SelfadjointMatrixVector.h revision 7faaa9f3f0df9d23790277834d426c3d992ac3ba
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
11#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
12
13namespace Eigen {
14
15namespace internal {
16
17/* Optimized selfadjoint matrix * vector product:
18 * This algorithm processes 2 columns at onces that allows to both reduce
19 * the number of load/stores of the result by a factor 2 and to reduce
20 * the instruction dependency.
21 */
22
23template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version=Specialized>
24struct selfadjoint_matrix_vector_product;
25
26template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
27struct selfadjoint_matrix_vector_product
28
29{
30static EIGEN_DONT_INLINE void run(
31  Index size,
32  const Scalar*  lhs, Index lhsStride,
33  const Scalar* _rhs, Index rhsIncr,
34  Scalar* res,
35  Scalar alpha);
36};
37
38template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjugateLhs, bool ConjugateRhs, int Version>
39EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrder,UpLo,ConjugateLhs,ConjugateRhs,Version>::run(
40  Index size,
41  const Scalar*  lhs, Index lhsStride,
42  const Scalar* _rhs, Index rhsIncr,
43  Scalar* res,
44  Scalar alpha)
45{
46  typedef typename packet_traits<Scalar>::type Packet;
47  const Index PacketSize = sizeof(Packet)/sizeof(Scalar);
48
49  enum {
50    IsRowMajor = StorageOrder==RowMajor ? 1 : 0,
51    IsLower = UpLo == Lower ? 1 : 0,
52    FirstTriangular = IsRowMajor == IsLower
53  };
54
55  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> cj0;
56  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> cj1;
57  conj_helper<Scalar,Scalar,NumTraits<Scalar>::IsComplex, ConjugateRhs> cjd;
58
59  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs,  IsRowMajor), ConjugateRhs> pcj0;
60  conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(ConjugateLhs, !IsRowMajor), ConjugateRhs> pcj1;
61
62  Scalar cjAlpha = ConjugateRhs ? numext::conj(alpha) : alpha;
63
64  // FIXME this copy is now handled outside product_selfadjoint_vector, so it could probably be removed.
65  // if the rhs is not sequentially stored in memory we copy it to a temporary buffer,
66  // this is because we need to extract packets
67  ei_declare_aligned_stack_constructed_variable(Scalar,rhs,size,rhsIncr==1 ? const_cast<Scalar*>(_rhs) : 0);
68  if (rhsIncr!=1)
69  {
70    const Scalar* it = _rhs;
71    for (Index i=0; i<size; ++i, it+=rhsIncr)
72      rhs[i] = *it;
73  }
74
75  Index bound = (std::max)(Index(0),size-8) & 0xfffffffe;
76  if (FirstTriangular)
77    bound = size - bound;
78
79  for (Index j=FirstTriangular ? bound : 0;
80       j<(FirstTriangular ? size : bound);j+=2)
81  {
82    const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
83    const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
84
85    Scalar t0 = cjAlpha * rhs[j];
86    Packet ptmp0 = pset1<Packet>(t0);
87    Scalar t1 = cjAlpha * rhs[j+1];
88    Packet ptmp1 = pset1<Packet>(t1);
89
90    Scalar t2(0);
91    Packet ptmp2 = pset1<Packet>(t2);
92    Scalar t3(0);
93    Packet ptmp3 = pset1<Packet>(t3);
94
95    size_t starti = FirstTriangular ? 0 : j+2;
96    size_t endi   = FirstTriangular ? j : size;
97    size_t alignedStart = (starti) + internal::first_aligned(&res[starti], endi-starti);
98    size_t alignedEnd = alignedStart + ((endi-alignedStart)/(PacketSize))*(PacketSize);
99
100    // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
101    res[j]   += cjd.pmul(numext::real(A0[j]), t0);
102    res[j+1] += cjd.pmul(numext::real(A1[j+1]), t1);
103    if(FirstTriangular)
104    {
105      res[j]   += cj0.pmul(A1[j],   t1);
106      t3       += cj1.pmul(A1[j],   rhs[j]);
107    }
108    else
109    {
110      res[j+1] += cj0.pmul(A0[j+1],t0);
111      t2 += cj1.pmul(A0[j+1], rhs[j+1]);
112    }
113
114    for (size_t i=starti; i<alignedStart; ++i)
115    {
116      res[i] += t0 * A0[i] + t1 * A1[i];
117      t2 += numext::conj(A0[i]) * rhs[i];
118      t3 += numext::conj(A1[i]) * rhs[i];
119    }
120    // Yes this an optimization for gcc 4.3 and 4.4 (=> huge speed up)
121    // gcc 4.2 does this optimization automatically.
