1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#define EIGEN2_SUPPORT
12#define EIGEN_NO_STATIC_ASSERT
13#include "main.h"
14#include <functional>
15
16#ifdef min
17#undef min
18#endif
19
20#ifdef max
21#undef max
22#endif
23
24using namespace std;
25
26template<typename Scalar> struct AddIfNull {
27    const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;}
28    enum { Cost = NumTraits<Scalar>::AddCost };
29};
30
31template<typename MatrixType>
32typename Eigen::internal::enable_if<!NumTraits<typename MatrixType::Scalar>::IsInteger,typename MatrixType::Scalar>::type
33cwiseops_real_only(MatrixType& m1, MatrixType& m2, MatrixType& m3, MatrixType& mones)
34{
35  typedef typename MatrixType::Scalar Scalar;
36  typedef typename NumTraits<Scalar>::Real RealScalar;
37
38  VERIFY_IS_APPROX(m1.cwise() / m2,    m1.cwise() * (m2.cwise().inverse()));
39  m3 = m1.cwise().abs().cwise().sqrt();
40  VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs());
41  VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs());
42  VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs());
43
44  VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
45  m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1);
46  VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse());
47  m3 = m1.cwise().abs();
48  VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt());
49
50//   VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos());
51  VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square());
52  m3 = m1;
53  m3.cwise() /= m2;
54  VERIFY_IS_APPROX(m3, m1.cwise() / m2);
55
56  return Scalar(0);
57}
58
59template<typename MatrixType>
60typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsInteger,typename MatrixType::Scalar>::type
61cwiseops_real_only(MatrixType& , MatrixType& , MatrixType& , MatrixType& )
62{
63  return 0;
64}
65
66template<typename MatrixType> void cwiseops(const MatrixType& m)
67{
68  typedef typename MatrixType::Index Index;
69  typedef typename MatrixType::Scalar Scalar;
70  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
71
72  Index rows = m.rows();
73  Index cols = m.cols();
74
75  MatrixType m1 = MatrixType::Random(rows, cols),
76             m1bis = m1,
77             m2 = MatrixType::Random(rows, cols),
78             m3(rows, cols),
79             m4(rows, cols),
80             mzero = MatrixType::Zero(rows, cols),
81             mones = MatrixType::Ones(rows, cols),
82             identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
83                              ::Identity(rows, rows);
84  VectorType vzero = VectorType::Zero(rows),
85             vones = VectorType::Ones(rows),
86             v3(rows);
87
88  Index r = internal::random<Index>(0, rows-1),
89        c = internal::random<Index>(0, cols-1);
90
91  Scalar s1 = internal::random<Scalar>();
92
93  // test Zero, Ones, Constant, and the set* variants
94  m3 = MatrixType::Constant(rows, cols, s1);
95  for (int j=0; j<cols; ++j)
96    for (int i=0; i<rows; ++i)
97    {
98      VERIFY_IS_APPROX(mzero(i,j), Scalar(0));
99      VERIFY_IS_APPROX(mones(i,j), Scalar(1));
100      VERIFY_IS_APPROX(m3(i,j), s1);
101    }
102  VERIFY(mzero.isZero());
103  VERIFY(mones.isOnes());
104  VERIFY(m3.isConstant(s1));
105  VERIFY(identity.isIdentity());
106  VERIFY_IS_APPROX(m4.setConstant(s1), m3);
107  VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3);
108  VERIFY_IS_APPROX(m4.setZero(), mzero);
109  VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero);
110  VERIFY_IS_APPROX(m4.setOnes(), mones);
111  VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones);
112  m4.fill(s1);
113  VERIFY_IS_APPROX(m4, m3);
114
115  VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1));
116  VERIFY_IS_APPROX(v3.setZero(rows), vzero);
117  VERIFY_IS_APPROX(v3.setOnes(rows), vones);
118
119  m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones);
120
121  VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2());
122  VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
123  VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube());
124
125  VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1));
126  VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1));
127  m3 = m1; m3.cwise() += 1;
128  VERIFY_IS_APPROX(m1 + mones, m3);
129  m3 = m1; m3.cwise() -= 1;
130  VERIFY_IS_APPROX(m1 - mones, m3);
131
132  VERIFY_IS_APPROX(m2, m2.cwise() * mones);
133  VERIFY_IS_APPROX(m1.cwise() * m2,  m2.cwise() * m1);
134  m3 = m1;
135  m3.cwise() *= m2;
136  VERIFY_IS_APPROX(m3, m1.cwise() * m2);
137
138  VERIFY_IS_APPROX(mones,    m2.cwise()/m2);
139
140  // check min
141  VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) );
142  VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 );
143  VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones );
144
145  // check max
146  VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) );
147  VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 );
148  VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones );
149
150  VERIFY( (m1.cwise() == m1).all() );
151  VERIFY( (m1.cwise() != m2).any() );
152  VERIFY(!(m1.cwise() == (m1+mones)).any() );
153  if (rows*cols>1)
154  {
155    m3 = m1;
156    m3(r,c) += 1;
157    VERIFY( (m1.cwise() == m3).any() );
158    VERIFY( !(m1.cwise() == m3).all() );
159  }
160  VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() );
161  VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() );
162  VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() );
163  VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() );
164
165  VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
166  VERIFY( !(m1.cwise()<m1bis.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
167  VERIFY( !(m1.cwise()>m1bis.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
168
169  cwiseops_real_only(m1, m2, m3, mones);
170}
171
172void test_cwiseop()
173{
174  for(int i = 0; i < g_repeat ; i++) {
175    CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) );
176    CALL_SUBTEST_2( cwiseops(Matrix4d()) );
177    CALL_SUBTEST_3( cwiseops(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
178    CALL_SUBTEST_4( cwiseops(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
179    CALL_SUBTEST_5( cwiseops(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
180    CALL_SUBTEST_6( cwiseops(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
181  }
182}
183