TriangularSolverMatrix.h revision c981c48f5bc9aefeffc0bcb0cc3934c2fae179dd
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H
11#define EIGEN_TRIANGULAR_SOLVER_MATRIX_H
12
13namespace Eigen {
14
15namespace internal {
16
17// if the rhs is row major, let's transpose the product
18template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder>
19struct triangular_solve_matrix<Scalar,Index,Side,Mode,Conjugate,TriStorageOrder,RowMajor>
20{
21  static EIGEN_DONT_INLINE void run(
22    Index size, Index cols,
23    const Scalar*  tri, Index triStride,
24    Scalar* _other, Index otherStride,
25    level3_blocking<Scalar,Scalar>& blocking)
26  {
27    triangular_solve_matrix<
28      Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft,
29      (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper),
30      NumTraits<Scalar>::IsComplex && Conjugate,
31      TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor>
32      ::run(size, cols, tri, triStride, _other, otherStride, blocking);
33  }
34};
35
36/* Optimized triangular solver with multiple right hand side and the triangular matrix on the left
37 */
38template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
39struct triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>
40{
41  static EIGEN_DONT_INLINE void run(
42    Index size, Index otherSize,
43    const Scalar* _tri, Index triStride,
44    Scalar* _other, Index otherStride,
45    level3_blocking<Scalar,Scalar>& blocking)
46  {
47    Index cols = otherSize;
48    const_blas_data_mapper<Scalar, Index, TriStorageOrder> tri(_tri,triStride);
49    blas_data_mapper<Scalar, Index, ColMajor> other(_other,otherStride);
50
51    typedef gebp_traits<Scalar,Scalar> Traits;
52    enum {
53      SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
54      IsLower = (Mode&Lower) == Lower
55    };
56
57    Index kc = blocking.kc();                   // cache block size along the K direction
58    Index mc = (std::min)(size,blocking.mc());  // cache block size along the M direction
59
60    std::size_t sizeA = kc*mc;
61    std::size_t sizeB = kc*cols;
62    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
63
64    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
65    ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
66    ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
67
68    conj_if<Conjugate> conj;
69    gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, Conjugate, false> gebp_kernel;
70    gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, TriStorageOrder> pack_lhs;
71    gemm_pack_rhs<Scalar, Index, Traits::nr, ColMajor, false, true> pack_rhs;
72
73    // the goal here is to subdivise the Rhs panels such that we keep some cache
74    // coherence when accessing the rhs elements
75    std::ptrdiff_t l1, l2;
76    manage_caching_sizes(GetAction, &l1, &l2);
77    Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * otherStride) : 0;
78    subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr);
79
80    for(Index k2=IsLower ? 0 : size;
81        IsLower ? k2<size : k2>0;
82        IsLower ? k2+=kc : k2-=kc)
83    {
84      const Index actual_kc = (std::min)(IsLower ? size-k2 : k2, kc);
85
86      // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel,
87      // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into
88      // A11 (the triangular part) and A21 the remaining rectangular part.
89      // Then the high level algorithm is:
90      //  - B = R1                    => general block copy (done during the next step)
91      //  - R1 = A11^-1 B             => tricky part
92      //  - update B from the new R1  => actually this has to be performed continuously during the above step
93      //  - R2 -= A21 * B             => GEPP
94
95      // The tricky part: compute R1 = A11^-1 B while updating B from R1
96      // The idea is to split A11 into multiple small vertical panels.
