1      SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2*     .. Scalar Arguments ..
3      COMPLEX ALPHA,BETA
4      INTEGER INCX,INCY,K,LDA,N
5      CHARACTER UPLO
6*     ..
7*     .. Array Arguments ..
8      COMPLEX A(LDA,*),X(*),Y(*)
9*     ..
10*
11*  Purpose
12*  =======
13*
14*  CHBMV  performs the matrix-vector  operation
15*
16*     y := alpha*A*x + beta*y,
17*
18*  where alpha and beta are scalars, x and y are n element vectors and
19*  A is an n by n hermitian band matrix, with k super-diagonals.
20*
21*  Arguments
22*  ==========
23*
24*  UPLO   - CHARACTER*1.
25*           On entry, UPLO specifies whether the upper or lower
26*           triangular part of the band matrix A is being supplied as
27*           follows:
28*
29*              UPLO = 'U' or 'u'   The upper triangular part of A is
30*                                  being supplied.
31*
32*              UPLO = 'L' or 'l'   The lower triangular part of A is
33*                                  being supplied.
34*
35*           Unchanged on exit.
36*
37*  N      - INTEGER.
38*           On entry, N specifies the order of the matrix A.
39*           N must be at least zero.
40*           Unchanged on exit.
41*
42*  K      - INTEGER.
43*           On entry, K specifies the number of super-diagonals of the
44*           matrix A. K must satisfy  0 .le. K.
45*           Unchanged on exit.
46*
47*  ALPHA  - COMPLEX         .
48*           On entry, ALPHA specifies the scalar alpha.
49*           Unchanged on exit.
50*
51*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
52*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
53*           by n part of the array A must contain the upper triangular
54*           band part of the hermitian matrix, supplied column by
55*           column, with the leading diagonal of the matrix in row
56*           ( k + 1 ) of the array, the first super-diagonal starting at
57*           position 2 in row k, and so on. The top left k by k triangle
58*           of the array A is not referenced.
59*           The following program segment will transfer the upper
60*           triangular part of a hermitian band matrix from conventional
61*           full matrix storage to band storage:
62*
63*                 DO 20, J = 1, N
64*                    M = K + 1 - J
65*                    DO 10, I = MAX( 1, J - K ), J
66*                       A( M + I, J ) = matrix( I, J )
67*              10    CONTINUE
68*              20 CONTINUE
69*
70*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
71*           by n part of the array A must contain the lower triangular
72*           band part of the hermitian matrix, supplied column by
73*           column, with the leading diagonal of the matrix in row 1 of
74*           the array, the first sub-diagonal starting at position 1 in
75*           row 2, and so on. The bottom right k by k triangle of the
76*           array A is not referenced.
77*           The following program segment will transfer the lower
78*           triangular part of a hermitian band matrix from conventional
79*           full matrix storage to band storage:
80*
81*                 DO 20, J = 1, N
82*                    M = 1 - J
83*                    DO 10, I = J, MIN( N, J + K )
84*                       A( M + I, J ) = matrix( I, J )
85*              10    CONTINUE
86*              20 CONTINUE
87*
88*           Note that the imaginary parts of the diagonal elements need
89*           not be set and are assumed to be zero.
90*           Unchanged on exit.
91*
92*  LDA    - INTEGER.
93*           On entry, LDA specifies the first dimension of A as declared
94*           in the calling (sub) program. LDA must be at least
95*           ( k + 1 ).
96*           Unchanged on exit.
97*
98*  X      - COMPLEX          array of DIMENSION at least
99*           ( 1 + ( n - 1 )*abs( INCX ) ).
100*           Before entry, the incremented array X must contain the
101*           vector x.
102*           Unchanged on exit.
103*
104*  INCX   - INTEGER.
105*           On entry, INCX specifies the increment for the elements of
106*           X. INCX must not be zero.
107*           Unchanged on exit.
108*
109*  BETA   - COMPLEX         .
110*           On entry, BETA specifies the scalar beta.
111*           Unchanged on exit.
112*
113*  Y      - COMPLEX          array of DIMENSION at least
114*           ( 1 + ( n - 1 )*abs( INCY ) ).
115*           Before entry, the incremented array Y must contain the
116*           vector y. On exit, Y is overwritten by the updated vector y.
117*
118*  INCY   - INTEGER.
119*           On entry, INCY specifies the increment for the elements of
120*           Y. INCY must not be zero.
121*           Unchanged on exit.
122*
123*  Further Details
124*  ===============
125*
126*  Level 2 Blas routine.
127*
128*  -- Written on 22-October-1986.
129*     Jack Dongarra, Argonne National Lab.
130*     Jeremy Du Croz, Nag Central Office.
131*     Sven Hammarling, Nag Central Office.
132*     Richard Hanson, Sandia National Labs.
133*
134*  =====================================================================
135*
136*     .. Parameters ..
137      COMPLEX ONE
138      PARAMETER (ONE= (1.0E+0,0.0E+0))
139      COMPLEX ZERO
140      PARAMETER (ZERO= (0.0E+0,0.0E+0))
141*     ..
142*     .. Local Scalars ..
143      COMPLEX TEMP1,TEMP2
144      INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
145*     ..
