ComplexEigenSolver.h revision c981c48f5bc9aefeffc0bcb0cc3934c2fae179dd
1c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This file is part of Eigen, a lightweight C++ template library
2c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// for linear algebra.
3c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
4c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2009 Claire Maurice
5c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
7c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath//
8c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// This Source Code Form is subject to the terms of the Mozilla
9c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// Public License v. 2.0. If a copy of the MPL was not distributed
10c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
12c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
13c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#define EIGEN_COMPLEX_EIGEN_SOLVER_H
14c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
15c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#include "./ComplexSchur.h"
16c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
17c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathnamespace Eigen {
18c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
19c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath/** \eigenvalues_module \ingroup Eigenvalues_Module
20c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
21c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
22c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \class ComplexEigenSolver
23c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
24c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \brief Computes eigenvalues and eigenvectors of general complex matrices
25c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
26c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \tparam _MatrixType the type of the matrix of which we are
27c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * computing the eigendecomposition; this is expected to be an
28c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * instantiation of the Matrix class template.
29c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
30c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
31c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
32c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \f$.  If \f$ D \f$ is a diagonal matrix with the eigenvalues on
33c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
34c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
35c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * almost always invertible, in which case we have \f$ A = V D V^{-1}
36c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \f$. This is called the eigendecomposition.
37c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
38c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * The main function in this class is compute(), which computes the
39c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * eigenvalues and eigenvectors of a given function. The
40c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * documentation for that function contains an example showing the
41c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * main features of the class.
42c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  *
43c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  * \sa class EigenSolver, class SelfAdjointEigenSolver
44c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  */
45c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename _MatrixType> class ComplexEigenSolver
46c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
47c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  public:
48c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
49c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Synonym for the template parameter \p _MatrixType. */
50c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef _MatrixType MatrixType;
51c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
52c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    enum {
53c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
54c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
55c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      Options = MatrixType::Options,
56c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
57c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
58c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    };
59c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
60c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Scalar type for matrices of type #MatrixType. */
61c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename MatrixType::Scalar Scalar;
62c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename NumTraits<Scalar>::Real RealScalar;
63c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef typename MatrixType::Index Index;
64c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
65c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Complex scalar type for #MatrixType.
66c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
67c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
68c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \c float or \c double) and just \c Scalar if #Scalar is
69c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * complex.
70c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
71c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef std::complex<RealScalar> ComplexScalar;
72c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
73c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Type for vector of eigenvalues as returned by eigenvalues().
74c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
75c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This is a column vector with entries of type #ComplexScalar.
76c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The length of the vector is the size of #MatrixType.
77c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
78c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
79c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
80c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
81c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
82c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This is a square matrix with entries of type #ComplexScalar.
83c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The size is the same as the size of #MatrixType.
84c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
85c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
86c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
87c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Default constructor.
88c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
89c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The default constructor is useful in cases in which the user intends to
90c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * perform decompositions via compute().
91c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
92c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    ComplexEigenSolver()
93c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            : m_eivec(),
94c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_eivalues(),
95c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_schur(),
96c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_isInitialized(false),
97c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_eigenvectorsOk(false),
98c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_matX()
99c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {}
100c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
101c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Default Constructor with memory preallocation
102c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
103c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Like the default constructor but with preallocation of the internal data
104c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * according to the specified problem \a size.
105c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \sa ComplexEigenSolver()
106c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
107c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    ComplexEigenSolver(Index size)
108c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            : m_eivec(size, size),
109c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_eivalues(size),
110c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_schur(size),
111c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_isInitialized(false),
112c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_eigenvectorsOk(false),
113c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_matX(size, size)
114c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {}
115c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
116c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Constructor; computes eigendecomposition of given matrix.
117c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
118c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
119c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
120c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    eigenvalues are computed; if false, only the eigenvalues are
121c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    computed.
122c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
123c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This constructor calls compute() to compute the eigendecomposition.
124c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
125c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
126c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath            : m_eivec(matrix.rows(),matrix.cols()),
127c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_eivalues(matrix.cols()),
128c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_schur(matrix.rows()),
129c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_isInitialized(false),
130c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_eigenvectorsOk(false),
131c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath              m_matX(matrix.rows(),matrix.cols())
132c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
133c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      compute(matrix, computeEigenvectors);
134c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
135c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
136c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns the eigenvectors of given matrix.
137c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
138c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns  A const reference to the matrix whose columns are the eigenvectors.
139c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
140c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor
141c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
142c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * function compute(const MatrixType& matrix, bool) has been called before
143c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * to compute the eigendecomposition of a matrix, and
144c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \p computeEigenvectors was set to true (the default).
145c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
146c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This function returns a matrix whose columns are the eigenvectors. Column
147c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k
148c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \f$ as returned by eigenvalues().  The eigenvectors are normalized to
149c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * have (Euclidean) norm equal to one. The matrix returned by this
150c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D
151c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * V^{-1} \f$, if it exists.
152c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
153c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include ComplexEigenSolver_eigenvectors.cpp
154c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude ComplexEigenSolver_eigenvectors.out
155c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
156c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    const EigenvectorType& eigenvectors() const
157c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
158c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
159c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
160c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      return m_eivec;
161c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
162c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
163c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Returns the eigenvalues of given matrix.
