main.h revision c981c48f5bc9aefeffc0bcb0cc3934c2fae179dd
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#include <cstdlib>
12#include <cerrno>
13#include <ctime>
14#include <iostream>
15#include <fstream>
16#include <string>
17#include <vector>
18#include <typeinfo>
19#include <limits>
20#include <algorithm>
21#include <sstream>
22#include <complex>
23#include <deque>
24#include <queue>
25
26#define min(A,B) please_protect_your_min_with_parentheses
27#define max(A,B) please_protect_your_max_with_parentheses
28
29#define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes
30// B0 is defined in POSIX header termios.h
31#define B0 FORBIDDEN_IDENTIFIER
32
33// the following file is automatically generated by cmake
34#include "split_test_helper.h"
35
36#ifdef NDEBUG
37#undef NDEBUG
38#endif
39
40// bounds integer values for AltiVec
41#ifdef __ALTIVEC__
42#define EIGEN_MAKING_DOCS
43#endif
44
45#ifndef EIGEN_TEST_FUNC
46#error EIGEN_TEST_FUNC must be defined
47#endif
48
49#define DEFAULT_REPEAT 10
50
51#ifdef __ICC
52// disable warning #279: controlling expression is constant
53#pragma warning disable 279
54#endif
55
56namespace Eigen
57{
58  static std::vector<std::string> g_test_stack;
59  static int g_repeat;
60  static unsigned int g_seed;
61  static bool g_has_set_repeat, g_has_set_seed;
62}
63
64#define EI_PP_MAKE_STRING2(S) #S
65#define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
66
67#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, "  ", "\n", "", "", "", "")
68
69#ifndef EIGEN_NO_ASSERTION_CHECKING
70
71  namespace Eigen
72  {
73    static const bool should_raise_an_assert = false;
74
75    // Used to avoid to raise two exceptions at a time in which
76    // case the exception is not properly caught.
77    // This may happen when a second exceptions is triggered in a destructor.
78    static bool no_more_assert = false;
79    static bool report_on_cerr_on_assert_failure = true;
80
81    struct eigen_assert_exception
82    {
83      eigen_assert_exception(void) {}
84      ~eigen_assert_exception() { Eigen::no_more_assert = false; }
85    };
86  }
87  // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while
88  // one should have been, then the list of excecuted assertions is printed out.
89  //
90  // EIGEN_DEBUG_ASSERTS is not enabled by default as it
91  // significantly increases the compilation time
92  // and might even introduce side effects that would hide
93  // some memory errors.
94  #ifdef EIGEN_DEBUG_ASSERTS
95
96    namespace Eigen
97    {
98      namespace internal
99      {
100        static bool push_assert = false;
101      }
102      static std::vector<std::string> eigen_assert_list;
103    }
104    #define eigen_assert(a)                       \
105      if( (!(a)) && (!no_more_assert) )     \
106      { \
107        if(report_on_cerr_on_assert_failure) \
108          std::cerr <<  #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \
109        Eigen::no_more_assert = true;       \
110        throw Eigen::eigen_assert_exception(); \
111      }                                     \
112      else if (Eigen::internal::push_assert)       \
113      {                                     \
114        eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__) " (" EI_PP_MAKE_STRING(__LINE__) ") : " #a) ); \
115      }
116
117    #define VERIFY_RAISES_ASSERT(a)                                                   \
118      {                                                                               \
119        Eigen::no_more_assert = false;                                                \
120        Eigen::eigen_assert_list.clear();                                                \
121        Eigen::internal::push_assert = true;                                                 \
122        Eigen::report_on_cerr_on_assert_failure = false;                              \
123        try {                                                                         \
124          a;                                                                          \
125          std::cerr << "One of the following asserts should have been triggered:\n";  \
126          for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai)                           \
127            std::cerr << "  " << eigen_assert_list[ai] << "\n";                          \
128          VERIFY(Eigen::should_raise_an_assert && # a);                               \
129        } catch (Eigen::eigen_assert_exception) {                                        \
130          Eigen::internal::push_assert = false; VERIFY(true);                                \
131        }                                                                             \
132        Eigen::report_on_cerr_on_assert_failure = true;                               \
133        Eigen::internal::push_assert = false;                                                \
134      }
135
136  #else // EIGEN_DEBUG_ASSERTS
137    // see bug 89. The copy_bool here is working around a bug in gcc <= 4.3
138    #define eigen_assert(a) \
139      if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\
140      {                                       \
141        Eigen::no_more_assert = true;         \
142        if(report_on_cerr_on_assert_failure)  \
143          eigen_plain_assert(a);              \
144        else                                  \
