1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2007 Julien Pommier
5// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11/* The sin, cos, exp, and log functions of this file come from
12 * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
13 */
14
15#ifndef EIGEN_MATH_FUNCTIONS_SSE_H
16#define EIGEN_MATH_FUNCTIONS_SSE_H
17
18namespace Eigen {
19
20namespace internal {
21
22template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
23Packet4f plog<Packet4f>(const Packet4f& _x)
24{
25  Packet4f x = _x;
26  _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
27  _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
28  _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
29
30  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);
31
32  /* the smallest non denormalized float number */
33  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos,  0x00800000);
34  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf,     0xff800000);//-1.f/0.f);
35
36  /* natural logarithm computed for 4 simultaneous float
37    return NaN for x <= 0
38  */
39  _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
40  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
41  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
42  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
43  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
44  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
45  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
46  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
47  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
48  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
49  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
50  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
51
52
53  Packet4i emm0;
54
55  Packet4f invalid_mask = _mm_cmplt_ps(x, _mm_setzero_ps());
56  Packet4f iszero_mask = _mm_cmpeq_ps(x, _mm_setzero_ps());
57
58  x = pmax(x, p4f_min_norm_pos);  /* cut off denormalized stuff */
59  emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
60
61  /* keep only the fractional part */
62  x = _mm_and_ps(x, p4f_inv_mant_mask);
63  x = _mm_or_ps(x, p4f_half);
64
65  emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
66  Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1);
67
68  /* part2:
69     if( x < SQRTHF ) {
70       e -= 1;
71       x = x + x - 1.0;
72     } else { x = x - 1.0; }
73  */
74  Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
75  Packet4f tmp = _mm_and_ps(x, mask);
76  x = psub(x, p4f_1);
77  e = psub(e, _mm_and_ps(p4f_1, mask));
78  x = padd(x, tmp);
79
80  Packet4f x2 = pmul(x,x);
81  Packet4f x3 = pmul(x2,x);
82
83  Packet4f y, y1, y2;
84  y  = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
85  y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
86  y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
87  y  = pmadd(y , x, p4f_cephes_log_p2);
88  y1 = pmadd(y1, x, p4f_cephes_log_p5);
89  y2 = pmadd(y2, x, p4f_cephes_log_p8);
90  y = pmadd(y, x3, y1);
91  y = pmadd(y, x3, y2);
92  y = pmul(y, x3);
93
94  y1 = pmul(e, p4f_cephes_log_q1);
95  tmp = pmul(x2, p4f_half);
96  y = padd(y, y1);
97  x = psub(x, tmp);
98  y2 = pmul(e, p4f_cephes_log_q2);
99  x = padd(x, y);
100  x = padd(x, y2);
101  // negative arg will be NAN, 0 will be -INF
102  return _mm_or_ps(_mm_andnot_ps(iszero_mask, _mm_or_ps(x, invalid_mask)),
103                   _mm_and_ps(iszero_mask, p4f_minus_inf));
104}
105
106template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
107Packet4f pexp<Packet4f>(const Packet4f& _x)
108{
109  Packet4f x = _x;
110  _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
111  _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
112  _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
113
114
115  _EIGEN_DECLARE_CONST_Packet4f(exp_hi,  88.3762626647950f);
116  _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
117
118  _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
119  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
120  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