146*     .. External Functions ..
147      LOGICAL LSAME
148      EXTERNAL LSAME
149*     ..
150*     .. External Subroutines ..
151      EXTERNAL XERBLA
152*     ..
153*     .. Intrinsic Functions ..
154      INTRINSIC CONJG,MAX,MIN,REAL
155*     ..
156*
157*     Test the input parameters.
158*
159      INFO = 0
160      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
161          INFO = 1
162      ELSE IF (N.LT.0) THEN
163          INFO = 2
164      ELSE IF (K.LT.0) THEN
165          INFO = 3
166      ELSE IF (LDA.LT. (K+1)) THEN
167          INFO = 6
168      ELSE IF (INCX.EQ.0) THEN
169          INFO = 8
170      ELSE IF (INCY.EQ.0) THEN
171          INFO = 11
172      END IF
173      IF (INFO.NE.0) THEN
174          CALL XERBLA('CHBMV ',INFO)
175          RETURN
176      END IF
177*
178*     Quick return if possible.
179*
180      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
181*
182*     Set up the start points in  X  and  Y.
183*
184      IF (INCX.GT.0) THEN
185          KX = 1
186      ELSE
187          KX = 1 - (N-1)*INCX
188      END IF
189      IF (INCY.GT.0) THEN
190          KY = 1
191      ELSE
192          KY = 1 - (N-1)*INCY
193      END IF
194*
195*     Start the operations. In this version the elements of the array A
196*     are accessed sequentially with one pass through A.
197*
198*     First form  y := beta*y.
199*
200      IF (BETA.NE.ONE) THEN
201          IF (INCY.EQ.1) THEN
202              IF (BETA.EQ.ZERO) THEN
203                  DO 10 I = 1,N
204                      Y(I) = ZERO
205   10             CONTINUE
206              ELSE
207                  DO 20 I = 1,N
208                      Y(I) = BETA*Y(I)
209   20             CONTINUE
210              END IF
211          ELSE
212              IY = KY
213              IF (BETA.EQ.ZERO) THEN
214                  DO 30 I = 1,N
215                      Y(IY) = ZERO
216                      IY = IY + INCY
217   30             CONTINUE
218              ELSE
219                  DO 40 I = 1,N
220                      Y(IY) = BETA*Y(IY)
221                      IY = IY + INCY
222   40             CONTINUE
223              END IF
224          END IF
225      END IF
226      IF (ALPHA.EQ.ZERO) RETURN
227      IF (LSAME(UPLO,'U')) THEN
228*
229*        Form  y  when upper triangle of A is stored.
230*
231          KPLUS1 = K + 1
232          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
233              DO 60 J = 1,N
234                  TEMP1 = ALPHA*X(J)
235                  TEMP2 = ZERO
236                  L = KPLUS1 - J
237                  DO 50 I = MAX(1,J-K),J - 1
238                      Y(I) = Y(I) + TEMP1*A(L+I,J)
239                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
240   50             CONTINUE
241                  Y(J) = Y(J) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
242   60         CONTINUE
243          ELSE
244              JX = KX
245              JY = KY
246              DO 80 J = 1,N
247                  TEMP1 = ALPHA*X(JX)
248                  TEMP2 = ZERO
249                  IX = KX
250                  IY = KY
251                  L = KPLUS1 - J
252                  DO 70 I = MAX(1,J-K),J - 1
253                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
254                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
255                      IX = IX + INCX
256                      IY = IY + INCY
257   70             CONTINUE
258                  Y(JY) = Y(JY) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
259                  JX = JX + INCX
260                  JY = JY + INCY
261                  IF (J.GT.K) THEN
262                      KX = KX + INCX
263                      KY = KY + INCY
264                  END IF
265   80         CONTINUE
266          END IF
267      ELSE
268*
269*        Form  y  when lower triangle of A is stored.
270*
271          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
272              DO 100 J = 1,N
273                  TEMP1 = ALPHA*X(J)
274                  TEMP2 = ZERO
275                  Y(J) = Y(J) + TEMP1*REAL(A(1,J))
276                  L = 1 - J
277                  DO 90 I = J + 1,MIN(N,J+K)
278                      Y(I) = Y(I) + TEMP1*A(L+I,J)
279                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
280   90             CONTINUE
281                  Y(J) = Y(J) + ALPHA*TEMP2
282  100         CONTINUE
283          ELSE
284              JX = KX
285              JY = KY
286              DO 120 J = 1,N
287                  TEMP1 = ALPHA*X(JX)
288                  TEMP2 = ZERO
289                  Y(JY) = Y(JY) + TEMP1*REAL(A(1,J))
290                  L = 1 - J
291                  IX = JX
292                  IY = JY
293                  DO 110 I = J + 1,MIN(N,J+K)
294                      IX = IX + INCX
295                      IY = IY + INCY
296                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
297                      TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
298  110             CONTINUE
299                  Y(JY) = Y(JY) + ALPHA*TEMP2
300                  JX = JX + INCX
301                  JY = JY + INCY
302  120         CONTINUE
303          END IF
304      END IF
305*
306      RETURN
307*
308*     End of CHBMV .
309*
310      END
311