SparseSelfAdjointView.h revision 7faaa9f3f0df9d23790277834d426c3d992ac3ba
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
11#define EIGEN_SPARSE_SELFADJOINTVIEW_H
12
13namespace Eigen {
14
15/** \ingroup SparseCore_Module
16  * \class SparseSelfAdjointView
17  *
18  * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
19  *
20  * \param MatrixType the type of the dense matrix storing the coefficients
21  * \param UpLo can be either \c #Lower or \c #Upper
22  *
23  * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
24  * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
25  * and most of the time this is the only way that it is used.
26  *
27  * \sa SparseMatrixBase::selfadjointView()
28  */
29template<typename Lhs, typename Rhs, int UpLo>
30class SparseSelfAdjointTimeDenseProduct;
31
32template<typename Lhs, typename Rhs, int UpLo>
33class DenseTimeSparseSelfAdjointProduct;
34
35namespace internal {
36
37template<typename MatrixType, unsigned int UpLo>
38struct traits<SparseSelfAdjointView<MatrixType,UpLo> > : traits<MatrixType> {
39};
40
41template<int SrcUpLo,int DstUpLo,typename MatrixType,int DestOrder>
42void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0);
43
44template<int UpLo,typename MatrixType,int DestOrder>
45void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0);
46
47}
48
49template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView
50  : public EigenBase<SparseSelfAdjointView<MatrixType,UpLo> >
51{
52  public:
53
54    typedef typename MatrixType::Scalar Scalar;
55    typedef typename MatrixType::Index Index;
56    typedef Matrix<Index,Dynamic,1> VectorI;
57    typedef typename MatrixType::Nested MatrixTypeNested;
58    typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
59
60    inline SparseSelfAdjointView(const MatrixType& matrix) : m_matrix(matrix)
61    {
62      eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
63    }
64
65    inline Index rows() const { return m_matrix.rows(); }
66    inline Index cols() const { return m_matrix.cols(); }
67
68    /** \internal \returns a reference to the nested matrix */
69    const _MatrixTypeNested& matrix() const { return m_matrix; }
70    _MatrixTypeNested& matrix() { return m_matrix.const_cast_derived(); }
71
72    /** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
73      *
74      * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
75      * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
76      */
77    template<typename OtherDerived>
78    SparseSparseProduct<typename OtherDerived::PlainObject, OtherDerived>
79    operator*(const SparseMatrixBase<OtherDerived>& rhs) const
80    {
81      return SparseSparseProduct<typename OtherDerived::PlainObject, OtherDerived>(*this, rhs.derived());
82    }
83
84    /** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
85      *
86      * Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
87      * Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
88      */
89    template<typename OtherDerived> friend
90    SparseSparseProduct<OtherDerived, typename OtherDerived::PlainObject >
91    operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
92    {
93      return SparseSparseProduct<OtherDerived, typename OtherDerived::PlainObject>(lhs.derived(), rhs);
94    }
95
96    /** Efficient sparse self-adjoint matrix times dense vector/matrix product */
97    template<typename OtherDerived>
98    SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo>
99    operator*(const MatrixBase<OtherDerived>& rhs) const
100    {
101      return SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo>(m_matrix, rhs.derived());
102    }
103
104    /** Efficient dense vector/matrix times sparse self-adjoint matrix product */
105    template<typename OtherDerived> friend
106    DenseTimeSparseSelfAdjointProduct<OtherDerived,MatrixType,UpLo>
107    operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
108    {
109      return DenseTimeSparseSelfAdjointProduct<OtherDerived,_MatrixTypeNested,UpLo>(lhs.derived(), rhs.m_matrix);
110    }
111
112    /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
113      * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
114      *
115      * \returns a reference to \c *this
116      *
117      * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
118      * call this function with u.adjoint().