97      // Each panel can be split into a small triangular part T1k which is processed without optimization,
98      // and the remaining small part T2k which is processed using gebp with appropriate block strides
99      for(Index j2=0; j2<cols; j2+=subcols)
100      {
101        Index actual_cols = (std::min)(cols-j2,subcols);
102        // for each small vertical panels [T1k^T, T2k^T]^T of lhs
103        for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
104        {
105          Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
106          // tr solve
107          for (Index k=0; k<actualPanelWidth; ++k)
108          {
109            // TODO write a small kernel handling this (can be shared with trsv)
110            Index i  = IsLower ? k2+k1+k : k2-k1-k-1;
111            Index s  = IsLower ? k2+k1 : i+1;
112            Index rs = actualPanelWidth - k - 1; // remaining size
113
114            Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
115            for (Index j=j2; j<j2+actual_cols; ++j)
116            {
117              if (TriStorageOrder==RowMajor)
118              {
119                Scalar b(0);
120                const Scalar* l = &tri(i,s);
121                Scalar* r = &other(s,j);
122                for (Index i3=0; i3<k; ++i3)
123                  b += conj(l[i3]) * r[i3];
124
125                other(i,j) = (other(i,j) - b)*a;
126              }
127              else
128              {
129                Index s = IsLower ? i+1 : i-rs;
130                Scalar b = (other(i,j) *= a);
131                Scalar* r = &other(s,j);
132                const Scalar* l = &tri(s,i);
133                for (Index i3=0;i3<rs;++i3)
134                  r[i3] -= b * conj(l[i3]);
135              }
136            }
137          }
138
139          Index lengthTarget = actual_kc-k1-actualPanelWidth;
140          Index startBlock   = IsLower ? k2+k1 : k2-k1-actualPanelWidth;
141          Index blockBOffset = IsLower ? k1 : lengthTarget;
142
143          // update the respective rows of B from other
144          pack_rhs(blockB+actual_kc*j2, &other(startBlock,j2), otherStride, actualPanelWidth, actual_cols, actual_kc, blockBOffset);
145
146          // GEBP
147          if (lengthTarget>0)
148          {
149            Index startTarget  = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc;
150
151            pack_lhs(blockA, &tri(startTarget,startBlock), triStride, actualPanelWidth, lengthTarget);
152
153            gebp_kernel(&other(startTarget,j2), otherStride, blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1),
154                        actualPanelWidth, actual_kc, 0, blockBOffset, blockW);
155          }
156        }
157      }
158
159      // R2 -= A21 * B => GEPP
160      {
161        Index start = IsLower ? k2+kc : 0;
162        Index end   = IsLower ? size : k2-kc;
163        for(Index i2=start; i2<end; i2+=mc)
164        {
165          const Index actual_mc = (std::min)(mc,end-i2);
166          if (actual_mc>0)
167          {
168            pack_lhs(blockA, &tri(i2, IsLower ? k2 : k2-kc), triStride, actual_kc, actual_mc);
169
170            gebp_kernel(_other+i2, otherStride, blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0, blockW);
171          }
172        }
173      }
174    }
175  }
176};
177
178/* Optimized triangular solver with multiple left hand sides and the trinagular matrix on the right
179 */
180template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
181struct triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>
182{
183  static EIGEN_DONT_INLINE void run(
184    Index size, Index otherSize,
185    const Scalar* _tri, Index triStride,
186    Scalar* _other, Index otherStride,
187    level3_blocking<Scalar,Scalar>& blocking)
188  {
189    Index rows = otherSize;
190    const_blas_data_mapper<Scalar, Index, TriStorageOrder> rhs(_tri,triStride);
191    blas_data_mapper<Scalar, Index, ColMajor> lhs(_other,otherStride);
192
193    typedef gebp_traits<Scalar,Scalar> Traits;
194    enum {
195      RhsStorageOrder   = TriStorageOrder,
196      SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
197      IsLower = (Mode&Lower) == Lower
198    };
199
200    Index kc = blocking.kc();                   // cache block size along the K direction
201    Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction
202
203    std::size_t sizeA = kc*mc;
204    std::size_t sizeB = kc*size;
205    std::size_t sizeW = kc*Traits::WorkSpaceFactor;
206
207    ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
208    ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
