1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_LU_H
11#define EIGEN_LU_H
12
13namespace Eigen {
14
15/** \ingroup LU_Module
16  *
17  * \class FullPivLU
18  *
19  * \brief LU decomposition of a matrix with complete pivoting, and related features
20  *
21  * \param MatrixType the type of the matrix of which we are computing the LU decomposition
22  *
23  * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
24  * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
25  * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
26  * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
27  * zeros are at the end.
28  *
29  * This decomposition provides the generic approach to solving systems of linear equations, computing
30  * the rank, invertibility, inverse, kernel, and determinant.
31  *
32  * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
33  * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
34  * working with the SVD allows to select the smallest singular values of the matrix, something that
35  * the LU decomposition doesn't see.
36  *
37  * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
38  * permutationP(), permutationQ().
39  *
40  * As an exemple, here is how the original matrix can be retrieved:
41  * \include class_FullPivLU.cpp
42  * Output: \verbinclude class_FullPivLU.out
43  *
44  * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
45  */
46template<typename _MatrixType> class FullPivLU
47{
48  public:
49    typedef _MatrixType MatrixType;
50    enum {
51      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
52      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
53      Options = MatrixType::Options,
54      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
55      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
56    };
57    typedef typename MatrixType::Scalar Scalar;
58    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
59    typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
60    typedef typename MatrixType::Index Index;
61    typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
62    typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
63    typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
64    typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
65
66    /**
67      * \brief Default Constructor.
68      *
69      * The default constructor is useful in cases in which the user intends to
70      * perform decompositions via LU::compute(const MatrixType&).
71      */
72    FullPivLU();
73
74    /** \brief Default Constructor with memory preallocation
75      *
76      * Like the default constructor but with preallocation of the internal data
77      * according to the specified problem \a size.
78      * \sa FullPivLU()
79      */
80    FullPivLU(Index rows, Index cols);
81
82    /** Constructor.
83      *
84      * \param matrix the matrix of which to compute the LU decomposition.
85      *               It is required to be nonzero.
86      */
87    FullPivLU(const MatrixType& matrix);
88
89    /** Computes the LU decomposition of the given matrix.
90      *
91      * \param matrix the matrix of which to compute the LU decomposition.
92      *               It is required to be nonzero.
93      *
94      * \returns a reference to *this
95      */
96    FullPivLU& compute(const MatrixType& matrix);
97
98    /** \returns the LU decomposition matrix: the upper-triangular part is U, the
99      * unit-lower-triangular part is L (at least for square matrices; in the non-square
100      * case, special care is needed, see the documentation of class FullPivLU).
101      *
102      * \sa matrixL(), matrixU()
103      */
104    inline const MatrixType& matrixLU() const
105    {
106      eigen_assert(m_isInitialized && "LU is not initialized.");
107      return m_lu;
108    }
109
110    /** \returns the number of nonzero pivots in the LU decomposition.
111      * Here nonzero is meant in the exact sense, not in a fuzzy sense.
112      * So that notion isn't really intrinsically interesting, but it is
113      * still useful when implementing algorithms.
114      *
115      * \sa rank()
116      */
117    inline Index nonzeroPivots() const
118    {
119      eigen_assert(m_isInitialized && "LU is not initialized.");
120      return m_nonzero_pivots;
121    }
122
123    /** \returns the absolute value of the biggest pivot, i.e. the biggest
124      *          diagonal coefficient of U.
125      */
126    RealScalar maxPivot() const { return m_maxpivot; }
127
128    /** \returns the permutation matrix P
129      *
130      * \sa permutationQ()
131      */
132    inline const PermutationPType& permutationP() const
133    {
134      eigen_assert(m_isInitialized && "LU is not initialized.");
135      return m_p;
136    }
137
138    /** \returns the permutation matrix Q
139      *
140      * \sa permutationP()
141      */
142    inline const PermutationQType& permutationQ() const
143    {
144      eigen_assert(m_isInitialized && "LU is not initialized.");
145      return m_q;
146    }
147
148    /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
149      * will form a basis of the kernel.
150      *
151      * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
152      *
153      * \note This method has to determine which pivots should be considered nonzero.
154      *       For that, it uses the threshold value that you can control by calling
155      *       setThreshold(const RealScalar&).
156      *
157      * Example: \include FullPivLU_kernel.cpp
158      * Output: \verbinclude FullPivLU_kernel.out
159      *
160      * \sa image()
161      */
162    inline const internal::kernel_retval<FullPivLU> kernel() const
163    {
164      eigen_assert(m_isInitialized && "LU is not initialized.");
165      return internal::kernel_retval<FullPivLU>(*this);
166    }
167
168    /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
169      * will form a basis of the kernel.
