1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
7// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
8// Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org>
9//
10// This Source Code Form is subject to the terms of the Mozilla
11// Public License v. 2.0. If a copy of the MPL was not distributed
12// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13
14
15/*****************************************************************************
16*** Platform checks for aligned malloc functions                           ***
17*****************************************************************************/
18
19#ifndef EIGEN_MEMORY_H
20#define EIGEN_MEMORY_H
21
22#ifndef EIGEN_MALLOC_ALREADY_ALIGNED
23
24// Try to determine automatically if malloc is already aligned.
25
26// On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
27//   http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
28// This is true at least since glibc 2.8.
29// This leaves the question how to detect 64-bit. According to this document,
30//   http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
31// page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
32// quite safe, at least within the context of glibc, to equate 64-bit with LP64.
33#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
34 && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ )
35  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
36#else
37  #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
38#endif
39
40// FreeBSD 6 seems to have 16-byte aligned malloc
41//   See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
42// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
43//   See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
44#if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__)
45  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
46#else
47  #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
48#endif
49
50#if defined(__APPLE__) \
51 || defined(_WIN64) \
52 || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
53 || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
54  #define EIGEN_MALLOC_ALREADY_ALIGNED 1
55#else
56  #define EIGEN_MALLOC_ALREADY_ALIGNED 0
57#endif
58
59#endif
60
61// See bug 554 (http://eigen.tuxfamily.org/bz/show_bug.cgi?id=554)
62// It seems to be unsafe to check _POSIX_ADVISORY_INFO without including unistd.h first.
63// Currently, let's include it only on unix systems:
64#if defined(__unix__) || defined(__unix)
65  #include <unistd.h>
66  #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
67    #define EIGEN_HAS_POSIX_MEMALIGN 1
68  #endif
69#endif
70
71#ifndef EIGEN_HAS_POSIX_MEMALIGN
72  #define EIGEN_HAS_POSIX_MEMALIGN 0
73#endif
74
75#ifdef EIGEN_VECTORIZE_SSE
76  #define EIGEN_HAS_MM_MALLOC 1
77#else
78  #define EIGEN_HAS_MM_MALLOC 0
79#endif
80
81namespace Eigen {
82
83namespace internal {
84
85inline void throw_std_bad_alloc()
86{
87  #ifdef EIGEN_EXCEPTIONS
88    throw std::bad_alloc();
89  #else
90    std::size_t huge = -1;
91    new int[huge];
92  #endif
93}
94
95/*****************************************************************************
96*** Implementation of handmade aligned functions                           ***
97*****************************************************************************/
98
99/* ----- Hand made implementations of aligned malloc/free and realloc ----- */
100
101/** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
102  * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
103  */
104inline void* handmade_aligned_malloc(std::size_t size)
105{
106  void *original = std::malloc(size+16);
107  if (original == 0) return 0;
108  void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
109  *(reinterpret_cast<void**>(aligned) - 1) = original;
110  return aligned;
111}
112
113/** \internal Frees memory allocated with handmade_aligned_malloc */
114inline void handmade_aligned_free(void *ptr)
115{
116  if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
117}
118
119/** \internal
120  * \brief Reallocates aligned memory.
121  * Since we know that our handmade version is based on std::realloc
122  * we can use std::realloc to implement efficient reallocation.
123  */
124inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
125{
126  if (ptr == 0) return handmade_aligned_malloc(size);
127  void *original = *(reinterpret_cast<void**>(ptr) - 1);
128  std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
129  original = std::realloc(original,size+16);
130  if (original == 0) return 0;
131  void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(15))) + 16);
132  void *previous_aligned = static_cast<char *>(original)+previous_offset;
133  if(aligned!=previous_aligned)
134    std::memmove(aligned, previous_aligned, size);
135
136  *(reinterpret_cast<void**>(aligned) - 1) = original;
137  return aligned;
138}
139
140/*****************************************************************************
141*** Implementation of generic aligned realloc (when no realloc can be used)***
142*****************************************************************************/
143
144void* aligned_malloc(std::size_t size);
145void  aligned_free(void *ptr);
146
147/** \internal
148  * \brief Reallocates aligned memory.