121
122  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
123  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
124  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
125  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
126  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
127  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
128
129  Packet4f tmp = _mm_setzero_ps(), fx;
130  Packet4i emm0;
131
132  // clamp x
133  x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);
134
135  /* express exp(x) as exp(g + n*log(2)) */
136  fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);
137
138#ifdef EIGEN_VECTORIZE_SSE4_1
139  fx = _mm_floor_ps(fx);
140#else
141  emm0 = _mm_cvttps_epi32(fx);
142  tmp  = _mm_cvtepi32_ps(emm0);
143  /* if greater, substract 1 */
144  Packet4f mask = _mm_cmpgt_ps(tmp, fx);
145  mask = _mm_and_ps(mask, p4f_1);
146  fx = psub(tmp, mask);
147#endif
148
149  tmp = pmul(fx, p4f_cephes_exp_C1);
150  Packet4f z = pmul(fx, p4f_cephes_exp_C2);
151  x = psub(x, tmp);
152  x = psub(x, z);
153
154  z = pmul(x,x);
155
156  Packet4f y = p4f_cephes_exp_p0;
157  y = pmadd(y, x, p4f_cephes_exp_p1);
158  y = pmadd(y, x, p4f_cephes_exp_p2);
159  y = pmadd(y, x, p4f_cephes_exp_p3);
160  y = pmadd(y, x, p4f_cephes_exp_p4);
161  y = pmadd(y, x, p4f_cephes_exp_p5);
162  y = pmadd(y, z, x);
163  y = padd(y, p4f_1);
164
165  // build 2^n
166  emm0 = _mm_cvttps_epi32(fx);
167  emm0 = _mm_add_epi32(emm0, p4i_0x7f);
168  emm0 = _mm_slli_epi32(emm0, 23);
169  return pmul(y, _mm_castsi128_ps(emm0));
170}
171template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
172Packet2d pexp<Packet2d>(const Packet2d& _x)
173{
174  Packet2d x = _x;
175
176  _EIGEN_DECLARE_CONST_Packet2d(1 , 1.0);
177  _EIGEN_DECLARE_CONST_Packet2d(2 , 2.0);
178  _EIGEN_DECLARE_CONST_Packet2d(half, 0.5);
179
180  _EIGEN_DECLARE_CONST_Packet2d(exp_hi,  709.437);
181  _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303);
182
183  _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
184
185  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
186  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
187  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
188
189  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
190  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
191  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
192  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
193
194  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
195  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
196  static const __m128i p4i_1023_0 = _mm_setr_epi32(1023, 1023, 0, 0);
197
198  Packet2d tmp = _mm_setzero_pd(), fx;
199  Packet4i emm0;
200
201  // clamp x
202  x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo);
203  /* express exp(x) as exp(g + n*log(2)) */
204  fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half);
205
206#ifdef EIGEN_VECTORIZE_SSE4_1
207  fx = _mm_floor_pd(fx);
208#else
209  emm0 = _mm_cvttpd_epi32(fx);
210  tmp  = _mm_cvtepi32_pd(emm0);
211  /* if greater, substract 1 */
212  Packet2d mask = _mm_cmpgt_pd(tmp, fx);
213  mask = _mm_and_pd(mask, p2d_1);
214  fx = psub(tmp, mask);
215#endif
216
217  tmp = pmul(fx, p2d_cephes_exp_C1);
218  Packet2d z = pmul(fx, p2d_cephes_exp_C2);
219  x = psub(x, tmp);
220  x = psub(x, z);
221
222  Packet2d x2 = pmul(x,x);
223
224  Packet2d px = p2d_cephes_exp_p0;
225  px = pmadd(px, x2, p2d_cephes_exp_p1);
226  px = pmadd(px, x2, p2d_cephes_exp_p2);
227  px = pmul (px, x);
228
229  Packet2d qx = p2d_cephes_exp_q0;
230  qx = pmadd(qx, x2, p2d_cephes_exp_q1);
231  qx = pmadd(qx, x2, p2d_cephes_exp_q2);
232  qx = pmadd(qx, x2, p2d_cephes_exp_q3);
233
234  x = pdiv(px,psub(qx,px));
235  x = pmadd(p2d_2,x,p2d_1);
236
237  // build 2^n
238  emm0 = _mm_cvttpd_epi32(fx);
239  emm0 = _mm_add_epi32(emm0, p4i_1023_0);
240  emm0 = _mm_slli_epi32(emm0, 20);
241  emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(1,2,0,3));
242  return pmul(x, _mm_castsi128_pd(emm0));
243}
244
245/* evaluation of 4 sines at onces, using SSE2 intrinsics.