170      *
171      * \param originalMatrix the original matrix, of which *this is the LU decomposition.
172      *                       The reason why it is needed to pass it here, is that this allows
173      *                       a large optimization, as otherwise this method would need to reconstruct it
174      *                       from the LU decomposition.
175      *
176      * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
177      *
178      * \note This method has to determine which pivots should be considered nonzero.
179      *       For that, it uses the threshold value that you can control by calling
180      *       setThreshold(const RealScalar&).
181      *
182      * Example: \include FullPivLU_image.cpp
183      * Output: \verbinclude FullPivLU_image.out
184      *
185      * \sa kernel()
186      */
187    inline const internal::image_retval<FullPivLU>
188      image(const MatrixType& originalMatrix) const
189    {
190      eigen_assert(m_isInitialized && "LU is not initialized.");
191      return internal::image_retval<FullPivLU>(*this, originalMatrix);
192    }
193
194    /** \return a solution x to the equation Ax=b, where A is the matrix of which
195      * *this is the LU decomposition.
196      *
197      * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
198      *          the only requirement in order for the equation to make sense is that
199      *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
200      *
201      * \returns a solution.
202      *
203      * \note_about_checking_solutions
204      *
205      * \note_about_arbitrary_choice_of_solution
206      * \note_about_using_kernel_to_study_multiple_solutions
207      *
208      * Example: \include FullPivLU_solve.cpp
209      * Output: \verbinclude FullPivLU_solve.out
210      *
211      * \sa TriangularView::solve(), kernel(), inverse()
212      */
213    template<typename Rhs>
214    inline const internal::solve_retval<FullPivLU, Rhs>
215    solve(const MatrixBase<Rhs>& b) const
216    {
217      eigen_assert(m_isInitialized && "LU is not initialized.");
218      return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived());
219    }
220
221    /** \returns the determinant of the matrix of which
222      * *this is the LU decomposition. It has only linear complexity
223      * (that is, O(n) where n is the dimension of the square matrix)
224      * as the LU decomposition has already been computed.
225      *
226      * \note This is only for square matrices.
227      *
228      * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
229      *       optimized paths.
230      *
231      * \warning a determinant can be very big or small, so for matrices
232      * of large enough dimension, there is a risk of overflow/underflow.
233      *
234      * \sa MatrixBase::determinant()
235      */
236    typename internal::traits<MatrixType>::Scalar determinant() const;
237
238    /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
239      * who need to determine when pivots are to be considered nonzero. This is not used for the
240      * LU decomposition itself.
241      *
242      * When it needs to get the threshold value, Eigen calls threshold(). By default, this
243      * uses a formula to automatically determine a reasonable threshold.
244      * Once you have called the present method setThreshold(const RealScalar&),
245      * your value is used instead.
246      *
247      * \param threshold The new value to use as the threshold.
248      *
249      * A pivot will be considered nonzero if its absolute value is strictly greater than
250      *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
251      * where maxpivot is the biggest pivot.
252      *
253      * If you want to come back to the default behavior, call setThreshold(Default_t)
254      */
255    FullPivLU& setThreshold(const RealScalar& threshold)
256    {
257      m_usePrescribedThreshold = true;
258      m_prescribedThreshold = threshold;
259      return *this;
260    }
261
262    /** Allows to come back to the default behavior, letting Eigen use its default formula for
263      * determining the threshold.
264      *
265      * You should pass the special object Eigen::Default as parameter here.
266      * \code lu.setThreshold(Eigen::Default); \endcode
267      *
268      * See the documentation of setThreshold(const RealScalar&).
269      */
270    FullPivLU& setThreshold(Default_t)
271    {
272      m_usePrescribedThreshold = false;
273      return *this;
274    }
275
276    /** Returns the threshold that will be used by certain methods such as rank().
277      *
278      * See the documentation of setThreshold(const RealScalar&).
279      */
280    RealScalar threshold() const
281    {
282      eigen_assert(m_isInitialized || m_usePrescribedThreshold);
283      return m_usePrescribedThreshold ? m_prescribedThreshold
284      // this formula comes from experimenting (see "LU precision tuning" thread on the list)
285      // and turns out to be identical to Higham's formula used already in LDLt.
286                                      : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize();
287    }
288
289    /** \returns the rank of the matrix of which *this is the LU decomposition.
290      *
291      * \note This method has to determine which pivots should be considered nonzero.
292      *       For that, it uses the threshold value that you can control by calling
293      *       setThreshold(const RealScalar&).
