XprHelper.h revision c981c48f5bc9aefeffc0bcb0cc3934c2fae179dd
13c827367444ee418f129b2c238299f49d3264554Jarkko Poyry// This file is part of Eigen, a lightweight C++ template library
23c827367444ee418f129b2c238299f49d3264554Jarkko Poyry// for linear algebra.
33c827367444ee418f129b2c238299f49d3264554Jarkko Poyry//
43c827367444ee418f129b2c238299f49d3264554Jarkko Poyry// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
53c827367444ee418f129b2c238299f49d3264554Jarkko Poyry// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
63c827367444ee418f129b2c238299f49d3264554Jarkko Poyry//
73c827367444ee418f129b2c238299f49d3264554Jarkko Poyry// This Source Code Form is subject to the terms of the Mozilla
83c827367444ee418f129b2c238299f49d3264554Jarkko Poyry// Public License v. 2.0. If a copy of the MPL was not distributed
93c827367444ee418f129b2c238299f49d3264554Jarkko Poyry// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
103c827367444ee418f129b2c238299f49d3264554Jarkko Poyry
113c827367444ee418f129b2c238299f49d3264554Jarkko Poyry#ifndef EIGEN_XPRHELPER_H
123c827367444ee418f129b2c238299f49d3264554Jarkko Poyry#define EIGEN_XPRHELPER_H
133c827367444ee418f129b2c238299f49d3264554Jarkko Poyry
143c827367444ee418f129b2c238299f49d3264554Jarkko Poyry// just a workaround because GCC seems to not really like empty structs
153c827367444ee418f129b2c238299f49d3264554Jarkko Poyry// FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
163c827367444ee418f129b2c238299f49d3264554Jarkko Poyry// so currently we simply disable this optimization for gcc 4.3
173c827367444ee418f129b2c238299f49d3264554Jarkko Poyry#if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3))
183c827367444ee418f129b2c238299f49d3264554Jarkko Poyry  #define EIGEN_EMPTY_STRUCT_CTOR(X) \
193c827367444ee418f129b2c238299f49d3264554Jarkko Poyry    EIGEN_STRONG_INLINE X() {} \
203c827367444ee418f129b2c238299f49d3264554Jarkko Poyry    EIGEN_STRONG_INLINE X(const X& ) {}
213c827367444ee418f129b2c238299f49d3264554Jarkko Poyry#else
223c827367444ee418f129b2c238299f49d3264554Jarkko Poyry  #define EIGEN_EMPTY_STRUCT_CTOR(X)
233c827367444ee418f129b2c238299f49d3264554Jarkko Poyry#endif
243c827367444ee418f129b2c238299f49d3264554Jarkko Poyry
253c827367444ee418f129b2c238299f49d3264554Jarkko Poyrynamespace Eigen {
263c827367444ee418f129b2c238299f49d3264554Jarkko Poyry
273c827367444ee418f129b2c238299f49d3264554Jarkko Poyrytypedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
283c827367444ee418f129b2c238299f49d3264554Jarkko Poyry
293c827367444ee418f129b2c238299f49d3264554Jarkko Poyrynamespace internal {
303c827367444ee418f129b2c238299f49d3264554Jarkko Poyry
313c827367444ee418f129b2c238299f49d3264554Jarkko Poyry//classes inheriting no_assignment_operator don't generate a default operator=.
