1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_SPARSELU_GEMM_KERNEL_H
11#define EIGEN_SPARSELU_GEMM_KERNEL_H
12
13namespace Eigen {
14
15namespace internal {
16
17
18/** \internal
19  * A general matrix-matrix product kernel optimized for the SparseLU factorization.
20  *  - A, B, and C must be column major
21  *  - lda and ldc must be multiples of the respective packet size
22  *  - C must have the same alignment as A
23  */
24template<typename Scalar,typename Index>
25EIGEN_DONT_INLINE
26void sparselu_gemm(Index m, Index n, Index d, const Scalar* A, Index lda, const Scalar* B, Index ldb, Scalar* C, Index ldc)
27{
28  using namespace Eigen::internal;
29
30  typedef typename packet_traits<Scalar>::type Packet;
31  enum {
32    NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
33    PacketSize = packet_traits<Scalar>::size,
34    PM = 8,                             // peeling in M
35    RN = 2,                             // register blocking
36    RK = NumberOfRegisters>=16 ? 4 : 2, // register blocking
37    BM = 4096/sizeof(Scalar),           // number of rows of A-C per chunk
38    SM = PM*PacketSize                  // step along M
39  };
40  Index d_end = (d/RK)*RK;    // number of columns of A (rows of B) suitable for full register blocking
41  Index n_end = (n/RN)*RN;    // number of columns of B-C suitable for processing RN columns at once
42  Index i0 = internal::first_aligned(A,m);
43
44  eigen_internal_assert(((lda%PacketSize)==0) && ((ldc%PacketSize)==0) && (i0==internal::first_aligned(C,m)));
45
46  // handle the non aligned rows of A and C without any optimization:
47  for(Index i=0; i<i0; ++i)
48  {
49    for(Index j=0; j<n; ++j)
50    {
51      Scalar c = C[i+j*ldc];
52      for(Index k=0; k<d; ++k)
53        c += B[k+j*ldb] * A[i+k*lda];
54      C[i+j*ldc] = c;
55    }
56  }
57  // process the remaining rows per chunk of BM rows
58  for(Index ib=i0; ib<m; ib+=BM)
59  {
60    Index actual_b = std::min<Index>(BM, m-ib);                 // actual number of rows
61    Index actual_b_end1 = (actual_b/SM)*SM;                   // actual number of rows suitable for peeling
62    Index actual_b_end2 = (actual_b/PacketSize)*PacketSize;   // actual number of rows suitable for vectorization
63
64    // Let's process two columns of B-C at once
65    for(Index j=0; j<n_end; j+=RN)
66    {
67      const Scalar* Bc0 = B+(j+0)*ldb;
68      const Scalar* Bc1 = B+(j+1)*ldb;
69
70      for(Index k=0; k<d_end; k+=RK)
71      {
72
73        // load and expand a RN x RK block of B
74        Packet b00, b10, b20, b30, b01, b11, b21, b31;
75                  b00 = pset1<Packet>(Bc0[0]);
76                  b10 = pset1<Packet>(Bc0[1]);
77        if(RK==4) b20 = pset1<Packet>(Bc0[2]);
78        if(RK==4) b30 = pset1<Packet>(Bc0[3]);
79                  b01 = pset1<Packet>(Bc1[0]);
80                  b11 = pset1<Packet>(Bc1[1]);
81        if(RK==4) b21 = pset1<Packet>(Bc1[2]);
82        if(RK==4) b31 = pset1<Packet>(Bc1[3]);
83
84        Packet a0, a1, a2, a3, c0, c1, t0, t1;
85
86        const Scalar* A0 = A+ib+(k+0)*lda;
87        const Scalar* A1 = A+ib+(k+1)*lda;
88        const Scalar* A2 = A+ib+(k+2)*lda;
89        const Scalar* A3 = A+ib+(k+3)*lda;
90
91        Scalar* C0 = C+ib+(j+0)*ldc;
92        Scalar* C1 = C+ib+(j+1)*ldc;
93
94                  a0 = pload<Packet>(A0);
95                  a1 = pload<Packet>(A1);
96        if(RK==4)
97        {
98          a2 = pload<Packet>(A2);
99          a3 = pload<Packet>(A3);
100        }
101        else
102        {
103          // workaround "may be used uninitialized in this function" warning
104          a2 = a3 = a0;
105        }
106
107#define KMADD(c, a, b, tmp) {tmp = b; tmp = pmul(a,tmp); c = padd(c,tmp);}
108#define WORK(I)  \
109                    c0 = pload<Packet>(C0+i+(I)*PacketSize);   \
110                    c1 = pload<Packet>(C1+i+(I)*PacketSize);   \
111                    KMADD(c0, a0, b00, t0)      \
112                    KMADD(c1, a0, b01, t1)      \
113                    a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \
114                    KMADD(c0, a1, b10, t0)      \
115                    KMADD(c1, a1, b11, t1)       \
116                    a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \
117          if(RK==4) KMADD(c0, a2, b20, t0)       \
118          if(RK==4) KMADD(c1, a2, b21, t1)       \
119          if(RK==4) a2 = pload<Packet>(A2+i+(I+1)*PacketSize); \
120          if(RK==4) KMADD(c0, a3, b30, t0)       \
121          if(RK==4) KMADD(c1, a3, b31, t1)       \
122          if(RK==4) a3 = pload<Packet>(A3+i+(I+1)*PacketSize); \
123                    pstore(C0+i+(I)*PacketSize, c0);           \
124                    pstore(C1+i+(I)*PacketSize, c1)
125
126        // process rows of A' - C' with aggressive vectorization and peeling
127        for(Index i=0; i<actual_b_end1; i+=PacketSize*8)
128        {
129          EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL1");
130                    prefetch((A0+i+(5)*PacketSize));
131                    prefetch((A1+i+(5)*PacketSize));
132          if(RK==4) prefetch((A2+i+(5)*PacketSize));