122    const Scalar* EIGEN_RESTRICT a0It  = A0  + alignedStart;
123    const Scalar* EIGEN_RESTRICT a1It  = A1  + alignedStart;
124    const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
125          Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
126    for (size_t i=alignedStart; i<alignedEnd; i+=PacketSize)
127    {
128      Packet A0i = ploadu<Packet>(a0It);  a0It  += PacketSize;
129      Packet A1i = ploadu<Packet>(a1It);  a1It  += PacketSize;
130      Packet Bi  = ploadu<Packet>(rhsIt); rhsIt += PacketSize; // FIXME should be aligned in most cases
131      Packet Xi  = pload <Packet>(resIt);
132
133      Xi    = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
134      ptmp2 = pcj1.pmadd(A0i,  Bi, ptmp2);
135      ptmp3 = pcj1.pmadd(A1i,  Bi, ptmp3);
136      pstore(resIt,Xi); resIt += PacketSize;
137    }
138    for (size_t i=alignedEnd; i<endi; i++)
139    {
140      res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
141      t2 += cj1.pmul(A0[i], rhs[i]);
142      t3 += cj1.pmul(A1[i], rhs[i]);
143    }
144
145    res[j]   += alpha * (t2 + predux(ptmp2));
146    res[j+1] += alpha * (t3 + predux(ptmp3));
147  }
148  for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
149  {
150    const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
151
152    Scalar t1 = cjAlpha * rhs[j];
153    Scalar t2(0);
154    // TODO make sure this product is a real * complex and that the rhs is properly conjugated if needed
155    res[j] += cjd.pmul(numext::real(A0[j]), t1);
156    for (Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
157    {
158      res[i] += cj0.pmul(A0[i], t1);
159      t2 += cj1.pmul(A0[i], rhs[i]);
160    }
161    res[j] += alpha * t2;
162  }
163}
164
165} // end namespace internal
166
167/***************************************************************************
168* Wrapper to product_selfadjoint_vector
169***************************************************************************/
170
171namespace internal {
172template<typename Lhs, int LhsMode, typename Rhs>
173struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
174  : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
175{};
176}
177
178template<typename Lhs, int LhsMode, typename Rhs>
179struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
180  : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
181{
182  EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
183
184  enum {
185    LhsUpLo = LhsMode&(Upper|Lower)
186  };
187
188  SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
189
190  template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
191  {
192    typedef typename Dest::Scalar ResScalar;
193    typedef typename Base::RhsScalar RhsScalar;
194    typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
195
196    eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());
197
198    typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
199    typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
200
201    Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
202                               * RhsBlasTraits::extractScalarFactor(m_rhs);
203
204    enum {
205      EvalToDest = (Dest::InnerStrideAtCompileTime==1),
206      UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
207    };
208
209    internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
210    internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;
211
212    ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
213                                                  EvalToDest ? dest.data() : static_dest.data());
214
215    ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,rhs.size(),
216        UseRhs ? const_cast<RhsScalar*>(rhs.data()) : static_rhs.data());
217
218    if(!EvalToDest)
219    {
220      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
221      int size = dest.size();
222      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
223      #endif
224      MappedDest(actualDestPtr, dest.size()) = dest;
225    }
226
227    if(!UseRhs)
228    {
229      #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
230      int size = rhs.size();
231      EIGEN_DENSE_STORAGE_CTOR_PLUGIN
232      #endif
233      Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
234    }
235
236
237    internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
238      (
239        lhs.rows(),                             // size
240        &lhs.coeffRef(0,0),  lhs.outerStride(), // lhs info
241        actualRhsPtr, 1,                        // rhs info
242        actualDestPtr,                          // result info
243        actualAlpha                             // scale factor
244      );
245
246    if(!EvalToDest)
247      dest = MappedDest(actualDestPtr, dest.size());
248  }
249};
250
251namespace internal {
252template<typename Lhs, typename Rhs, int RhsMode>
253struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
254  : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
255{};
256}
257
258template<typename Lhs, typename Rhs, int RhsMode>
259struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
260  : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
261{
262  EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
263
264  enum {
265    RhsUpLo = RhsMode&(Upper|Lower)
266  };
267
268  SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
269
270  template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
271  {
272    // let's simply transpose the product
273    Transpose<Dest> destT(dest);
274    SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
275                             Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
276  }
277};
278
279} // end namespace Eigen
280
281#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H
282