149  * Allows reallocation with aligned ptr types. This implementation will
150  * always create a new memory chunk and copy the old data.
151  */
152inline void* generic_aligned_realloc(void* ptr, size_t size, size_t old_size)
153{
154  if (ptr==0)
155    return aligned_malloc(size);
156
157  if (size==0)
158  {
159    aligned_free(ptr);
160    return 0;
161  }
162
163  void* newptr = aligned_malloc(size);
164  if (newptr == 0)
165  {
166    #ifdef EIGEN_HAS_ERRNO
167    errno = ENOMEM; // according to the standard
168    #endif
169    return 0;
170  }
171
172  if (ptr != 0)
173  {
174    std::memcpy(newptr, ptr, (std::min)(size,old_size));
175    aligned_free(ptr);
176  }
177
178  return newptr;
179}
180
181/*****************************************************************************
182*** Implementation of portable aligned versions of malloc/free/realloc     ***
183*****************************************************************************/
184
185#ifdef EIGEN_NO_MALLOC
186inline void check_that_malloc_is_allowed()
187{
188  eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
189}
190#elif defined EIGEN_RUNTIME_NO_MALLOC
191inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
192{
193  static bool value = true;
194  if (update == 1)
195    value = new_value;
196  return value;
197}
198inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
199inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
200inline void check_that_malloc_is_allowed()
201{
202  eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
203}
204#else
205inline void check_that_malloc_is_allowed()
206{}
207#endif
208
209/** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 bytes alignment.
210  * On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
211  */
212inline void* aligned_malloc(size_t size)
213{
214  check_that_malloc_is_allowed();
215
216  void *result;
217  #if !EIGEN_ALIGN
218    result = std::malloc(size);
219  #elif EIGEN_MALLOC_ALREADY_ALIGNED
220    result = std::malloc(size);
221  #elif EIGEN_HAS_POSIX_MEMALIGN
222    if(posix_memalign(&result, 16, size)) result = 0;
223  #elif EIGEN_HAS_MM_MALLOC
224    result = _mm_malloc(size, 16);
225  #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
226    result = _aligned_malloc(size, 16);
227  #else
228    result = handmade_aligned_malloc(size);
229  #endif
230
231  if(!result && size)
232    throw_std_bad_alloc();
233
234  return result;
235}
236
237/** \internal Frees memory allocated with aligned_malloc. */
238inline void aligned_free(void *ptr)
239{
240  #if !EIGEN_ALIGN
241    std::free(ptr);
242  #elif EIGEN_MALLOC_ALREADY_ALIGNED
243    std::free(ptr);
244  #elif EIGEN_HAS_POSIX_MEMALIGN
245    std::free(ptr);
246  #elif EIGEN_HAS_MM_MALLOC
247    _mm_free(ptr);
248  #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
249    _aligned_free(ptr);
250  #else
251    handmade_aligned_free(ptr);
252  #endif
253}
254
255/**
256* \internal
257* \brief Reallocates an aligned block of memory.
258* \throws std::bad_alloc on allocation failure
259**/
260inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
261{
262  EIGEN_UNUSED_VARIABLE(old_size);
263
264  void *result;
265#if !EIGEN_ALIGN
266  result = std::realloc(ptr,new_size);
267#elif EIGEN_MALLOC_ALREADY_ALIGNED
268  result = std::realloc(ptr,new_size);
269#elif EIGEN_HAS_POSIX_MEMALIGN
270  result = generic_aligned_realloc(ptr,new_size,old_size);
271#elif EIGEN_HAS_MM_MALLOC
272  // The defined(_mm_free) is just here to verify that this MSVC version
273  // implements _mm_malloc/_mm_free based on the corresponding _aligned_
274  // functions. This may not always be the case and we just try to be safe.
