1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra. Eigen itself is part of the KDE project.
3//
4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "main.h"
11
12// check minor separately in order to avoid the possible creation of a zero-sized
13// array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic.
14// Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage
15// but this is probably not bad to raise such an error at compile time...
16template<typename Scalar, int _Rows, int _Cols> struct CheckMinor
17{
18    typedef Matrix<Scalar, _Rows, _Cols> MatrixType;
19    CheckMinor(MatrixType& m1, int r1, int c1)
20    {
21        int rows = m1.rows();
22        int cols = m1.cols();
23
24        Matrix<Scalar, Dynamic, Dynamic> mi = m1.minor(0,0).eval();
25        VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1));
26        mi = m1.minor(r1,c1);
27        VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1));
28        //check operator(), both constant and non-constant, on minor()
29        m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0);
30    }
31};
32
33template<typename Scalar> struct CheckMinor<Scalar,1,1>
34{
35    typedef Matrix<Scalar, 1, 1> MatrixType;
36    CheckMinor(MatrixType&, int, int) {}
37};
38
39template<typename MatrixType> void submatrices(const MatrixType& m)
40{
41  /* this test covers the following files:
42     Row.h Column.h Block.h Minor.h DiagonalCoeffs.h
43  */
44  typedef typename MatrixType::Scalar Scalar;
45  typedef typename MatrixType::RealScalar RealScalar;
46  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
47  typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
48  int rows = m.rows();
49  int cols = m.cols();
50
51  MatrixType m1 = MatrixType::Random(rows, cols),
52             m2 = MatrixType::Random(rows, cols),
53             m3(rows, cols),
54             mzero = MatrixType::Zero(rows, cols),
55             ones = MatrixType::Ones(rows, cols),
56             identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
57                              ::Identity(rows, rows),
58             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
59                              ::Random(rows, rows);
60  VectorType v1 = VectorType::Random(rows),
61             v2 = VectorType::Random(rows),
62             v3 = VectorType::Random(rows),
63             vzero = VectorType::Zero(rows);
64
65  Scalar s1 = ei_random<Scalar>();
66
67  int r1 = ei_random<int>(0,rows-1);
68  int r2 = ei_random<int>(r1,rows-1);
69  int c1 = ei_random<int>(0,cols-1);
70  int c2 = ei_random<int>(c1,cols-1);
71
72  //check row() and col()
73  VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1));
74  VERIFY_IS_APPROX(square.row(r1).eigen2_dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1));
75  //check operator(), both constant and non-constant, on row() and col()
76  m1.row(r1) += s1 * m1.row(r2);
77  m1.col(c1) += s1 * m1.col(c2);
78
79  //check block()
80  Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
81  RowVectorType br1(m1.block(r1,0,1,cols));
82  VectorType bc1(m1.block(0,c1,rows,1));
83  VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1));
84  VERIFY_IS_APPROX(m1.row(r1), br1);
85  VERIFY_IS_APPROX(m1.col(c1), bc1);
86  //check operator(), both constant and non-constant, on block()
87  m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
88  m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
89
90  //check minor()
91  CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1);
92
93  //check diagonal()
94  VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
95  m2.diagonal() = 2 * m1.diagonal();
96  m2.diagonal()[0] *= 3;
97  VERIFY_IS_APPROX(m2.diagonal()[0], static_cast<Scalar>(6) * m1.diagonal()[0]);
98
99  enum {
100    BlockRows = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,2),
101    BlockCols = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::ColsAtCompileTime,5)
102  };
103  if (rows>=5 && cols>=8)
104  {
105    // test fixed block() as lvalue
106    m1.template block<BlockRows,BlockCols>(1,1) *= s1;
107    // test operator() on fixed block() both as constant and non-constant
108    m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
109    // check that fixed block() and block() agree
110    Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
111    VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols));
112  }
113
114  if (rows>2)
115  {
116    // test sub vectors
117    VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1));
118    VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2));
119    VERIFY_IS_APPROX(v1.template start<2>(), v1.segment(0,2));
120    VERIFY_IS_APPROX(v1.template start<2>(), v1.template segment<2>(0));
121    int i = rows-2;
122    VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1));
123    VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2));
124    VERIFY_IS_APPROX(v1.template end<2>(), v1.segment(i,2));
125    VERIFY_IS_APPROX(v1.template end<2>(), v1.template segment<2>(i));
126    i = ei_random(0,rows-2);
127    VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i));
128  }
129
130  // stress some basic stuffs with block matrices
131  VERIFY(ei_real(ones.col(c1).sum()) == RealScalar(rows));
132  VERIFY(ei_real(ones.row(r1).sum()) == RealScalar(cols));
133
134  VERIFY(ei_real(ones.col(c1).eigen2_dot(ones.col(c2))) == RealScalar(rows));
135  VERIFY(ei_real(ones.row(r1).eigen2_dot(ones.row(r2))) == RealScalar(cols));
136}
137
138void test_eigen2_submatrices()
139{
140  for(int i = 0; i < g_repeat; i++) {
141    CALL_SUBTEST_1( submatrices(Matrix<float, 1, 1>()) );
142    CALL_SUBTEST_2( submatrices(Matrix4d()) );
143    CALL_SUBTEST_3( submatrices(MatrixXcf(3, 3)) );
144    CALL_SUBTEST_4( submatrices(MatrixXi(8, 12)) );
145    CALL_SUBTEST_5( submatrices(MatrixXcd(20, 20)) );
146    CALL_SUBTEST_6( submatrices(MatrixXf(20, 20)) );
147  }
148}
149