294      */
295    inline Index rank() const
296    {
297      using std::abs;
298      eigen_assert(m_isInitialized && "LU is not initialized.");
299      RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
300      Index result = 0;
301      for(Index i = 0; i < m_nonzero_pivots; ++i)
302        result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
303      return result;
304    }
305
306    /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
307      *
308      * \note This method has to determine which pivots should be considered nonzero.
309      *       For that, it uses the threshold value that you can control by calling
310      *       setThreshold(const RealScalar&).
311      */
312    inline Index dimensionOfKernel() const
313    {
314      eigen_assert(m_isInitialized && "LU is not initialized.");
315      return cols() - rank();
316    }
317
318    /** \returns true if the matrix of which *this is the LU decomposition represents an injective
319      *          linear map, i.e. has trivial kernel; false otherwise.
320      *
321      * \note This method has to determine which pivots should be considered nonzero.
322      *       For that, it uses the threshold value that you can control by calling
323      *       setThreshold(const RealScalar&).
324      */
325    inline bool isInjective() const
326    {
327      eigen_assert(m_isInitialized && "LU is not initialized.");
328      return rank() == cols();
329    }
330
331    /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
332      *          linear map; false otherwise.
333      *
334      * \note This method has to determine which pivots should be considered nonzero.
335      *       For that, it uses the threshold value that you can control by calling
336      *       setThreshold(const RealScalar&).
337      */
338    inline bool isSurjective() const
339    {
340      eigen_assert(m_isInitialized && "LU is not initialized.");
341      return rank() == rows();
342    }
343
344    /** \returns true if the matrix of which *this is the LU decomposition is invertible.
345      *
346      * \note This method has to determine which pivots should be considered nonzero.
347      *       For that, it uses the threshold value that you can control by calling
348      *       setThreshold(const RealScalar&).
349      */
350    inline bool isInvertible() const
351    {
352      eigen_assert(m_isInitialized && "LU is not initialized.");
353      return isInjective() && (m_lu.rows() == m_lu.cols());
354    }
355
356    /** \returns the inverse of the matrix of which *this is the LU decomposition.
357      *
358      * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
359      *       Use isInvertible() to first determine whether this matrix is invertible.
360      *
361      * \sa MatrixBase::inverse()
362      */
363    inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const
364    {
365      eigen_assert(m_isInitialized && "LU is not initialized.");
366      eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
367      return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType>
368               (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
369    }
370
371    MatrixType reconstructedMatrix() const;
372
373    inline Index rows() const { return m_lu.rows(); }
374    inline Index cols() const { return m_lu.cols(); }
375
376  protected:
377    MatrixType m_lu;
378    PermutationPType m_p;
379    PermutationQType m_q;
380    IntColVectorType m_rowsTranspositions;
381    IntRowVectorType m_colsTranspositions;
382    Index m_det_pq, m_nonzero_pivots;
383    RealScalar m_maxpivot, m_prescribedThreshold;
384    bool m_isInitialized, m_usePrescribedThreshold;
385};
386
387template<typename MatrixType>
388FullPivLU<MatrixType>::FullPivLU()
389  : m_isInitialized(false), m_usePrescribedThreshold(false)
390{
391}
392
393template<typename MatrixType>
394FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
395  : m_lu(rows, cols),
396    m_p(rows),
397    m_q(cols),
398    m_rowsTranspositions(rows),
399    m_colsTranspositions(cols),
400    m_isInitialized(false),
401    m_usePrescribedThreshold(false)
402{
403}
404
405template<typename MatrixType>
406FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
407  : m_lu(matrix.rows(), matrix.cols()),
408    m_p(matrix.rows()),
409    m_q(matrix.cols()),
410    m_rowsTranspositions(matrix.rows()),
411    m_colsTranspositions(matrix.cols()),
412    m_isInitialized(false),
413    m_usePrescribedThreshold(false)
414{
415  compute(matrix);
416}
417
418template<typename MatrixType>
419FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
420{
421  // the permutations are stored as int indices, so just to be sure:
422  eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
423
424  m_isInitialized = true;
425  m_lu = matrix;
426
427  const Index size = matrix.diagonalSize();
428  const Index rows = matrix.rows();
429  const Index cols = matrix.cols();
430
431  // will store the transpositions, before we accumulate them at the end.
432  // can't accumulate on-the-fly because that will be done in reverse order for the rows.
433  m_rowsTranspositions.resize(matrix.rows());
434  m_colsTranspositions.resize(matrix.cols());
435  Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
436
437  m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
438  m_maxpivot = RealScalar(0);
439
440  for(Index k = 0; k < size; ++k)
441  {
442    // First, we need to find the pivot.