275  #if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
276    result = _aligned_realloc(ptr,new_size,16);
277  #else
278    result = generic_aligned_realloc(ptr,new_size,old_size);
279  #endif
280#elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
281  result = _aligned_realloc(ptr,new_size,16);
282#else
283  result = handmade_aligned_realloc(ptr,new_size,old_size);
284#endif
285
286  if (!result && new_size)
287    throw_std_bad_alloc();
288
289  return result;
290}
291
292/*****************************************************************************
293*** Implementation of conditionally aligned functions                      ***
294*****************************************************************************/
295
296/** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
297  * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
298  */
299template<bool Align> inline void* conditional_aligned_malloc(size_t size)
300{
301  return aligned_malloc(size);
302}
303
304template<> inline void* conditional_aligned_malloc<false>(size_t size)
305{
306  check_that_malloc_is_allowed();
307
308  void *result = std::malloc(size);
309  if(!result && size)
310    throw_std_bad_alloc();
311  return result;
312}
313
314/** \internal Frees memory allocated with conditional_aligned_malloc */
315template<bool Align> inline void conditional_aligned_free(void *ptr)
316{
317  aligned_free(ptr);
318}
319
320template<> inline void conditional_aligned_free<false>(void *ptr)
321{
322  std::free(ptr);
323}
324
325template<bool Align> inline void* conditional_aligned_realloc(void* ptr, size_t new_size, size_t old_size)
326{
327  return aligned_realloc(ptr, new_size, old_size);
328}
329
330template<> inline void* conditional_aligned_realloc<false>(void* ptr, size_t new_size, size_t)
331{
332  return std::realloc(ptr, new_size);
333}
334
335/*****************************************************************************
336*** Construction/destruction of array elements                             ***
337*****************************************************************************/
338
339/** \internal Constructs the elements of an array.
340  * The \a size parameter tells on how many objects to call the constructor of T.
341  */
342template<typename T> inline T* construct_elements_of_array(T *ptr, size_t size)
343{
344  for (size_t i=0; i < size; ++i) ::new (ptr + i) T;
345  return ptr;
346}
347
348/** \internal Destructs the elements of an array.
349  * The \a size parameters tells on how many objects to call the destructor of T.
350  */
351template<typename T> inline void destruct_elements_of_array(T *ptr, size_t size)
352{
353  // always destruct an array starting from the end.
354  if(ptr)
355    while(size) ptr[--size].~T();
356}
357
358/*****************************************************************************
359*** Implementation of aligned new/delete-like functions                    ***
360*****************************************************************************/
361
362template<typename T>
363EIGEN_ALWAYS_INLINE void check_size_for_overflow(size_t size)
364{
365  if(size > size_t(-1) / sizeof(T))
366    throw_std_bad_alloc();
367}
368
369/** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
370  * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
371  * The default constructor of T is called.
372  */
373template<typename T> inline T* aligned_new(size_t size)
374{
375  check_size_for_overflow<T>(size);
376  T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
377  return construct_elements_of_array(result, size);
378}
379
380template<typename T, bool Align> inline T* conditional_aligned_new(size_t size)
381{
382  check_size_for_overflow<T>(size);
383  T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
384  return construct_elements_of_array(result, size);
385}
386
387/** \internal Deletes objects constructed with aligned_new
388  * The \a size parameters tells on how many objects to call the destructor of T.
389  */
390template<typename T> inline void aligned_delete(T *ptr, size_t size)
391{
392  destruct_elements_of_array<T>(ptr, size);
393  aligned_free(ptr);
394}
395
396/** \internal Deletes objects constructed with conditional_aligned_new
397  * The \a size parameters tells on how many objects to call the destructor of T.
398  */
399template<typename T, bool Align> inline void conditional_aligned_delete(T *ptr, size_t size)
400{
401  destruct_elements_of_array<T>(ptr, size);
402  conditional_aligned_free<Align>(ptr);
403}
404
405template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pts, size_t new_size, size_t old_size)
406{
407  check_size_for_overflow<T>(new_size);
408  check_size_for_overflow<T>(old_size);
409  if(new_size < old_size)
410    destruct_elements_of_array(pts+new_size, old_size-new_size);
411  T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
412  if(new_size > old_size)
413    construct_elements_of_array(result+old_size, new_size-old_size);
414  return result;
415}
416
417
418template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
419{
420  check_size_for_overflow<T>(size);
421  T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
422  if(NumTraits<T>::RequireInitialization)
423    construct_elements_of_array(result, size);
424  return result;
425}
426
427template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, size_t new_size, size_t old_size)
428{
429  check_size_for_overflow<T>(new_size);
430  check_size_for_overflow<T>(old_size);
431  if(NumTraits<T>::RequireInitialization && (new_size < old_size))
432    destruct_elements_of_array(pts+new_size, old_size-new_size);
433  T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
434  if(NumTraits<T>::RequireInitialization && (new_size > old_size))
435    construct_elements_of_array(result+old_size, new_size-old_size);
436  return result;
437}
438
439template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *ptr, size_t size)
440{
441  if(NumTraits<T>::RequireInitialization)
442    destruct_elements_of_array<T>(ptr, size);
443  conditional_aligned_free<Align>(ptr);
444}
445
446/****************************************************************************/
447
448/** \internal Returns the index of the first element of the array that is well aligned for vectorization.