323c827367444ee418f129b2c238299f49d3264554Jarkko Poyryclass no_assignment_operator
333c827367444ee418f129b2c238299f49d3264554Jarkko Poyry{
343c827367444ee418f129b2c238299f49d3264554Jarkko Poyry  private:
353c827367444ee418f129b2c238299f49d3264554Jarkko Poyry    no_assignment_operator& operator=(const no_assignment_operator&);
363c827367444ee418f129b2c238299f49d3264554Jarkko Poyry};
373c827367444ee418f129b2c238299f49d3264554Jarkko Poyry
383c827367444ee418f129b2c238299f49d3264554Jarkko Poyry/** \internal return the index type with the largest number of bits */
393c827367444ee418f129b2c238299f49d3264554Jarkko Poyrytemplate<typename I1, typename I2>
403c827367444ee418f129b2c238299f49d3264554Jarkko Poyrystruct promote_index_type
413c827367444ee418f129b2c238299f49d3264554Jarkko Poyry{
423c827367444ee418f129b2c238299f49d3264554Jarkko Poyry  typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type;
433c827367444ee418f129b2c238299f49d3264554Jarkko Poyry};
443c827367444ee418f129b2c238299f49d3264554Jarkko Poyry
453c827367444ee418f129b2c238299f49d3264554Jarkko Poyry/** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that
463c827367444ee418f129b2c238299f49d3264554Jarkko Poyry  * can be accessed using value() and setValue().
473c827367444ee418f129b2c238299f49d3264554Jarkko Poyry  * Otherwise, this class is an empty structure and value() just returns the template parameter Value.
483c827367444ee418f129b2c238299f49d3264554Jarkko Poyry  */
493c827367444ee418f129b2c238299f49d3264554Jarkko Poyrytemplate<typename T, int Value> class variable_if_dynamic
503c827367444ee418f129b2c238299f49d3264554Jarkko Poyry{
513c827367444ee418f129b2c238299f49d3264554Jarkko Poyry  public:
523c827367444ee418f129b2c238299f49d3264554Jarkko Poyry    EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)
533c827367444ee418f129b2c238299f49d3264554Jarkko Poyry    explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
543c827367444ee418f129b2c238299f49d3264554Jarkko Poyry    static T value() { return T(Value); }
55    void setValue(T) {}
56};
57
58template<typename T> class variable_if_dynamic<T, Dynamic>
59{
60    T m_value;
61    variable_if_dynamic() { assert(false); }
62  public:
63    explicit variable_if_dynamic(T value) : m_value(value) {}
64    T value() const { return m_value; }
65    void setValue(T value) { m_value = value; }
66};
67
68template<typename T> struct functor_traits
69{
70  enum
71  {
72    Cost = 10,
73    PacketAccess = false
74  };
75};
76
77template<typename T> struct packet_traits;
78
79template<typename T> struct unpacket_traits
80{
81  typedef T type;
82  enum {size=1};
83};
84
85template<typename _Scalar, int _Rows, int _Cols,
86         int _Options = AutoAlign |
87                          ( (_Rows==1 && _Cols!=1) ? RowMajor
88                          : (_Cols==1 && _Rows!=1) ? ColMajor
89                          : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
90         int _MaxRows = _Rows,
91         int _MaxCols = _Cols
92> class make_proper_matrix_type
93{
94    enum {
95      IsColVector = _Cols==1 && _Rows!=1,
96      IsRowVector = _Rows==1 && _Cols!=1,
97      Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
98              : IsRowVector ? (_Options | RowMajor) & ~ColMajor
99              : _Options
100    };
101  public:
102    typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
103};
104
105template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
106class compute_matrix_flags
107{
108    enum {
109      row_major_bit = Options&RowMajor ? RowMajorBit : 0,
110      is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,
111
112      aligned_bit =
113      (
114            ((Options&DontAlign)==0)
115        && (
116#if EIGEN_ALIGN_STATICALLY
117             ((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % 16) == 0))
118#else
119             0
120#endif
121
122          ||
123
124#if EIGEN_ALIGN
125             is_dynamic_size_storage
126#else
127             0
128#endif
129
130          )
131      ) ? AlignedBit : 0,
132      packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0
133    };
134
135  public:
136    enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
137};
138
139template<int _Rows, int _Cols> struct size_at_compile_time
140{
141  enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
142};
143
144/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
145 * whereas eval is a const reference in the case of a matrix
146 */
147
148template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type;
149template<typename T, typename BaseClassType> struct plain_matrix_type_dense;
150template<typename T> struct plain_matrix_type<T,Dense>
151{
152  typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
153};
154
155template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
156{
157  typedef Matrix<typename traits<T>::Scalar,
158                traits<T>::RowsAtCompileTime,
159                traits<T>::ColsAtCompileTime,
