eigen2_geometry.cpp revision c981c48f5bc9aefeffc0bcb0cc3934c2fae179dd
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra. Eigen itself is part of the KDE project.
3//
4// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "main.h"
11#include <Eigen/Geometry>
12#include <Eigen/LU>
13#include <Eigen/SVD>
14
15template<typename Scalar> void geometry(void)
16{
17  /* this test covers the following files:
18     Cross.h Quaternion.h, Transform.cpp
19  */
20
21  typedef Matrix<Scalar,2,2> Matrix2;
22  typedef Matrix<Scalar,3,3> Matrix3;
23  typedef Matrix<Scalar,4,4> Matrix4;
24  typedef Matrix<Scalar,2,1> Vector2;
25  typedef Matrix<Scalar,3,1> Vector3;
26  typedef Matrix<Scalar,4,1> Vector4;
27  typedef Quaternion<Scalar> Quaternionx;
28  typedef AngleAxis<Scalar> AngleAxisx;
29  typedef Transform<Scalar,2> Transform2;
30  typedef Transform<Scalar,3> Transform3;
31  typedef Scaling<Scalar,2> Scaling2;
32  typedef Scaling<Scalar,3> Scaling3;
33  typedef Translation<Scalar,2> Translation2;
34  typedef Translation<Scalar,3> Translation3;
35
36  Scalar largeEps = test_precision<Scalar>();
37  if (ei_is_same_type<Scalar,float>::ret)
38    largeEps = 1e-2f;
39
40  Vector3 v0 = Vector3::Random(),
41    v1 = Vector3::Random(),
42    v2 = Vector3::Random();
43  Vector2 u0 = Vector2::Random();
44  Matrix3 matrot1;
45
46  Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
47
48  // cross product
49  VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1));
50  Matrix3 m;
51  m << v0.normalized(),
52      (v0.cross(v1)).normalized(),
53      (v0.cross(v1).cross(v0)).normalized();
54  VERIFY(m.isUnitary());
55
56  // Quaternion: Identity(), setIdentity();
57  Quaternionx q1, q2;
58  q2.setIdentity();
59  VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
60  q1.coeffs().setRandom();
61  VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
62
63  // unitOrthogonal
64  VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1));
65  VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1));
66  VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1));
67  VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1));
68
69
70  VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
71  VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
72  VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
73  m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
74  VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
75  VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
76
77  q1 = AngleAxisx(a, v0.normalized());
78  q2 = AngleAxisx(a, v1.normalized());
79
80  // angular distance
81  Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle());
82  if (refangle>Scalar(M_PI))
83    refangle = Scalar(2)*Scalar(M_PI) - refangle;
84
85  if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
86  {
87    VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps));
88  }
89
90  // rotation matrix conversion
91  VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
92  VERIFY_IS_APPROX(q1 * q2 * v2,
93    q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
94
95  VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox(
96    q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
97
98  q2 = q1.toRotationMatrix();
99  VERIFY_IS_APPROX(q1*v1,q2*v1);
100
101  matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
102          * AngleAxisx(Scalar(0.2), Vector3::UnitY())
103          * AngleAxisx(Scalar(0.3), Vector3::UnitZ());
104  VERIFY_IS_APPROX(matrot1 * v1,
105       AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
106    * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
107    * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
108
109  // angle-axis conversion
110  AngleAxisx aa = q1;
111  VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
112  VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
113
114  // from two vector creation
115  VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
116  VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
117
118  // inverse and conjugate
119  VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
120  VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
121
122  // AngleAxis
123  VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
124    Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
125
126  AngleAxisx aa1;
127  m = q1.toRotationMatrix();
128  aa1 = m;
129  VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
130    Quaternionx(m).toRotationMatrix());
131
132  // Transform
133  // TODO complete the tests !
