1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "main.h"
11
12template<typename ArrayType> void array(const ArrayType& m)
13{
14  typedef typename ArrayType::Index Index;
15  typedef typename ArrayType::Scalar Scalar;
16  typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
17  typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
18
19  Index rows = m.rows();
20  Index cols = m.cols();
21
22  ArrayType m1 = ArrayType::Random(rows, cols),
23             m2 = ArrayType::Random(rows, cols),
24             m3(rows, cols);
25
26  ColVectorType cv1 = ColVectorType::Random(rows);
27  RowVectorType rv1 = RowVectorType::Random(cols);
28
29  Scalar  s1 = internal::random<Scalar>(),
30          s2 = internal::random<Scalar>();
31
32  // scalar addition
33  VERIFY_IS_APPROX(m1 + s1, s1 + m1);
34  VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1);
35  VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
36  VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1));
37  VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1);
38  VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) );
39  m3 = m1;
40  m3 += s2;
41  VERIFY_IS_APPROX(m3, m1 + s2);
42  m3 = m1;
43  m3 -= s1;
44  VERIFY_IS_APPROX(m3, m1 - s1);
45
46  // scalar operators via Maps
47  m3 = m1;
48  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
49  VERIFY_IS_APPROX(m1, m3 - m2);
50
51  m3 = m1;
52  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols());
53  VERIFY_IS_APPROX(m1, m3 + m2);
54
55  m3 = m1;
56  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
57  VERIFY_IS_APPROX(m1, m3 * m2);
58
59  m3 = m1;
60  m2 = ArrayType::Random(rows,cols);
61  m2 = (m2==0).select(1,m2);
62  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
63  VERIFY_IS_APPROX(m1, m3 / m2);
64
65  // reductions
66  VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum());
67  VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum());
68  using std::abs;
69  VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum());
70  VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum());
71  if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>()))
72      VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
73  VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
74
75  // vector-wise ops
76  m3 = m1;
77  VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
78  m3 = m1;
79  VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
80  m3 = m1;
81  VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
82  m3 = m1;
83  VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
84}
85
86template<typename ArrayType> void comparisons(const ArrayType& m)
87{
88  using std::abs;
89  typedef typename ArrayType::Index Index;
90  typedef typename ArrayType::Scalar Scalar;
91  typedef typename NumTraits<Scalar>::Real RealScalar;
92
93  Index rows = m.rows();
94  Index cols = m.cols();
95
96  Index r = internal::random<Index>(0, rows-1),
97        c = internal::random<Index>(0, cols-1);
98
99  ArrayType m1 = ArrayType::Random(rows, cols),
100             m2 = ArrayType::Random(rows, cols),
101             m3(rows, cols);
102
103  VERIFY(((m1 + Scalar(1)) > m1).all());
104  VERIFY(((m1 - Scalar(1)) < m1).all());
105  if (rows*cols>1)
106  {
107    m3 = m1;
108    m3(r,c) += 1;
109    VERIFY(! (m1 < m3).all() );
110    VERIFY(! (m1 > m3).all() );
111  }
112
113  // comparisons to scalar
114  VERIFY( (m1 != (m1(r,c)+1) ).any() );
115  VERIFY( (m1 > (m1(r,c)-1) ).any() );
116  VERIFY( (m1 < (m1(r,c)+1) ).any() );
117  VERIFY( (m1 == m1(r,c) ).any() );
118
119  // test Select
120  VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
121  VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
122  Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
123  for (int j=0; j<cols; ++j)
124  for (int i=0; i<rows; ++i)
125    m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
126  VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
127                        .select(ArrayType::Zero(rows,cols),m1), m3);
128  // shorter versions:
129  VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
130                        .select(0,m1), m3);
131  VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid))
132                        .select(m1,0), m3);
133  // even shorter version:
134  VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);
135
136  // count
137  VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);
138
139  // and/or
140  VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0);
141  VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols);
142  RealScalar a = m1.abs().mean();
143  VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count());
144
145  typedef Array<typename ArrayType::Index, Dynamic, 1> ArrayOfIndices;
146
147  // TODO allows colwise/rowwise for array
148  VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose());
149  VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols));
150}
151
152template<typename ArrayType> void array_real(const ArrayType& m)
153{
154  using std::abs;
155  using std::sqrt;
156  typedef typename ArrayType::Index Index;
157  typedef typename ArrayType::Scalar Scalar;
158  typedef typename NumTraits<Scalar>::Real RealScalar;
159
160  Index rows = m.rows();
161  Index cols = m.cols();
162
163  ArrayType m1 = ArrayType::Random(rows, cols),
164            m2 = ArrayType::Random(rows, cols),
165            m3(rows, cols);
166
167  Scalar  s1 = internal::random<Scalar>();
168
169  // these tests are mostly to check possible compilation issues.