246
247   The code is the exact rewriting of the cephes sinf function.
248   Precision is excellent as long as x < 8192 (I did not bother to
249   take into account the special handling they have for greater values
250   -- it does not return garbage for arguments over 8192, though, but
251   the extra precision is missing).
252
253   Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
254   surprising but correct result.
255*/
256
257template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
258Packet4f psin<Packet4f>(const Packet4f& _x)
259{
260  Packet4f x = _x;
261  _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
262  _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
263
264  _EIGEN_DECLARE_CONST_Packet4i(1, 1);
265  _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
266  _EIGEN_DECLARE_CONST_Packet4i(2, 2);
267  _EIGEN_DECLARE_CONST_Packet4i(4, 4);
268
269  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
270
271  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
272  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
273  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
274  _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
275  _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
276  _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
277  _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
278  _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
279  _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
280  _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
281
282  Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
283
284  Packet4i emm0, emm2;
285  sign_bit = x;
286  /* take the absolute value */
287  x = pabs(x);
288
289  /* take the modulo */
290
291  /* extract the sign bit (upper one) */
292  sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask);
293
294  /* scale by 4/Pi */
295  y = pmul(x, p4f_cephes_FOPI);
296
297  /* store the integer part of y in mm0 */
298  emm2 = _mm_cvttps_epi32(y);
299  /* j=(j+1) & (~1) (see the cephes sources) */
300  emm2 = _mm_add_epi32(emm2, p4i_1);
301  emm2 = _mm_and_si128(emm2, p4i_not1);
302  y = _mm_cvtepi32_ps(emm2);
303  /* get the swap sign flag */
304  emm0 = _mm_and_si128(emm2, p4i_4);
305  emm0 = _mm_slli_epi32(emm0, 29);
306  /* get the polynom selection mask
307     there is one polynom for 0 <= x <= Pi/4
308     and another one for Pi/4<x<=Pi/2
309
310     Both branches will be computed.
311  */
312  emm2 = _mm_and_si128(emm2, p4i_2);
313  emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
314
315  Packet4f swap_sign_bit = _mm_castsi128_ps(emm0);
316  Packet4f poly_mask = _mm_castsi128_ps(emm2);
317  sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
318
319  /* The magic pass: "Extended precision modular arithmetic"
320     x = ((x - y * DP1) - y * DP2) - y * DP3; */
321  xmm1 = pmul(y, p4f_minus_cephes_DP1);
322  xmm2 = pmul(y, p4f_minus_cephes_DP2);
323  xmm3 = pmul(y, p4f_minus_cephes_DP3);
324  x = padd(x, xmm1);
325  x = padd(x, xmm2);
326  x = padd(x, xmm3);
327
328  /* Evaluate the first polynom  (0 <= x <= Pi/4) */
329  y = p4f_coscof_p0;
330  Packet4f z = _mm_mul_ps(x,x);
331
332  y = pmadd(y, z, p4f_coscof_p1);
333  y = pmadd(y, z, p4f_coscof_p2);
334  y = pmul(y, z);
335  y = pmul(y, z);
336  Packet4f tmp = pmul(z, p4f_half);
337  y = psub(y, tmp);
338  y = padd(y, p4f_1);
339
340  /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
341
342  Packet4f y2 = p4f_sincof_p0;
343  y2 = pmadd(y2, z, p4f_sincof_p1);
344  y2 = pmadd(y2, z, p4f_sincof_p2);
345  y2 = pmul(y2, z);
346  y2 = pmul(y2, x);
347  y2 = padd(y2, x);
348
349  /* select the correct result from the two polynoms */
350  y2 = _mm_and_ps(poly_mask, y2);
351  y = _mm_andnot_ps(poly_mask, y);
352  y = _mm_or_ps(y,y2);
353  /* update the sign */
354  return _mm_xor_ps(y, sign_bit);
355}
356
357/* almost the same as psin */
358template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
359Packet4f pcos<Packet4f>(const Packet4f& _x)