119      */
120    template<typename DerivedU>
121    SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
122
123    /** \internal triggered by sparse_matrix = SparseSelfadjointView; */
124    template<typename DestScalar,int StorageOrder> void evalTo(SparseMatrix<DestScalar,StorageOrder,Index>& _dest) const
125    {
126      internal::permute_symm_to_fullsymm<UpLo>(m_matrix, _dest);
127    }
128
129    template<typename DestScalar> void evalTo(DynamicSparseMatrix<DestScalar,ColMajor,Index>& _dest) const
130    {
131      // TODO directly evaluate into _dest;
132      SparseMatrix<DestScalar,ColMajor,Index> tmp(_dest.rows(),_dest.cols());
133      internal::permute_symm_to_fullsymm<UpLo>(m_matrix, tmp);
134      _dest = tmp;
135    }
136
137    /** \returns an expression of P H P^-1 */
138    SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
139    {
140      return SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo>(m_matrix, perm);
141    }
142
143    template<typename SrcMatrixType,int SrcUpLo>
144    SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcUpLo>& permutedMatrix)
145    {
146      permutedMatrix.evalTo(*this);
147      return *this;
148    }
149
150
151    SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
152    {
153      PermutationMatrix<Dynamic> pnull;
154      return *this = src.twistedBy(pnull);
155    }
156
157    template<typename SrcMatrixType,unsigned int SrcUpLo>
158    SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcUpLo>& src)
159    {
160      PermutationMatrix<Dynamic> pnull;
161      return *this = src.twistedBy(pnull);
162    }
163
164
165    // const SparseLLT<PlainObject, UpLo> llt() const;
166    // const SparseLDLT<PlainObject, UpLo> ldlt() const;
167
168  protected:
169
170    typename MatrixType::Nested m_matrix;
171    mutable VectorI m_countPerRow;
172    mutable VectorI m_countPerCol;
173};
174
175/***************************************************************************
176* Implementation of SparseMatrixBase methods
177***************************************************************************/
178
179template<typename Derived>
180template<unsigned int UpLo>
181const SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView() const
182{
183  return derived();
184}
185
186template<typename Derived>
187template<unsigned int UpLo>
188SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView()
189{
190  return derived();
191}
192
193/***************************************************************************
194* Implementation of SparseSelfAdjointView methods
195***************************************************************************/
196
197template<typename MatrixType, unsigned int UpLo>
198template<typename DerivedU>
199SparseSelfAdjointView<MatrixType,UpLo>&
200SparseSelfAdjointView<MatrixType,UpLo>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
201{
202  SparseMatrix<Scalar,MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> tmp = u * u.adjoint();
203  if(alpha==Scalar(0))
204    m_matrix.const_cast_derived() = tmp.template triangularView<UpLo>();
205  else
206    m_matrix.const_cast_derived() += alpha * tmp.template triangularView<UpLo>();
207
208  return *this;
209}
210
211/***************************************************************************
212* Implementation of sparse self-adjoint time dense matrix
213***************************************************************************/
214
215namespace internal {
216template<typename Lhs, typename Rhs, int UpLo>
217struct traits<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo> >
218 : traits<ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> >
219{
220  typedef Dense StorageKind;
221};
222}
223
224template<typename Lhs, typename Rhs, int UpLo>
225class SparseSelfAdjointTimeDenseProduct
226  : public ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs>
227{
228  public:
229    EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseSelfAdjointTimeDenseProduct)
230
231    SparseSelfAdjointTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
232    {}
233
234    template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
235    {
236      EIGEN_ONLY_USED_FOR_DEBUG(alpha);
237      // TODO use alpha
238      eigen_assert(alpha==Scalar(1) && "alpha != 1 is not implemented yet, sorry");
239      typedef typename internal::remove_all<Lhs>::type _Lhs;
240      typedef typename _Lhs::InnerIterator LhsInnerIterator;
241      enum {