449  *
450  * \param array the address of the start of the array
451  * \param size the size of the array
452  *
453  * \note If no element of the array is well aligned, the size of the array is returned. Typically,
454  * for example with SSE, "well aligned" means 16-byte-aligned. If vectorization is disabled or if the
455  * packet size for the given scalar type is 1, then everything is considered well-aligned.
456  *
457  * \note If the scalar type is vectorizable, we rely on the following assumptions: sizeof(Scalar) is a
458  * power of 2, the packet size in bytes is also a power of 2, and is a multiple of sizeof(Scalar). On the
459  * other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
460  * example with Scalar=double on certain 32-bit platforms, see bug #79.
461  *
462  * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
463  */
464template<typename Scalar, typename Index>
465static inline Index first_aligned(const Scalar* array, Index size)
466{
467  enum { PacketSize = packet_traits<Scalar>::size,
468         PacketAlignedMask = PacketSize-1
469  };
470
471  if(PacketSize==1)
472  {
473    // Either there is no vectorization, or a packet consists of exactly 1 scalar so that all elements
474    // of the array have the same alignment.
475    return 0;
476  }
477  else if(size_t(array) & (sizeof(Scalar)-1))
478  {
479    // There is vectorization for this scalar type, but the array is not aligned to the size of a single scalar.
480    // Consequently, no element of the array is well aligned.
481    return size;
482  }
483  else
484  {
485    return std::min<Index>( (PacketSize - (Index((size_t(array)/sizeof(Scalar))) & PacketAlignedMask))
486                           & PacketAlignedMask, size);
487  }
488}
489
490/** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size
491  */
492template<typename Index>
493inline static Index first_multiple(Index size, Index base)
494{
495  return ((size+base-1)/base)*base;
496}
497
498// std::copy is much slower than memcpy, so let's introduce a smart_copy which
499// use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
500template<typename T, bool UseMemcpy> struct smart_copy_helper;
501
502template<typename T> void smart_copy(const T* start, const T* end, T* target)
503{
504  smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
505}
506
507template<typename T> struct smart_copy_helper<T,true> {
508  static inline void run(const T* start, const T* end, T* target)
509  { memcpy(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
510};
511
512template<typename T> struct smart_copy_helper<T,false> {
513  static inline void run(const T* start, const T* end, T* target)
514  { std::copy(start, end, target); }
515};
516
517
518/*****************************************************************************
519*** Implementation of runtime stack allocation (falling back to malloc)    ***
520*****************************************************************************/
521
522// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
523// to the appropriate stack allocation function
524#ifndef EIGEN_ALLOCA
525  #if (defined __linux__)
526    #define EIGEN_ALLOCA alloca
527  #elif defined(_MSC_VER)
528    #define EIGEN_ALLOCA _alloca
529  #endif
530#endif
531
532// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
533// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
534template<typename T> class aligned_stack_memory_handler
535{
536  public:
537    /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
538     * Note that \a ptr can be 0 regardless of the other parameters.
539     * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
540     * In this case, the buffer elements will also be destructed when this handler will be destructed.