360{
361  Packet4f x = _x;
362  _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
363  _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
364
365  _EIGEN_DECLARE_CONST_Packet4i(1, 1);
366  _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
367  _EIGEN_DECLARE_CONST_Packet4i(2, 2);
368  _EIGEN_DECLARE_CONST_Packet4i(4, 4);
369
370  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
371  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
372  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
373  _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
374  _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
375  _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
376  _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
377  _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
378  _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
379  _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
380
381  Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
382  Packet4i emm0, emm2;
383
384  x = pabs(x);
385
386  /* scale by 4/Pi */
387  y = pmul(x, p4f_cephes_FOPI);
388
389  /* get the integer part of y */
390  emm2 = _mm_cvttps_epi32(y);
391  /* j=(j+1) & (~1) (see the cephes sources) */
392  emm2 = _mm_add_epi32(emm2, p4i_1);
393  emm2 = _mm_and_si128(emm2, p4i_not1);
394  y = _mm_cvtepi32_ps(emm2);
395
396  emm2 = _mm_sub_epi32(emm2, p4i_2);
397
398  /* get the swap sign flag */
399  emm0 = _mm_andnot_si128(emm2, p4i_4);
400  emm0 = _mm_slli_epi32(emm0, 29);
401  /* get the polynom selection mask */
402  emm2 = _mm_and_si128(emm2, p4i_2);
403  emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
404
405  Packet4f sign_bit = _mm_castsi128_ps(emm0);
406  Packet4f poly_mask = _mm_castsi128_ps(emm2);
407
408  /* The magic pass: "Extended precision modular arithmetic"
409     x = ((x - y * DP1) - y * DP2) - y * DP3; */
410  xmm1 = pmul(y, p4f_minus_cephes_DP1);
411  xmm2 = pmul(y, p4f_minus_cephes_DP2);
412  xmm3 = pmul(y, p4f_minus_cephes_DP3);
413  x = padd(x, xmm1);
414  x = padd(x, xmm2);
415  x = padd(x, xmm3);
416
417  /* Evaluate the first polynom  (0 <= x <= Pi/4) */
418  y = p4f_coscof_p0;
419  Packet4f z = pmul(x,x);
420
421  y = pmadd(y,z,p4f_coscof_p1);
422  y = pmadd(y,z,p4f_coscof_p2);
423  y = pmul(y, z);
424  y = pmul(y, z);
425  Packet4f tmp = _mm_mul_ps(z, p4f_half);
426  y = psub(y, tmp);
427  y = padd(y, p4f_1);
428
429  /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
430  Packet4f y2 = p4f_sincof_p0;
431  y2 = pmadd(y2, z, p4f_sincof_p1);
432  y2 = pmadd(y2, z, p4f_sincof_p2);
433  y2 = pmul(y2, z);
434  y2 = pmadd(y2, x, x);
435
436  /* select the correct result from the two polynoms */
437  y2 = _mm_and_ps(poly_mask, y2);
438  y  = _mm_andnot_ps(poly_mask, y);
439  y  = _mm_or_ps(y,y2);
440
441  /* update the sign */
442  return _mm_xor_ps(y, sign_bit);
443}
444
445#if EIGEN_FAST_MATH
446
447// This is based on Quake3's fast inverse square root.
448// For detail see here: http://www.beyond3d.com/content/articles/8/
449// It lacks 1 (or 2 bits in some rare cases) of precision, and does not handle negative, +inf, or denormalized numbers correctly.
450template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
451Packet4f psqrt<Packet4f>(const Packet4f& _x)
452{
453  Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
454
455  /* select only the inverse sqrt of non-zero inputs */
456  Packet4f non_zero_mask = _mm_cmpge_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)()));
457  Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
458
459  x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
460  return pmul(_x,x);
461}
462
463#else
464
465template<> EIGEN_STRONG_INLINE Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }
466
467#endif
468
469template<> EIGEN_STRONG_INLINE Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); }
470
471} // end namespace internal
472
473} // end namespace Eigen
474
475#endif // EIGEN_MATH_FUNCTIONS_SSE_H
476