134  a = 0;
135  while (ei_abs(a)<Scalar(0.1))
136    a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI));
137  q1 = AngleAxisx(a, v0.normalized());
138  Transform3 t0, t1, t2;
139  // first test setIdentity() and Identity()
140  t0.setIdentity();
141  VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
142  t0.matrix().setZero();
143  t0 = Transform3::Identity();
144  VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
145
146  t0.linear() = q1.toRotationMatrix();
147  t1.setIdentity();
148  t1.linear() = q1.toRotationMatrix();
149
150  v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5));
151  t0.scale(v0);
152  t1.prescale(v0);
153
154  VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x());
155  //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x()));
156
157  t0.setIdentity();
158  t1.setIdentity();
159  v1 << 1, 2, 3;
160  t0.linear() = q1.toRotationMatrix();
161  t0.pretranslate(v0);
162  t0.scale(v1);
163  t1.linear() = q1.conjugate().toRotationMatrix();
164  t1.prescale(v1.cwise().inverse());
165  t1.translate(-v0);
166
167  VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>()));
168
169  t1.fromPositionOrientationScale(v0, q1, v1);
170  VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
171  VERIFY_IS_APPROX(t1*v1, t0*v1);
172
173  t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
174  t1.setIdentity(); t1.scale(v0).rotate(q1);
175  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
176
177  t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
178  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
179
180  VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
181  VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
182
183  // More transform constructors, operator=, operator*=
184
185  Matrix3 mat3 = Matrix3::Random();
186  Matrix4 mat4;
187  mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
188  Transform3 tmat3(mat3), tmat4(mat4);
189  tmat4.matrix()(3,3) = Scalar(1);
190  VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
191
192  Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
193  Vector3 v3 = Vector3::Random().normalized();
194  AngleAxisx aa3(a3, v3);
195  Transform3 t3(aa3);
196  Transform3 t4;
197  t4 = aa3;
198  VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
199  t4.rotate(AngleAxisx(-a3,v3));
200  VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
201  t4 *= aa3;
202  VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
203
204  v3 = Vector3::Random();
205  Translation3 tv3(v3);
206  Transform3 t5(tv3);
207  t4 = tv3;
208  VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
209  t4.translate(-v3);
210  VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
211  t4 *= tv3;
212  VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
213
214  Scaling3 sv3(v3);
215  Transform3 t6(sv3);
216  t4 = sv3;
217  VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
218  t4.scale(v3.cwise().inverse());
219  VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
220  t4 *= sv3;
221  VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
222
223  // matrix * transform
224  VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix());
225
226  // chained Transform product
227  VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
228
229  // check that Transform product doesn't have aliasing problems
230  t5 = t4;
231  t5 = t5*t5;
232  VERIFY_IS_APPROX(t5, t4*t4);
233
234  // 2D transformation
235  Transform2 t20, t21;
236  Vector2 v20 = Vector2::Random();
237  Vector2 v21 = Vector2::Random();
238  for (int k=0; k<2; ++k)
239    if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
240  t21.setIdentity();
241  t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
242  VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
243    t21.pretranslate(v20).scale(v21).matrix());
244
245  t21.setIdentity();
246  t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
247  VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
248        * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
249
250  // Transform - new API
251  // 3D
252  t0.setIdentity();
253  t0.rotate(q1).scale(v0).translate(v0);
254  // mat * scaling and mat * translation
255  t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0);
256  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
257  // mat * transformation and scaling * translation
258  t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0));
259  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
260
261  t0.setIdentity();
262  t0.prerotate(q1).prescale(v0).pretranslate(v0);
263  // translation * scaling and transformation * mat
264  t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1);
265  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
266  // scaling * mat and translation * mat
267  t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1));
268  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
269
270  t0.setIdentity();
271  t0.scale(v0).translate(v0).rotate(q1);
272  // translation * mat and scaling * transformation
273  t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1));
274  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
275  // transformation * scaling
276  t0.scale(v0);
277  t1 = t1 * Scaling3(v0);
278  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
279  // transformation * translation
280  t0.translate(v0);
281  t1 = t1 * Translation3(v0);