160                AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
161                traits<T>::MaxRowsAtCompileTime,
162                traits<T>::MaxColsAtCompileTime
163          > type;
164};
165
166template<typename T> struct plain_matrix_type_dense<T,ArrayXpr>
167{
168  typedef Array<typename traits<T>::Scalar,
169                traits<T>::RowsAtCompileTime,
170                traits<T>::ColsAtCompileTime,
171                AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
172                traits<T>::MaxRowsAtCompileTime,
173                traits<T>::MaxColsAtCompileTime
174          > type;
175};
176
177/* eval : the return type of eval(). For matrices, this is just a const reference
178 * in order to avoid a useless copy
179 */
180
181template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval;
182
183template<typename T> struct eval<T,Dense>
184{
185  typedef typename plain_matrix_type<T>::type type;
186//   typedef typename T::PlainObject type;
187//   typedef T::Matrix<typename traits<T>::Scalar,
188//                 traits<T>::RowsAtCompileTime,
189//                 traits<T>::ColsAtCompileTime,
190//                 AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
191//                 traits<T>::MaxRowsAtCompileTime,
192//                 traits<T>::MaxColsAtCompileTime
193//           > type;
194};
195
196// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
197template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
198struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
199{
200  typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
201};
202
203template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
204struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
205{
206  typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
207};
208
209
210
211/* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major
212 */
213template<typename T> struct plain_matrix_type_column_major
214{
215  enum { Rows = traits<T>::RowsAtCompileTime,
216         Cols = traits<T>::ColsAtCompileTime,
217         MaxRows = traits<T>::MaxRowsAtCompileTime,
218         MaxCols = traits<T>::MaxColsAtCompileTime
219  };
220  typedef Matrix<typename traits<T>::Scalar,
221                Rows,
222                Cols,
223                (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor,
224                MaxRows,
225                MaxCols
226          > type;
227};
228
229/* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major
230 */
231template<typename T> struct plain_matrix_type_row_major
232{
233  enum { Rows = traits<T>::RowsAtCompileTime,
234         Cols = traits<T>::ColsAtCompileTime,
235         MaxRows = traits<T>::MaxRowsAtCompileTime,
236         MaxCols = traits<T>::MaxColsAtCompileTime
237  };
238  typedef Matrix<typename traits<T>::Scalar,
239                Rows,
240                Cols,
241                (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
242                MaxRows,
243                MaxCols
244          > type;
245};
246
247// we should be able to get rid of this one too
248template<typename T> struct must_nest_by_value { enum { ret = false }; };
249
250/** \internal The reference selector for template expressions. The idea is that we don't
251  * need to use references for expressions since they are light weight proxy
252  * objects which should generate no copying overhead. */
253template <typename T>
254struct ref_selector
255{
256  typedef typename conditional<
257    bool(traits<T>::Flags & NestByRefBit),
258    T const&,
259    const T
260  >::type type;
261};
262
263/** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */
264template<typename T1, typename T2>
265struct transfer_constness
266{
267  typedef typename conditional<
268    bool(internal::is_const<T1>::value),
269    typename internal::add_const_on_value_type<T2>::type,
270    T2
271  >::type type;
272};
273
274/** \internal Determines how a given expression should be nested into another one.
275  * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
276  * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
277  * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
278  * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
279  * many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
280  *
281  * \param T the type of the expression being nested
282  * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
283  *
284  * Note that if no evaluation occur, then the constness of T is preserved.
285  *
286  * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
287  * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
288  * the Product expression uses: nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
289  * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
290  * since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::ret, which turns out to be
291  * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point
292  * in copying it into another matrix.