541     * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
542     **/
543    aligned_stack_memory_handler(T* ptr, size_t size, bool dealloc)
544      : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
545    {
546      if(NumTraits<T>::RequireInitialization && m_ptr)
547        Eigen::internal::construct_elements_of_array(m_ptr, size);
548    }
549    ~aligned_stack_memory_handler()
550    {
551      if(NumTraits<T>::RequireInitialization && m_ptr)
552        Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
553      if(m_deallocate)
554        Eigen::internal::aligned_free(m_ptr);
555    }
556  protected:
557    T* m_ptr;
558    size_t m_size;
559    bool m_deallocate;
560};
561
562} // end namespace internal
563
564/** \internal
565  * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
566  * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
567  * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap.
568  * The allocated buffer is automatically deleted when exiting the scope of this declaration.
569  * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
570  * Here is an example:
571  * \code
572  * {
573  *   ei_declare_aligned_stack_constructed_variable(float,data,size,0);
574  *   // use data[0] to data[size-1]
575  * }
576  * \endcode
577  * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
578  */
579#ifdef EIGEN_ALLOCA
580
581  #if defined(__arm__) || defined(_WIN32)
582    #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
583  #else
584    #define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
585  #endif
586
587  #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
588    Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
589    TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
590               : reinterpret_cast<TYPE*>( \
591                      (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
592                    : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) );  \
593    Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
594
595#else
596
597  #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
598    Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
599    TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE));    \
600    Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
601
602#endif
603
604
605/*****************************************************************************
606*** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF]                ***
607*****************************************************************************/
608
609#if EIGEN_ALIGN
610  #ifdef EIGEN_EXCEPTIONS
611    #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
612      void* operator new(size_t size, const std::nothrow_t&) throw() { \
613        try { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
614        catch (...) { return 0; } \
615        return 0; \
616      }
617  #else
618    #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
619      void* operator new(size_t size, const std::nothrow_t&) throw() { \
620        return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
621      }
622  #endif
623
624  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
625      void *operator new(size_t size) { \
626        return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
627      } \
628      void *operator new[](size_t size) { \
629        return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
630      } \
631      void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
632      void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
633      /* in-place new and delete. since (at least afaik) there is no actual   */ \
634      /* memory allocated we can safely let the default implementation handle */ \
635      /* this particular case. */ \
636      static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
637      static void *operator new[](size_t size, void* ptr) { return ::operator new[](size,ptr); } \
638      void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
639      void operator delete[](void * memory, void *ptr) throw() { return ::operator delete[](memory,ptr); } \
640      /* nothrow-new (returns zero instead of std::bad_alloc) */ \
641      EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
642      void operator delete(void *ptr, const std::nothrow_t&) throw() { \
643        Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
644      } \
645      typedef void eigen_aligned_operator_new_marker_type;
646#else
647  #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
648#endif
649
650#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
651#define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
652  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%16==0)))
653
654/****************************************************************************/
655
656/** \class aligned_allocator
657* \ingroup Core_Module
658*
659* \brief STL compatible allocator to use with with 16 byte aligned types
660*
661* Example:
662* \code
663* // Matrix4f requires 16 bytes alignment:
664* std::map< int, Matrix4f, std::less<int>,
665*           aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
666* // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
667* std::map< int, Vector3f > my_map_vec3;
668* \endcode
669*
670* \sa \ref TopicStlContainers.