209    ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
210
211    conj_if<Conjugate> conj;
212    gebp_kernel<Scalar,Scalar, Index, Traits::mr, Traits::nr, false, Conjugate> gebp_kernel;
213    gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
214    gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;
215    gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, ColMajor, false, true> pack_lhs_panel;
216
217    for(Index k2=IsLower ? size : 0;
218        IsLower ? k2>0 : k2<size;
219        IsLower ? k2-=kc : k2+=kc)
220    {
221      const Index actual_kc = (std::min)(IsLower ? k2 : size-k2, kc);
222      Index actual_k2 = IsLower ? k2-actual_kc : k2 ;
223
224      Index startPanel = IsLower ? 0 : k2+actual_kc;
225      Index rs = IsLower ? actual_k2 : size - actual_k2 - actual_kc;
226      Scalar* geb = blockB+actual_kc*actual_kc;
227
228      if (rs>0) pack_rhs(geb, &rhs(actual_k2,startPanel), triStride, actual_kc, rs);
229
230      // triangular packing (we only pack the panels off the diagonal,
231      // neglecting the blocks overlapping the diagonal
232      {
233        for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
234        {
235          Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
236          Index actual_j2 = actual_k2 + j2;
237          Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
238          Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
239
240          if (panelLength>0)
241          pack_rhs_panel(blockB+j2*actual_kc,
242                         &rhs(actual_k2+panelOffset, actual_j2), triStride,
243                         panelLength, actualPanelWidth,
244                         actual_kc, panelOffset);
245        }
246      }
247
248      for(Index i2=0; i2<rows; i2+=mc)
249      {
250        const Index actual_mc = (std::min)(mc,rows-i2);
251
252        // triangular solver kernel
253        {
254          // for each small block of the diagonal (=> vertical panels of rhs)
255          for (Index j2 = IsLower
256                      ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth)
257                                                                  : Index(SmallPanelWidth)))
258                      : 0;
259               IsLower ? j2>=0 : j2<actual_kc;
260               IsLower ? j2-=SmallPanelWidth : j2+=SmallPanelWidth)
261          {
262            Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
263            Index absolute_j2 = actual_k2 + j2;
264            Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
265            Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;
266
267            // GEBP
268            if(panelLength>0)
269            {
270              gebp_kernel(&lhs(i2,absolute_j2), otherStride,
271                          blockA, blockB+j2*actual_kc,
272                          actual_mc, panelLength, actualPanelWidth,
273                          Scalar(-1),
274                          actual_kc, actual_kc, // strides
275                          panelOffset, panelOffset, // offsets
276                          blockW);  // workspace
277            }
278
279            // unblocked triangular solve
280            for (Index k=0; k<actualPanelWidth; ++k)
281            {
282              Index j = IsLower ? absolute_j2+actualPanelWidth-k-1 : absolute_j2+k;
283
284              Scalar* r = &lhs(i2,j);
285              for (Index k3=0; k3<k; ++k3)
286              {
287                Scalar b = conj(rhs(IsLower ? j+1+k3 : absolute_j2+k3,j));
288                Scalar* a = &lhs(i2,IsLower ? j+1+k3 : absolute_j2+k3);
289                for (Index i=0; i<actual_mc; ++i)
290                  r[i] -= a[i] * b;
291              }
292              Scalar b = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(rhs(j,j));
293              for (Index i=0; i<actual_mc; ++i)
294                r[i] *= b;
295            }
296
297            // pack the just computed part of lhs to A
298            pack_lhs_panel(blockA, _other+absolute_j2*otherStride+i2, otherStride,
299                           actualPanelWidth, actual_mc,
300                           actual_kc, j2);
301          }
302        }
303
304        if (rs>0)
305          gebp_kernel(_other+i2+startPanel*otherStride, otherStride, blockA, geb,
306                      actual_mc, actual_kc, rs, Scalar(-1),
307                      -1, -1, 0, 0, blockW);
308      }
309    }
310  }
311};
312
313} // end namespace internal
314
315} // end namespace Eigen
316
317#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H
318