293  */
294template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested
295{
296  enum {
297    // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
298    // the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
299    // in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
300    // (poor choice of temporaries).
301    // it's important that this value can still be squared without integer overflowing.
302    DynamicAsInteger = 10000,
303    ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
304    ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? DynamicAsInteger : ScalarReadCost,
305    CoeffReadCost = traits<T>::CoeffReadCost,
306    CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? DynamicAsInteger : CoeffReadCost,
307    NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
308    CostEvalAsInteger   = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
309    CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger
310  };
311
312  typedef typename conditional<
313      ( (int(traits<T>::Flags) & EvalBeforeNestingBit) ||
314        int(CostEvalAsInteger) < int(CostNoEvalAsInteger)
315      ),
316      PlainObject,
317      typename ref_selector<T>::type
318  >::type type;
319};
320
321template<typename T>
322T* const_cast_ptr(const T* ptr)
323{
324  return const_cast<T*>(ptr);
325}
326
327template<typename Derived, typename XprKind = typename traits<Derived>::XprKind>
328struct dense_xpr_base
329{
330  /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */
331};
332
333template<typename Derived>
334struct dense_xpr_base<Derived, MatrixXpr>
335{
336  typedef MatrixBase<Derived> type;
337};
338
339template<typename Derived>
340struct dense_xpr_base<Derived, ArrayXpr>
341{
342  typedef ArrayBase<Derived> type;
343};
344
345/** \internal Helper base class to add a scalar multiple operator
346  * overloads for complex types */
347template<typename Derived,typename Scalar,typename OtherScalar,
348         bool EnableIt = !is_same<Scalar,OtherScalar>::value >
349struct special_scalar_op_base : public DenseCoeffsBase<Derived>
350{
351  // dummy operator* so that the
352  // "using special_scalar_op_base::operator*" compiles
353  void operator*() const;
354};
355
356template<typename Derived,typename Scalar,typename OtherScalar>
357struct special_scalar_op_base<Derived,Scalar,OtherScalar,true>  : public DenseCoeffsBase<Derived>
358{
359  const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
360  operator*(const OtherScalar& scalar) const
361  {
362    return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
363      (*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
364  }
365
366  inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
367  operator*(const OtherScalar& scalar, const Derived& matrix)
368  { return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); }
369};
370
371template<typename XprType, typename CastType> struct cast_return_type
372{
373  typedef typename XprType::Scalar CurrentScalarType;
374  typedef typename remove_all<CastType>::type _CastType;
375  typedef typename _CastType::Scalar NewScalarType;
376  typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value,
377                              const XprType&,CastType>::type type;
378};
379
380template <typename A, typename B> struct promote_storage_type;
381
382template <typename A> struct promote_storage_type<A,A>
383{
384  typedef A ret;
385};
386
387/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
388  * \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
389  */
390template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
391struct plain_row_type
392{
393  typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime,
394                 ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType;
395  typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime,
396                 ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType;
397
398  typedef typename conditional<
399    is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
400    MatrixRowType,
401    ArrayRowType
402  >::type type;
403};
404
405template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
406struct plain_col_type
407{
408  typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1,
409                 ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType;
410  typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1,
411                 ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType;
412
413  typedef typename conditional<
414    is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
415    MatrixColType,
416    ArrayColType
417  >::type type;
418};
419
420template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
421struct plain_diag_type
422{
423  enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime),
424         max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime)
425  };
426  typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType;
427  typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType;
428
429  typedef typename conditional<
430    is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
431    MatrixDiagType,
432    ArrayDiagType
433  >::type type;
434};
435
436template<typename ExpressionType>
437struct is_lvalue
438{
439  enum { value = !bool(is_const<ExpressionType>::value) &&
440                 bool(traits<ExpressionType>::Flags & LvalueBit) };
441};
442
443} // end namespace internal
444
445} // end namespace Eigen
446
447#endif // EIGEN_XPRHELPER_H
448