170  VERIFY_IS_APPROX(m1.sin(), sin(m1));
171  VERIFY_IS_APPROX(m1.cos(), cos(m1));
172  VERIFY_IS_APPROX(m1.asin(), asin(m1));
173  VERIFY_IS_APPROX(m1.acos(), acos(m1));
174  VERIFY_IS_APPROX(m1.tan(), tan(m1));
175
176  VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
177
178  VERIFY_IS_APPROX(m1.abs().sqrt(), sqrt(abs(m1)));
179  VERIFY_IS_APPROX(m1.abs(), sqrt(numext::abs2(m1)));
180
181  VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1));
182  VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1));
183  if(!NumTraits<Scalar>::IsComplex)
184    VERIFY_IS_APPROX(numext::real(m1), m1);
185
186  // shift argument of logarithm so that it is not zero
187  Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
188  VERIFY_IS_APPROX((m1.abs() + smallNumber).log() , log(abs(m1) + smallNumber));
189
190  VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
191  VERIFY_IS_APPROX(m1.exp(), exp(m1));
192  VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
193
194  VERIFY_IS_APPROX(m1.pow(2), m1.square());
195  VERIFY_IS_APPROX(pow(m1,2), m1.square());
196
197  ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2));
198  VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square());
199
200  m3 = m1.abs();
201  VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
202  VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
203
204  // scalar by array division
205  const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
206  s1 += Scalar(tiny);
207  m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
208  VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
209
210  // check inplace transpose
211  m3 = m1;
212  m3.transposeInPlace();
213  VERIFY_IS_APPROX(m3,m1.transpose());
214  m3.transposeInPlace();
215  VERIFY_IS_APPROX(m3,m1);
216}
217
218template<typename ArrayType> void array_complex(const ArrayType& m)
219{
220  typedef typename ArrayType::Index Index;
221
222  Index rows = m.rows();
223  Index cols = m.cols();
224
225  ArrayType m1 = ArrayType::Random(rows, cols),
226            m2(rows, cols);
227
228  for (Index i = 0; i < m.rows(); ++i)
229    for (Index j = 0; j < m.cols(); ++j)
230      m2(i,j) = sqrt(m1(i,j));
231
232  VERIFY_IS_APPROX(m1.sqrt(), m2);
233  VERIFY_IS_APPROX(m1.sqrt(), Eigen::sqrt(m1));
234}
235
236template<typename ArrayType> void min_max(const ArrayType& m)
237{
238  typedef typename ArrayType::Index Index;
239  typedef typename ArrayType::Scalar Scalar;
240
241  Index rows = m.rows();
242  Index cols = m.cols();
243
244  ArrayType m1 = ArrayType::Random(rows, cols);
245
246  // min/max with array
247  Scalar maxM1 = m1.maxCoeff();
248  Scalar minM1 = m1.minCoeff();
249
250  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1)));
251  VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1)));
252
253  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1)));
254  VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1)));
255
256  // min/max with scalar input
257  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1));
258  VERIFY_IS_APPROX(m1, (m1.min)( maxM1));
259
260  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1));
261  VERIFY_IS_APPROX(m1, (m1.max)( minM1));
262
263}
264
265void test_array()
266{
267  for(int i = 0; i < g_repeat; i++) {
268    CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
269    CALL_SUBTEST_2( array(Array22f()) );
270    CALL_SUBTEST_3( array(Array44d()) );
271    CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
272    CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
273    CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
274  }
275  for(int i = 0; i < g_repeat; i++) {
276    CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
277    CALL_SUBTEST_2( comparisons(Array22f()) );
278    CALL_SUBTEST_3( comparisons(Array44d()) );
279    CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
280    CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
281  }
282  for(int i = 0; i < g_repeat; i++) {
283    CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) );
284    CALL_SUBTEST_2( min_max(Array22f()) );
285    CALL_SUBTEST_3( min_max(Array44d()) );
286    CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
287    CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
288  }
289  for(int i = 0; i < g_repeat; i++) {
290    CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) );
291    CALL_SUBTEST_2( array_real(Array22f()) );
292    CALL_SUBTEST_3( array_real(Array44d()) );
293    CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
294  }
295  for(int i = 0; i < g_repeat; i++) {
296    CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
297  }
298
299  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value));
300  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value));
301  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value));
302  typedef CwiseUnaryOp<internal::scalar_sum_op<double>, ArrayXd > Xpr;
303  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type,
304                           ArrayBase<Xpr>
305                         >::value));
306}
307