242        LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit,
243        ProcessFirstHalf =
244                 ((UpLo&(Upper|Lower))==(Upper|Lower))
245              || ( (UpLo&Upper) && !LhsIsRowMajor)
246              || ( (UpLo&Lower) && LhsIsRowMajor),
247        ProcessSecondHalf = !ProcessFirstHalf
248      };
249      for (Index j=0; j<m_lhs.outerSize(); ++j)
250      {
251        LhsInnerIterator i(m_lhs,j);
252        if (ProcessSecondHalf)
253        {
254          while (i && i.index()<j) ++i;
255          if(i && i.index()==j)
256          {
257            dest.row(j) += i.value() * m_rhs.row(j);
258            ++i;
259          }
260        }
261        for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
262        {
263          Index a = LhsIsRowMajor ? j : i.index();
264          Index b = LhsIsRowMajor ? i.index() : j;
265          typename Lhs::Scalar v = i.value();
266          dest.row(a) += (v) * m_rhs.row(b);
267          dest.row(b) += numext::conj(v) * m_rhs.row(a);
268        }
269        if (ProcessFirstHalf && i && (i.index()==j))
270          dest.row(j) += i.value() * m_rhs.row(j);
271      }
272    }
273
274  private:
275    SparseSelfAdjointTimeDenseProduct& operator=(const SparseSelfAdjointTimeDenseProduct&);
276};
277
278namespace internal {
279template<typename Lhs, typename Rhs, int UpLo>
280struct traits<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo> >
281 : traits<ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> >
282{};
283}
284
285template<typename Lhs, typename Rhs, int UpLo>
286class DenseTimeSparseSelfAdjointProduct
287  : public ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs>
288{
289  public:
290    EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseSelfAdjointProduct)
291
292    DenseTimeSparseSelfAdjointProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
293    {}
294
295    template<typename Dest> void scaleAndAddTo(Dest& /*dest*/, const Scalar& /*alpha*/) const
296    {
297      // TODO
298    }
299
300  private:
301    DenseTimeSparseSelfAdjointProduct& operator=(const DenseTimeSparseSelfAdjointProduct&);
302};
303
304/***************************************************************************
305* Implementation of symmetric copies and permutations
306***************************************************************************/
307namespace internal {
308
309template<typename MatrixType, int UpLo>
310struct traits<SparseSymmetricPermutationProduct<MatrixType,UpLo> > : traits<MatrixType> {
311};
312
313template<int UpLo,typename MatrixType,int DestOrder>
314void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm)
315{
316  typedef typename MatrixType::Index Index;
317  typedef typename MatrixType::Scalar Scalar;
318  typedef SparseMatrix<Scalar,DestOrder,Index> Dest;
319  typedef Matrix<Index,Dynamic,1> VectorI;
320
321  Dest& dest(_dest.derived());
322  enum {
323    StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
324  };
325
326  Index size = mat.rows();
327  VectorI count;
328  count.resize(size);
329  count.setZero();
330  dest.resize(size,size);
331  for(Index j = 0; j<size; ++j)
332  {
333    Index jp = perm ? perm[j] : j;
334    for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
335    {
336      Index i = it.index();
337      Index r = it.row();
338      Index c = it.col();
339      Index ip = perm ? perm[i] : i;
340      if(UpLo==(Upper|Lower))
341        count[StorageOrderMatch ? jp : ip]++;
342      else if(r==c)
343        count[ip]++;
344      else if(( UpLo==Lower && r>c) || ( UpLo==Upper && r<c))
345      {
346        count[ip]++;
347        count[jp]++;
348      }
349    }
350  }
351  Index nnz = count.sum();
352
353  // reserve space
354  dest.resizeNonZeros(nnz);
355  dest.outerIndexPtr()[0] = 0;
356  for(Index j=0; j<size; ++j)
357    dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
358  for(Index j=0; j<size; ++j)
359    count[j] = dest.outerIndexPtr()[j];
360
361  // copy data
362  for(Index j = 0; j<size; ++j)
363  {
364    for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
365    {
366      Index i = it.index();
367      Index r = it.row();
368      Index c = it.col();
369
370      Index jp = perm ? perm[j] : j;
371      Index ip = perm ? perm[i] : i;
372
373      if(UpLo==(Upper|Lower))
374      {
375        Index k = count[StorageOrderMatch ? jp : ip]++;
376        dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
377        dest.valuePtr()[k] = it.value();
378      }
379      else if(r==c)