145          throw Eigen::eigen_assert_exception(); \
146      }
147    #define VERIFY_RAISES_ASSERT(a) {                             \
148        Eigen::no_more_assert = false;                            \
149        Eigen::report_on_cerr_on_assert_failure = false;          \
150        try {                                                     \
151          a;                                                      \
152          VERIFY(Eigen::should_raise_an_assert && # a);           \
153        }                                                         \
154        catch (Eigen::eigen_assert_exception&) { VERIFY(true); }     \
155        Eigen::report_on_cerr_on_assert_failure = true;           \
156      }
157
158  #endif // EIGEN_DEBUG_ASSERTS
159
160  #define EIGEN_USE_CUSTOM_ASSERT
161
162#else // EIGEN_NO_ASSERTION_CHECKING
163
164  #define VERIFY_RAISES_ASSERT(a) {}
165
166#endif // EIGEN_NO_ASSERTION_CHECKING
167
168
169#define EIGEN_INTERNAL_DEBUGGING
170#include <Eigen/QR> // required for createRandomPIMatrixOfRank
171
172static void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string)
173{
174  if (!condition)
175  {
176    std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")" \
177      << std::endl << "    " << condition_as_string << std::endl << std::endl; \
178    abort();
179  }
180}
181
182#define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a))
183
184#define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b))
185#define VERIFY_IS_APPROX(a, b) VERIFY(test_isApprox(a, b))
186#define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b))
187#define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b))
188#define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b))
189#define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b))
190#define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b))
191
192#define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
193
194#define CALL_SUBTEST(FUNC) do { \
195    g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \
196    FUNC; \
197    g_test_stack.pop_back(); \
198  } while (0)
199
200
201namespace Eigen {
202
203template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
204template<> inline float test_precision<float>() { return 1e-3f; }
205template<> inline double test_precision<double>() { return 1e-6; }
206template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
207template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
208template<> inline long double test_precision<long double>() { return 1e-6; }
209
210inline bool test_isApprox(const int& a, const int& b)
211{ return internal::isApprox(a, b, test_precision<int>()); }
212inline bool test_isMuchSmallerThan(const int& a, const int& b)
213{ return internal::isMuchSmallerThan(a, b, test_precision<int>()); }
214inline bool test_isApproxOrLessThan(const int& a, const int& b)
215{ return internal::isApproxOrLessThan(a, b, test_precision<int>()); }
216
217inline bool test_isApprox(const float& a, const float& b)
218{ return internal::isApprox(a, b, test_precision<float>()); }
219inline bool test_isMuchSmallerThan(const float& a, const float& b)
220{ return internal::isMuchSmallerThan(a, b, test_precision<float>()); }
221inline bool test_isApproxOrLessThan(const float& a, const float& b)
222{ return internal::isApproxOrLessThan(a, b, test_precision<float>()); }
223inline bool test_isApprox(const double& a, const double& b)
224{ return internal::isApprox(a, b, test_precision<double>()); }
225
226inline bool test_isMuchSmallerThan(const double& a, const double& b)
227{ return internal::isMuchSmallerThan(a, b, test_precision<double>()); }
228inline bool test_isApproxOrLessThan(const double& a, const double& b)
229{ return internal::isApproxOrLessThan(a, b, test_precision<double>()); }
230
231inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b)
232{ return internal::isApprox(a, b, test_precision<std::complex<float> >()); }
233inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
234{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
235
236inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b)
237{ return internal::isApprox(a, b, test_precision<std::complex<double> >()); }
238inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b)
239{ return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); }
240
241inline bool test_isApprox(const long double& a, const long double& b)
242{
243    bool ret = internal::isApprox(a, b, test_precision<long double>());
244    if (!ret) std::cerr
245        << std::endl << "    actual   = " << a
246        << std::endl << "    expected = " << b << std::endl << std::endl;
247    return ret;
248}
249
250inline bool test_isMuchSmallerThan(const long double& a, const long double& b)
251{ return internal::isMuchSmallerThan(a, b, test_precision<long double>()); }
252inline bool test_isApproxOrLessThan(const long double& a, const long double& b)
253{ return internal::isApproxOrLessThan(a, b, test_precision<long double>()); }
254
255template<typename Type1, typename Type2>
256inline bool test_isApprox(const Type1& a, const Type2& b)
257{
258  return a.isApprox(b, test_precision<typename Type1::Scalar>());
259}
260
261// The idea behind this function is to compare the two scalars a and b where
262// the scalar ref is a hint about the expected order of magnitude of a and b.