443
444    // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
445    Index row_of_biggest_in_corner, col_of_biggest_in_corner;
446    RealScalar biggest_in_corner;
447    biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
448                        .cwiseAbs()
449                        .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
450    row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
451    col_of_biggest_in_corner += k; // need to add k to them.
452
453    if(biggest_in_corner==RealScalar(0))
454    {
455      // before exiting, make sure to initialize the still uninitialized transpositions
456      // in a sane state without destroying what we already have.
457      m_nonzero_pivots = k;
458      for(Index i = k; i < size; ++i)
459      {
460        m_rowsTranspositions.coeffRef(i) = i;
461        m_colsTranspositions.coeffRef(i) = i;
462      }
463      break;
464    }
465
466    if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner;
467
468    // Now that we've found the pivot, we need to apply the row/col swaps to
469    // bring it to the location (k,k).
470
471    m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner;
472    m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner;
473    if(k != row_of_biggest_in_corner) {
474      m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
475      ++number_of_transpositions;
476    }
477    if(k != col_of_biggest_in_corner) {
478      m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
479      ++number_of_transpositions;
480    }
481
482    // Now that the pivot is at the right location, we update the remaining
483    // bottom-right corner by Gaussian elimination.
484
485    if(k<rows-1)
486      m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
487    if(k<size-1)
488      m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
489  }
490
491  // the main loop is over, we still have to accumulate the transpositions to find the
492  // permutations P and Q
493
494  m_p.setIdentity(rows);
495  for(Index k = size-1; k >= 0; --k)
496    m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
497
498  m_q.setIdentity(cols);
499  for(Index k = 0; k < size; ++k)
500    m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
501
502  m_det_pq = (number_of_transpositions%2) ? -1 : 1;
503  return *this;
504}
505
506template<typename MatrixType>
507typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
508{
509  eigen_assert(m_isInitialized && "LU is not initialized.");
510  eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
511  return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
512}
513
514/** \returns the matrix represented by the decomposition,
515 * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
516 * This function is provided for debug purposes. */
517template<typename MatrixType>
518MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
519{
520  eigen_assert(m_isInitialized && "LU is not initialized.");
521  const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
522  // LU
523  MatrixType res(m_lu.rows(),m_lu.cols());
524  // FIXME the .toDenseMatrix() should not be needed...
525  res = m_lu.leftCols(smalldim)
526            .template triangularView<UnitLower>().toDenseMatrix()
527      * m_lu.topRows(smalldim)
528            .template triangularView<Upper>().toDenseMatrix();
529
530  // P^{-1}(LU)
531  res = m_p.inverse() * res;
532
533  // (P^{-1}LU)Q^{-1}
534  res = res * m_q.inverse();
535
536  return res;
537}
538
539/********* Implementation of kernel() **************************************************/
540
541namespace internal {
542template<typename _MatrixType>
543struct kernel_retval<FullPivLU<_MatrixType> >
544  : kernel_retval_base<FullPivLU<_MatrixType> >
545{
546  EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
547
548  enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
549            MatrixType::MaxColsAtCompileTime,
550            MatrixType::MaxRowsAtCompileTime)
551  };
552
553  template<typename Dest> void evalTo(Dest& dst) const
554  {
555    using std::abs;
556    const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
557    if(dimker == 0)
558    {
559      // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
560      // avoid crashing/asserting as that depends on floating point calculations. Let's
561      // just return a single column vector filled with zeros.
562      dst.setZero();
563      return;
564    }
565
566    /* Let us use the following lemma:
567      *
568      * Lemma: If the matrix A has the LU decomposition PAQ = LU,
569      * then Ker A = Q(Ker U).
570      *
571      * Proof: trivial: just keep in mind that P, Q, L are invertible.
572      */
573
574    /* Thus, all we need to do is to compute Ker U, and then apply Q.
575      *
576      * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
577      * Thus, the diagonal of U ends with exactly
578      * dimKer zero's. Let us use that to construct dimKer linearly
579      * independent vectors in Ker U.
580      */
581
582    Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
583    RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
584    Index p = 0;
585    for(Index i = 0; i < dec().nonzeroPivots(); ++i)
586      if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
587        pivots.coeffRef(p++) = i;
588    eigen_internal_assert(p == rank());
589
590    // we construct a temporaty trapezoid matrix m, by taking the U matrix and
591    // permuting the rows and cols to bring the nonnegligible pivots to the top of
592    // the main diagonal. We need that to be able to apply our triangular solvers.