671*/
672template<class T>
673class aligned_allocator
674{
675public:
676    typedef size_t    size_type;
677    typedef std::ptrdiff_t difference_type;
678    typedef T*        pointer;
679    typedef const T*  const_pointer;
680    typedef T&        reference;
681    typedef const T&  const_reference;
682    typedef T         value_type;
683
684    template<class U>
685    struct rebind
686    {
687        typedef aligned_allocator<U> other;
688    };
689
690    pointer address( reference value ) const
691    {
692        return &value;
693    }
694
695    const_pointer address( const_reference value ) const
696    {
697        return &value;
698    }
699
700    aligned_allocator()
701    {
702    }
703
704    aligned_allocator( const aligned_allocator& )
705    {
706    }
707
708    template<class U>
709    aligned_allocator( const aligned_allocator<U>& )
710    {
711    }
712
713    ~aligned_allocator()
714    {
715    }
716
717    size_type max_size() const
718    {
719        return (std::numeric_limits<size_type>::max)();
720    }
721
722    pointer allocate( size_type num, const void* hint = 0 )
723    {
724        EIGEN_UNUSED_VARIABLE(hint);
725        internal::check_size_for_overflow<T>(num);
726        return static_cast<pointer>( internal::aligned_malloc( num * sizeof(T) ) );
727    }
728
729    void construct( pointer p, const T& value )
730    {
731        ::new( p ) T( value );
732    }
733
734    void destroy( pointer p )
735    {
736        p->~T();
737    }
738
739    void deallocate( pointer p, size_type /*num*/ )
740    {
741        internal::aligned_free( p );
742    }
743
744    bool operator!=(const aligned_allocator<T>& ) const
745    { return false; }
746
747    bool operator==(const aligned_allocator<T>& ) const
748    { return true; }
749};
750
751//---------- Cache sizes ----------
752
753#if !defined(EIGEN_NO_CPUID)
754#  if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
755#    if defined(__PIC__) && defined(__i386__)
756       // Case for x86 with PIC
757#      define EIGEN_CPUID(abcd,func,id) \
758         __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
759#    elif defined(__PIC__) && defined(__x86_64__)
760       // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
761       // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
762#      define EIGEN_CPUID(abcd,func,id) \
763        __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
764#    else
765       // Case for x86_64 or x86 w/o PIC
766#      define EIGEN_CPUID(abcd,func,id) \
767         __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
768#    endif
769#  elif defined(_MSC_VER)
770#    if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
771#      define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
772#    endif
773#  endif
774#endif
775
776namespace internal {
777
778#ifdef EIGEN_CPUID
779
780inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
781{
782  return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
783}
784
785inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
786{
787  int abcd[4];
788  l1 = l2 = l3 = 0;
789  int cache_id = 0;
790  int cache_type = 0;
791  do {
792    abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
793    EIGEN_CPUID(abcd,0x4,cache_id);
794    cache_type  = (abcd[0] & 0x0F) >> 0;
795    if(cache_type==1||cache_type==3) // data or unified cache
796    {
797      int cache_level = (abcd[0] & 0xE0) >> 5;  // A[7:5]
798      int ways        = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
799      int partitions  = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
800      int line_size   = (abcd[1] & 0x00000FFF) >>  0; // B[11:0]
801      int sets        = (abcd[2]);                    // C[31:0]
802
803      int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
804
805      switch(cache_level)
806      {
807        case 1: l1 = cache_size; break;
808        case 2: l2 = cache_size; break;
809        case 3: l3 = cache_size; break;
810        default: break;
811      }
812    }
813    cache_id++;
814  } while(cache_type>0 && cache_id<16);
815}
816
817inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
818{
819  int abcd[4];
820  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
821  l1 = l2 = l3 = 0;
822  EIGEN_CPUID(abcd,0x00000002,0);
823  unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
824  bool check_for_p2_core2 = false;
825  for(int i=0; i<14; ++i)
826  {
827    switch(bytes[i])
828    {
829      case 0x0A: l1 = 8; break;   // 0Ah   data L1 cache, 8 KB, 2 ways, 32 byte lines
830      case 0x0C: l1 = 16; break;  // 0Ch   data L1 cache, 16 KB, 4 ways, 32 byte lines
831      case 0x0E: l1 = 24; break;  // 0Eh   data L1 cache, 24 KB, 6 ways, 64 byte lines
832      case 0x10: l1 = 16; break;  // 10h   data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
833      case 0x15: l1 = 16; break;  // 15h   code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
834      case 0x2C: l1 = 32; break;  // 2Ch   data L1 cache, 32 KB, 8 ways, 64 byte lines
835      case 0x30: l1 = 32; break;  // 30h   code L1 cache, 32 KB, 8 ways, 64 byte lines
836      case 0x60: l1 = 16; break;  // 60h   data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
837      case 0x66: l1 = 8; break;   // 66h   data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
838      case 0x67: l1 = 16; break;  // 67h   data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
839      case 0x68: l1 = 32; break;  // 68h   data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
840      case 0x1A: l2 = 96; break;   // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
841      case 0x22: l3 = 512; break;   // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
842      case 0x23: l3 = 1024; break;   // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
843      case 0x25: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
844      case 0x29: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