380      {
381        Index k = count[ip]++;
382        dest.innerIndexPtr()[k] = ip;
383        dest.valuePtr()[k] = it.value();
384      }
385      else if(( (UpLo&Lower)==Lower && r>c) || ( (UpLo&Upper)==Upper && r<c))
386      {
387        if(!StorageOrderMatch)
388          std::swap(ip,jp);
389        Index k = count[jp]++;
390        dest.innerIndexPtr()[k] = ip;
391        dest.valuePtr()[k] = it.value();
392        k = count[ip]++;
393        dest.innerIndexPtr()[k] = jp;
394        dest.valuePtr()[k] = numext::conj(it.value());
395      }
396    }
397  }
398}
399
400template<int _SrcUpLo,int _DstUpLo,typename MatrixType,int DstOrder>
401void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm)
402{
403  typedef typename MatrixType::Index Index;
404  typedef typename MatrixType::Scalar Scalar;
405  SparseMatrix<Scalar,DstOrder,Index>& dest(_dest.derived());
406  typedef Matrix<Index,Dynamic,1> VectorI;
407  enum {
408    SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
409    StorageOrderMatch = int(SrcOrder) == int(DstOrder),
410    DstUpLo = DstOrder==RowMajor ? (_DstUpLo==Upper ? Lower : Upper) : _DstUpLo,
411    SrcUpLo = SrcOrder==RowMajor ? (_SrcUpLo==Upper ? Lower : Upper) : _SrcUpLo
412  };
413
414  Index size = mat.rows();
415  VectorI count(size);
416  count.setZero();
417  dest.resize(size,size);
418  for(Index j = 0; j<size; ++j)
419  {
420    Index jp = perm ? perm[j] : j;
421    for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
422    {
423      Index i = it.index();
424      if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j))
425        continue;
426
427      Index ip = perm ? perm[i] : i;
428      count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
429    }
430  }
431  dest.outerIndexPtr()[0] = 0;
432  for(Index j=0; j<size; ++j)
433    dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
434  dest.resizeNonZeros(dest.outerIndexPtr()[size]);
435  for(Index j=0; j<size; ++j)
436    count[j] = dest.outerIndexPtr()[j];
437
438  for(Index j = 0; j<size; ++j)
439  {
440
441    for(typename MatrixType::InnerIterator it(mat,j); it; ++it)
442    {
443      Index i = it.index();
444      if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j))
445        continue;
446
447      Index jp = perm ? perm[j] : j;
448      Index ip = perm? perm[i] : i;
449
450      Index k = count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
451      dest.innerIndexPtr()[k] = int(DstUpLo)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
452
453      if(!StorageOrderMatch) std::swap(ip,jp);
454      if( ((int(DstUpLo)==int(Lower) && ip<jp) || (int(DstUpLo)==int(Upper) && ip>jp)))
455        dest.valuePtr()[k] = numext::conj(it.value());
456      else
457        dest.valuePtr()[k] = it.value();
458    }
459  }
460}
461
462}
463
464template<typename MatrixType,int UpLo>
465class SparseSymmetricPermutationProduct
466  : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,UpLo> >
467{
468  public:
469    typedef typename MatrixType::Scalar Scalar;
470    typedef typename MatrixType::Index Index;
471  protected:
472    typedef PermutationMatrix<Dynamic,Dynamic,Index> Perm;
473  public:
474    typedef Matrix<Index,Dynamic,1> VectorI;
475    typedef typename MatrixType::Nested MatrixTypeNested;
476    typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
477
478    SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
479      : m_matrix(mat), m_perm(perm)
480    {}
481
482    inline Index rows() const { return m_matrix.rows(); }
483    inline Index cols() const { return m_matrix.cols(); }
484
485    template<typename DestScalar, int Options, typename DstIndex>
486    void evalTo(SparseMatrix<DestScalar,Options,DstIndex>& _dest) const
487    {
488//       internal::permute_symm_to_fullsymm<UpLo>(m_matrix,_dest,m_perm.indices().data());
489      SparseMatrix<DestScalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
490      internal::permute_symm_to_fullsymm<UpLo>(m_matrix,tmp,m_perm.indices().data());
491      _dest = tmp;
492    }
493
494    template<typename DestType,unsigned int DestUpLo> void evalTo(SparseSelfAdjointView<DestType,DestUpLo>& dest) const
495    {
496      internal::permute_symm_to_symm<UpLo,DestUpLo>(m_matrix,dest.matrix(),m_perm.indices().data());
497    }
498
499  protected:
500    MatrixTypeNested m_matrix;
501    const Perm& m_perm;
502
503};
504
505} // end namespace Eigen
506
507#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
508