593    // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
594    Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
595           MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
596      m(dec().matrixLU().block(0, 0, rank(), cols));
597    for(Index i = 0; i < rank(); ++i)
598    {
599      if(i) m.row(i).head(i).setZero();
600      m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
601    }
602    m.block(0, 0, rank(), rank());
603    m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
604    for(Index i = 0; i < rank(); ++i)
605      m.col(i).swap(m.col(pivots.coeff(i)));
606
607    // ok, we have our trapezoid matrix, we can apply the triangular solver.
608    // notice that the math behind this suggests that we should apply this to the
609    // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
610    m.topLeftCorner(rank(), rank())
611     .template triangularView<Upper>().solveInPlace(
612        m.topRightCorner(rank(), dimker)
613      );
614
615    // now we must undo the column permutation that we had applied!
616    for(Index i = rank()-1; i >= 0; --i)
617      m.col(i).swap(m.col(pivots.coeff(i)));
618
619    // see the negative sign in the next line, that's what we were talking about above.
620    for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
621    for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
622    for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
623  }
624};
625
626/***** Implementation of image() *****************************************************/
627
628template<typename _MatrixType>
629struct image_retval<FullPivLU<_MatrixType> >
630  : image_retval_base<FullPivLU<_MatrixType> >
631{
632  EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
633
634  enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
635            MatrixType::MaxColsAtCompileTime,
636            MatrixType::MaxRowsAtCompileTime)
637  };
638
639  template<typename Dest> void evalTo(Dest& dst) const
640  {
641    using std::abs;
642    if(rank() == 0)
643    {
644      // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
645      // avoid crashing/asserting as that depends on floating point calculations. Let's
646      // just return a single column vector filled with zeros.
647      dst.setZero();
648      return;
649    }
650
651    Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
652    RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
653    Index p = 0;
654    for(Index i = 0; i < dec().nonzeroPivots(); ++i)
655      if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
656        pivots.coeffRef(p++) = i;
657    eigen_internal_assert(p == rank());
658
659    for(Index i = 0; i < rank(); ++i)
660      dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
661  }
662};
663
664/***** Implementation of solve() *****************************************************/
665
666template<typename _MatrixType, typename Rhs>
667struct solve_retval<FullPivLU<_MatrixType>, Rhs>
668  : solve_retval_base<FullPivLU<_MatrixType>, Rhs>
669{
670  EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs)
671
672  template<typename Dest> void evalTo(Dest& dst) const
673  {
674    /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
675     * So we proceed as follows:
676     * Step 1: compute c = P * rhs.
677     * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
678     * Step 3: replace c by the solution x to Ux = c. May or may not exist.
679     * Step 4: result = Q * c;
680     */
681
682    const Index rows = dec().rows(), cols = dec().cols(),
683              nonzero_pivots = dec().nonzeroPivots();
684    eigen_assert(rhs().rows() == rows);
685    const Index smalldim = (std::min)(rows, cols);
686
687    if(nonzero_pivots == 0)
688    {
689      dst.setZero();
690      return;
691    }
692
693    typename Rhs::PlainObject c(rhs().rows(), rhs().cols());
694
695    // Step 1
696    c = dec().permutationP() * rhs();
697
698    // Step 2
699    dec().matrixLU()
700        .topLeftCorner(smalldim,smalldim)
701        .template triangularView<UnitLower>()
702        .solveInPlace(c.topRows(smalldim));
703    if(rows>cols)
704    {
705      c.bottomRows(rows-cols)
706        -= dec().matrixLU().bottomRows(rows-cols)
707         * c.topRows(cols);
708    }
709
710    // Step 3
711    dec().matrixLU()
712        .topLeftCorner(nonzero_pivots, nonzero_pivots)
713        .template triangularView<Upper>()
714        .solveInPlace(c.topRows(nonzero_pivots));
715
716    // Step 4
717    for(Index i = 0; i < nonzero_pivots; ++i)
718      dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i);
719    for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i)
720      dst.row(dec().permutationQ().indices().coeff(i)).setZero();
721  }
722};
723
724} // end namespace internal
725
726/******* MatrixBase methods *****************************************************************/
727
728/** \lu_module
729  *
730  * \return the full-pivoting LU decomposition of \c *this.
731  *
732  * \sa class FullPivLU
733  */
734template<typename Derived>
735inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
736MatrixBase<Derived>::fullPivLu() const
737{
738  return FullPivLU<PlainObject>(eval());
739}
740
741} // end namespace Eigen
742
743#endif // EIGEN_LU_H
744