
151
152  return s;
153}
154
155template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
156{
157  Packet4f sum1, sum2, sum;
158
159  // Add the first two 64-bit float32x2_t of vecs[0]
160  sum1 = vcombine_f32(vget_low_f32(vecs[0].v), vget_low_f32(vecs[1].v));
161  sum2 = vcombine_f32(vget_high_f32(vecs[0].v), vget_high_f32(vecs[1].v));
162  sum = vaddq_f32(sum1, sum2);
163
164  return Packet2cf(sum);
165}
166
167template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
168{
169  float32x2_t a1, a2, v1, v2, prod;
170  std::complex<float> s;
171
172  a1 = vget_low_f32(a.v);
173  a2 = vget_high_f32(a.v);
174   // Get the real values of a | a1_re | a1_re | a2_re | a2_re |
175  v1 = vdup_lane_f32(a1, 0);
176  // Get the real values of a | a1_im | a1_im | a2_im | a2_im |
177  v2 = vdup_lane_f32(a1, 1);
178  // Multiply the real a with b
179  v1 = vmul_f32(v1, a2);
180  // Multiply the imag a with b
181  v2 = vmul_f32(v2, a2);
182  // Conjugate v2
183  v2 = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(v2), p2ui_CONJ_XOR));
184  // Swap real/imag elements in v2.
185  v2 = vrev64_f32(v2);
186  // Add v1, v2
187  prod = vadd_f32(v1, v2);
188
189  vst1_f32((float *)&s, prod);
190
191  return s;
192}
193
194template<int Offset>
195struct palign_impl<Offset,Packet2cf>
196{
197  EIGEN_STRONG_INLINE static void run(Packet2cf& first, const Packet2cf& second)
198  {
199    if (Offset==1)
200    {
201      first.v = vextq_f32(first.v, second.v, 2);
202    }
203  }
204};
205
206template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
207{
208  EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
209  { return padd(pmul(x,y),c); }
210
211  EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
212  {
213    return internal::pmul(a, pconj(b));
214  }
215};
216
217template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
218{
219  EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
220  { return padd(pmul(x,y),c); }
221
222  EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
223  {
224    return internal::pmul(pconj(a), b);
225  }
226};
227
228template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
229{
230  EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
231  { return padd(pmul(x,y),c); }
232
233  EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
234  {
235    return pconj(internal::pmul(a, b));
236  }
237};
238
239template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
240{
241  // TODO optimize it for AltiVec
242  Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
243  Packet4f s, rev_s;
244  float32x2_t a_lo, a_hi;
245
246  // this computes the norm
247  s = vmulq_f32(b.v, b.v);
248  a_lo = vrev64_f32(vget_low_f32(s));
249  a_hi = vrev64_f32(vget_high_f32(s));
250  rev_s = vcombine_f32(a_lo, a_hi);
251
252  return Packet2cf(pdiv(res.v, vaddq_f32(s,rev_s)));
253}
254
255} // end namespace internal
256
257} // end namespace Eigen
258
259#endif // EIGEN_COMPLEX_NEON_H
260