845      case 0x39: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
846      case 0x3A: l2 = 192; break;   // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
847      case 0x3B: l2 = 128; break;   // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
848      case 0x3C: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
849      case 0x3D: l2 = 384; break;   // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
850      case 0x3E: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
851      case 0x40: l2 = 0; break;   // no integrated L2 cache (P6 core) or L3 cache (P4 core)
852      case 0x41: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
853      case 0x42: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
854      case 0x43: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
855      case 0x44: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
856      case 0x45: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
857      case 0x46: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
858      case 0x47: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
859      case 0x48: l2 = 3072; break;   // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
860      case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
861      case 0x4A: l3 = 6144; break;   // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
862      case 0x4B: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
863      case 0x4C: l3 = 12288; break;   // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
864      case 0x4D: l3 = 16384; break;   // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
865      case 0x4E: l2 = 6144; break;   // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
866      case 0x78: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
867      case 0x79: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
868      case 0x7A: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
869      case 0x7B: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
870      case 0x7C: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
871      case 0x7D: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
872      case 0x7E: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
873      case 0x7F: l2 = 512; break;   // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
874      case 0x80: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
875      case 0x81: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
876      case 0x82: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
877      case 0x83: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
878      case 0x84: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
879      case 0x85: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
880      case 0x86: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
881      case 0x87: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
882      case 0x88: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
883      case 0x89: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
884      case 0x8A: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
885      case 0x8D: l3 = 3072; break;   // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
886
887      default: break;
888    }
889  }
890  if(check_for_p2_core2 && l2 == l3)
891    l3 = 0;
892  l1 *= 1024;
893  l2 *= 1024;
894  l3 *= 1024;
895}
896
897inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
898{
899  if(max_std_funcs>=4)
900    queryCacheSizes_intel_direct(l1,l2,l3);
901  else
902    queryCacheSizes_intel_codes(l1,l2,l3);
903}
904
905inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
906{
907  int abcd[4];
908  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
909  EIGEN_CPUID(abcd,0x80000005,0);
910  l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
911  abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
912  EIGEN_CPUID(abcd,0x80000006,0);
913  l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
914  l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
915}
916#endif
917
918/** \internal
919 * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
920inline void queryCacheSizes(int& l1, int& l2, int& l3)
921{
922  #ifdef EIGEN_CPUID
923  int abcd[4];
924  const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
925  const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
926  const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
927
928  // identify the CPU vendor
929  EIGEN_CPUID(abcd,0x0,0);
930  int max_std_funcs = abcd[1];
931  if(cpuid_is_vendor(abcd,GenuineIntel))
932    queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
933  else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
934    queryCacheSizes_amd(l1,l2,l3);
935  else
936    // by default let's use Intel's API
937    queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
938
939  // here is the list of other vendors:
940//   ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
941//   ||cpuid_is_vendor(abcd,"CyrixInstead")
942//   ||cpuid_is_vendor(abcd,"CentaurHauls")
943//   ||cpuid_is_vendor(abcd,"GenuineTMx86")
944//   ||cpuid_is_vendor(abcd,"TransmetaCPU")
945//   ||cpuid_is_vendor(abcd,"RiseRiseRise")
946//   ||cpuid_is_vendor(abcd,"Geode by NSC")
947//   ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
948//   ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
949//   ||cpuid_is_vendor(abcd,"NexGenDriven")
950  #else
951  l1 = l2 = l3 = -1;
952  #endif
953}
954
955/** \internal
956 * \returns the size in Bytes of the L1 data cache */
957inline int queryL1CacheSize()
958{
959  int l1(-1), l2, l3;
960  queryCacheSizes(l1,l2,l3);
961  return l1;
962}
963
964/** \internal
965 * \returns the size in Bytes of the L2 or L3 cache if this later is present */
966inline int queryTopLevelCacheSize()
967{
968  int l1, l2(-1), l3(-1);
969  queryCacheSizes(l1,l2,l3);
970  return (std::max)(l2,l3);
971}
972
973} // end namespace internal
974
975} // end namespace Eigen
976
977#endif // EIGEN_MEMORY_H
978