164c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
165c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns A const reference to the column vector containing the eigenvalues.
166c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
167c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \pre Either the constructor
168c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
169c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * function compute(const MatrixType& matrix, bool) has been called before
170c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * to compute the eigendecomposition of a matrix.
171c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
172c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This function returns a column vector containing the
173c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * eigenvalues. Eigenvalues are repeated according to their
174c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * algebraic multiplicity, so there are as many eigenvalues as
175c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * rows in the matrix. The eigenvalues are not sorted in any particular
176c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * order.
177c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
178c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include ComplexEigenSolver_eigenvalues.cpp
179c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude ComplexEigenSolver_eigenvalues.out
180c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
181c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    const EigenvalueType& eigenvalues() const
182c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
183c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
184c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      return m_eivalues;
185c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
186c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
187c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Computes eigendecomposition of given matrix.
188c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
189c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
190c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
191c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    eigenvalues are computed; if false, only the eigenvalues are
192c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *    computed.
193c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns    Reference to \c *this
194c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
195c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * This function computes the eigenvalues of the complex matrix \p matrix.
196c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The eigenvalues() function can be used to retrieve them.  If
197c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \p computeEigenvectors is true, then the eigenvectors are also computed
198c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * and can be retrieved by calling eigenvectors().
199c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
200c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The matrix is first reduced to Schur form using the
201c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * ComplexSchur class. The Schur decomposition is then used to
202c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * compute the eigenvalues and eigenvectors.
203c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
204c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * The cost of the computation is dominated by the cost of the
205c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
206c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * is the size of the matrix.
207c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
208c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Example: \include ComplexEigenSolver_compute.cpp
209c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * Output: \verbinclude ComplexEigenSolver_compute.out
210c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
211c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
212c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
213c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    /** \brief Reports whether previous computation was successful.
214c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      *
215c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
216c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      */
217c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    ComputationInfo info() const
218c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
219c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
220c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      return m_schur.info();
221c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
222c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
223c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  protected:
224c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    EigenvectorType m_eivec;
225c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    EigenvalueType m_eivalues;
226c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    ComplexSchur<MatrixType> m_schur;
227c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    bool m_isInitialized;
228c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    bool m_eigenvectorsOk;
229c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    EigenvectorType m_matX;
230c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
231c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  private:
232c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    void doComputeEigenvectors(RealScalar matrixnorm);
233c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    void sortEigenvalues(bool computeEigenvectors);
234c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath};
235c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
236c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
237c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
238c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan KamathComplexEigenSolver<MatrixType>& ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
239c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
240c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // this code is inspired from Jampack
241c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  assert(matrix.cols() == matrix.rows());
242c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
243c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Do a complex Schur decomposition, A = U T U^*
244c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // The eigenvalues are on the diagonal of T.
245c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m_schur.compute(matrix, computeEigenvectors);
246c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
247c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  if(m_schur.info() == Success)
248c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
249c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    m_eivalues = m_schur.matrixT().diagonal();
250c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    if(computeEigenvectors)
251c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      doComputeEigenvectors(matrix.norm());
252c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    sortEigenvalues(computeEigenvectors);
253c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
254c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
255c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m_isInitialized = true;
256c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m_eigenvectorsOk = computeEigenvectors;
257c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  return *this;
258c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
259c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
260c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
261c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
262c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid ComplexEigenSolver<MatrixType>::doComputeEigenvectors(RealScalar matrixnorm)
263c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
264c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Index n = m_eivalues.size();
265c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
266c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Compute X such that T = X D X^(-1), where D is the diagonal of T.
267c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // The matrix X is unit triangular.
268c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m_matX = EigenvectorType::Zero(n, n);
269c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for(Index k=n-1 ; k>=0 ; k--)
270c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
271c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
272c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    // Compute X(i,k) using the (i,k) entry of the equation X T = D X
273c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    for(Index i=k-1 ; i>=0 ; i--)
274c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
275c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
276c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      if(k-i-1>0)
277c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
278c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
279c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      if(z==ComplexScalar(0))
280c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      {
281c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        // If the i-th and k-th eigenvalue are equal, then z equals 0.
282c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        // Use a small value instead, to prevent division by zero.
283c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath        internal::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
284c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      }
285c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
286c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
287c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
288c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
289c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
290c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  m_eivec.noalias() = m_schur.matrixU() * m_matX;
291c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  // .. and normalize the eigenvectors
292c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for(Index k=0 ; k<n ; k++)
293c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
294c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    m_eivec.col(k).normalize();
295c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
296c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
297c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
298c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
299c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathtemplate<typename MatrixType>
300c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamathvoid ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
301c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath{
302c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  const Index n =  m_eivalues.size();
303c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  for (Index i=0; i<n; i++)
304c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  {
305c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    Index k;
306c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
307c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    if (k != 0)
308c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    {
309c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      k += i;
310c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      std::swap(m_eivalues[k],m_eivalues[i]);
311c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath      if(computeEigenvectors)
312c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath	m_eivec.col(i).swap(m_eivec.col(k));
313c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath    }
314c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath  }
315c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath}
316c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
317c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath} // end namespace Eigen
318c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath
319c981c48f5bc9aefeffc0bcb0cc3934c2fae179ddNarayan Kamath#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
320