282  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
283  // translation * transformation
284  t0.pretranslate(v0);
285  t1 = Translation3(v0) * t1;
286  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
287
288  // transform * quaternion
289  t0.rotate(q1);
290  t1 = t1 * q1;
291  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
292
293  // translation * quaternion
294  t0.translate(v1).rotate(q1);
295  t1 = t1 * (Translation3(v1) * q1);
296  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
297
298  // scaling * quaternion
299  t0.scale(v1).rotate(q1);
300  t1 = t1 * (Scaling3(v1) * q1);
301  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
302
303  // quaternion * transform
304  t0.prerotate(q1);
305  t1 = q1 * t1;
306  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
307
308  // quaternion * translation
309  t0.rotate(q1).translate(v1);
310  t1 = t1 * (q1 * Translation3(v1));
311  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
312
313  // quaternion * scaling
314  t0.rotate(q1).scale(v1);
315  t1 = t1 * (q1 * Scaling3(v1));
316  VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
317
318  // translation * vector
319  t0.setIdentity();
320  t0.translate(v0);
321  VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1);
322
323  // scaling * vector
324  t0.setIdentity();
325  t0.scale(v0);
326  VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1);
327
328  // test transform inversion
329  t0.setIdentity();
330  t0.translate(v0);
331  t0.linear().setRandom();
332  VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse());
333  t0.setIdentity();
334  t0.translate(v0).rotate(q1);
335  VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse());
336
337  // test extract rotation and scaling
338  t0.setIdentity();
339  t0.translate(v0).rotate(q1).scale(v1);
340  VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1);
341
342  Matrix3 mat_rotation, mat_scaling;
343  t0.setIdentity();
344  t0.translate(v0).rotate(q1).scale(v1);
345  t0.computeRotationScaling(&mat_rotation, &mat_scaling);
346  VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
347  VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
348  VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
349  t0.computeScalingRotation(&mat_scaling, &mat_rotation);
350  VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
351  VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
352  VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
353
354  // test casting
355  Transform<float,3> t1f = t1.template cast<float>();
356  VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
357  Transform<double,3> t1d = t1.template cast<double>();
358  VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
359
360  Translation3 tr1(v0);
361  Translation<float,3> tr1f = tr1.template cast<float>();
362  VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
363  Translation<double,3> tr1d = tr1.template cast<double>();
364  VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
365
366  Scaling3 sc1(v0);
367  Scaling<float,3> sc1f = sc1.template cast<float>();
368  VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1);
369  Scaling<double,3> sc1d = sc1.template cast<double>();
370  VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1);
371
372  Quaternion<float> q1f = q1.template cast<float>();
373  VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
374  Quaternion<double> q1d = q1.template cast<double>();
375  VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
376
377  AngleAxis<float> aa1f = aa1.template cast<float>();
378  VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
379  AngleAxis<double> aa1d = aa1.template cast<double>();
380  VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
381
382  Rotation2D<Scalar> r2d1(ei_random<Scalar>());
383  Rotation2D<float> r2d1f = r2d1.template cast<float>();
384  VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
385  Rotation2D<double> r2d1d = r2d1.template cast<double>();
386  VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
387
388  m = q1;
389//   m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized();
390//   m.col(0) = Vector3(-1,0,0).normalized();
391//   m.col(2) = m.col(0).cross(m.col(1));
392  #define VERIFY_EULER(I,J,K, X,Y,Z) { \
393    Vector3 ea = m.eulerAngles(I,J,K); \
394    Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \
395    VERIFY_IS_APPROX(m,  Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \
396  }
397  VERIFY_EULER(0,1,2, X,Y,Z);
398  VERIFY_EULER(0,1,0, X,Y,X);
399  VERIFY_EULER(0,2,1, X,Z,Y);
400  VERIFY_EULER(0,2,0, X,Z,X);
401
402  VERIFY_EULER(1,2,0, Y,Z,X);
403  VERIFY_EULER(1,2,1, Y,Z,Y);
404  VERIFY_EULER(1,0,2, Y,X,Z);
405  VERIFY_EULER(1,0,1, Y,X,Y);
406
407  VERIFY_EULER(2,0,1, Z,X,Y);
408  VERIFY_EULER(2,0,2, Z,X,Z);
409  VERIFY_EULER(2,1,0, Z,Y,X);
410  VERIFY_EULER(2,1,2, Z,Y,Z);
411
412  // colwise/rowwise cross product
413  mat3.setRandom();
414  Vector3 vec3 = Vector3::Random();
415  Matrix3 mcross;
416  int i = ei_random<int>(0,2);
417  mcross = mat3.colwise().cross(vec3);
418  VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
419  mcross = mat3.rowwise().cross(vec3);
420  VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
421
422
423}
424
425void test_eigen2_geometry()
426{
427  for(int i = 0; i < g_repeat; i++) {
428    CALL_SUBTEST_1( geometry<float>() );
429    CALL_SUBTEST_2( geometry<double>() );
430  }
431}
432