133          if(RK==4) prefetch((A3+i+(5)*PacketSize));
134                    WORK(0);
135                    WORK(1);
136                    WORK(2);
137                    WORK(3);
138                    WORK(4);
139                    WORK(5);
140                    WORK(6);
141                    WORK(7);
142        }
143        // process the remaining rows with vectorization only
144        for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize)
145        {
146          WORK(0);
147        }
148#undef WORK
149        // process the remaining rows without vectorization
150        for(Index i=actual_b_end2; i<actual_b; ++i)
151        {
152          if(RK==4)
153          {
154            C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3];
155            C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1]+A2[i]*Bc1[2]+A3[i]*Bc1[3];
156          }
157          else
158          {
159            C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1];
160            C1[i] += A0[i]*Bc1[0]+A1[i]*Bc1[1];
161          }
162        }
163
164        Bc0 += RK;
165        Bc1 += RK;
166      } // peeled loop on k
167    } // peeled loop on the columns j
168    // process the last column (we now perform a matrux-vector product)
169    if((n-n_end)>0)
170    {
171      const Scalar* Bc0 = B+(n-1)*ldb;
172
173      for(Index k=0; k<d_end; k+=RK)
174      {
175
176        // load and expand a 1 x RK block of B
177        Packet b00, b10, b20, b30;
178                  b00 = pset1<Packet>(Bc0[0]);
179                  b10 = pset1<Packet>(Bc0[1]);
180        if(RK==4) b20 = pset1<Packet>(Bc0[2]);
181        if(RK==4) b30 = pset1<Packet>(Bc0[3]);
182
183        Packet a0, a1, a2, a3, c0, t0/*, t1*/;
184
185        const Scalar* A0 = A+ib+(k+0)*lda;
186        const Scalar* A1 = A+ib+(k+1)*lda;
187        const Scalar* A2 = A+ib+(k+2)*lda;
188        const Scalar* A3 = A+ib+(k+3)*lda;
189
190        Scalar* C0 = C+ib+(n_end)*ldc;
191
192                  a0 = pload<Packet>(A0);
193                  a1 = pload<Packet>(A1);
194        if(RK==4)
195        {
196          a2 = pload<Packet>(A2);
197          a3 = pload<Packet>(A3);
198        }
199        else
200        {
201          // workaround "may be used uninitialized in this function" warning
202          a2 = a3 = a0;
203        }
204
205#define WORK(I) \
206                  c0 = pload<Packet>(C0+i+(I)*PacketSize);   \
207                  KMADD(c0, a0, b00, t0)       \
208                  a0 = pload<Packet>(A0+i+(I+1)*PacketSize); \
209                  KMADD(c0, a1, b10, t0)       \
210                  a1 = pload<Packet>(A1+i+(I+1)*PacketSize); \
211        if(RK==4) KMADD(c0, a2, b20, t0)       \
212        if(RK==4) a2 = pload<Packet>(A2+i+(I+1)*PacketSize); \
213        if(RK==4) KMADD(c0, a3, b30, t0)       \
214        if(RK==4) a3 = pload<Packet>(A3+i+(I+1)*PacketSize); \
215                  pstore(C0+i+(I)*PacketSize, c0);
216
217        // agressive vectorization and peeling
218        for(Index i=0; i<actual_b_end1; i+=PacketSize*8)
219        {
220          EIGEN_ASM_COMMENT("SPARSELU_GEMML_KERNEL2");
221          WORK(0);
222          WORK(1);
223          WORK(2);
224          WORK(3);
225          WORK(4);
226          WORK(5);
227          WORK(6);
228          WORK(7);
229        }
230        // vectorization only
231        for(Index i=actual_b_end1; i<actual_b_end2; i+=PacketSize)
232        {
233          WORK(0);
234        }
235        // remaining scalars
236        for(Index i=actual_b_end2; i<actual_b; ++i)
237        {
238          if(RK==4)
239            C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1]+A2[i]*Bc0[2]+A3[i]*Bc0[3];
240          else
241            C0[i] += A0[i]*Bc0[0]+A1[i]*Bc0[1];
242        }
243
244        Bc0 += RK;
245#undef WORK
246      }
247    }
248
249    // process the last columns of A, corresponding to the last rows of B
250    Index rd = d-d_end;
251    if(rd>0)
252    {
253      for(Index j=0; j<n; ++j)
254      {
255        enum {
256          Alignment = PacketSize>1 ? Aligned : 0
257        };
258        typedef Map<Matrix<Scalar,Dynamic,1>, Alignment > MapVector;
259        typedef Map<const Matrix<Scalar,Dynamic,1>, Alignment > ConstMapVector;
260        if(rd==1)       MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b);
261
262        else if(rd==2)  MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b)
263                                                        + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b);
264
265        else            MapVector(C+j*ldc+ib,actual_b) += B[0+d_end+j*ldb] * ConstMapVector(A+(d_end+0)*lda+ib, actual_b)
266                                                        + B[1+d_end+j*ldb] * ConstMapVector(A+(d_end+1)*lda+ib, actual_b)
267                                                        + B[2+d_end+j*ldb] * ConstMapVector(A+(d_end+2)*lda+ib, actual_b);
268      }
269    }
270
271  } // blocking on the rows of A and C
272}
273#undef KMADD
274
275} // namespace internal
276
277} // namespace Eigen
278
279#endif // EIGEN_SPARSELU_GEMM_KERNEL_H
280