263// Therefore, if for some reason a and b are very small compared to ref,
264// we won't issue a false negative.
265// This test could be: abs(a-b) <= eps * ref
266// However, it seems that simply comparing a+ref and b+ref is more sensitive to true error.
267template<typename Scalar,typename ScalarRef>
268inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref)
269{
270  return test_isApprox(a+ref, b+ref);
271}
272
273template<typename Derived1, typename Derived2>
274inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1,
275                                   const MatrixBase<Derived2>& m2)
276{
277  return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>());
278}
279
280template<typename Derived>
281inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m,
282                                   const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s)
283{
284  return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>());
285}
286
287template<typename Derived>
288inline bool test_isUnitary(const MatrixBase<Derived>& m)
289{
290  return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>());
291}
292
293template<typename T, typename U>
294bool test_is_equal(const T& actual, const U& expected)
295{
296    if (actual==expected)
297        return true;
298    // false:
299    std::cerr
300        << std::endl << "    actual   = " << actual
301        << std::endl << "    expected = " << expected << std::endl << std::endl;
302    return false;
303}
304
305/** Creates a random Partial Isometry matrix of given rank.
306  *
307  * A partial isometry is a matrix all of whose singular values are either 0 or 1.
308  * This is very useful to test rank-revealing algorithms.
309  */
310template<typename MatrixType>
311void createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank, typename MatrixType::Index rows, typename MatrixType::Index cols, MatrixType& m)
312{
313  typedef typename internal::traits<MatrixType>::Index Index;
314  typedef typename internal::traits<MatrixType>::Scalar Scalar;
315  enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
316
317  typedef Matrix<Scalar, Dynamic, 1> VectorType;
318  typedef Matrix<Scalar, Rows, Rows> MatrixAType;
319  typedef Matrix<Scalar, Cols, Cols> MatrixBType;
320
321  if(desired_rank == 0)
322  {
323    m.setZero(rows,cols);
324    return;
325  }
326
327  if(desired_rank == 1)
328  {
329    // here we normalize the vectors to get a partial isometry
330    m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose();
331    return;
332  }
333
334  MatrixAType a = MatrixAType::Random(rows,rows);
335  MatrixType d = MatrixType::Identity(rows,cols);
336  MatrixBType  b = MatrixBType::Random(cols,cols);
337
338  // set the diagonal such that only desired_rank non-zero entries reamain
339  const Index diag_size = (std::min)(d.rows(),d.cols());
340  if(diag_size != desired_rank)
341    d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
342
343  HouseholderQR<MatrixAType> qra(a);
344  HouseholderQR<MatrixBType> qrb(b);
345  m = qra.householderQ() * d * qrb.householderQ();
346}
347
348template<typename PermutationVectorType>
349void randomPermutationVector(PermutationVectorType& v, typename PermutationVectorType::Index size)
350{
351  typedef typename PermutationVectorType::Index Index;
352  typedef typename PermutationVectorType::Scalar Scalar;
353  v.resize(size);
354  for(Index i = 0; i < size; ++i) v(i) = Scalar(i);
355  if(size == 1) return;
356  for(Index n = 0; n < 3 * size; ++n)
357  {
358    Index i = internal::random<Index>(0, size-1);
359    Index j;
360    do j = internal::random<Index>(0, size-1); while(j==i);
361    std::swap(v(i), v(j));
362  }
363}
364
365} // end namespace Eigen
366
367template<typename T> struct GetDifferentType;
368
369template<> struct GetDifferentType<float> { typedef double type; };
370template<> struct GetDifferentType<double> { typedef float type; };
371template<typename T> struct GetDifferentType<std::complex<T> >
372{ typedef std::complex<typename GetDifferentType<T>::type> type; };
373
374template<typename T> std::string type_name() { return "other"; }
375template<> std::string type_name<float>() { return "float"; }
376template<> std::string type_name<double>() { return "double"; }
377template<> std::string type_name<int>() { return "int"; }
378template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
379template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
380template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
381
382// forward declaration of the main test function
383void EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
384
385using namespace Eigen;
386
387void set_repeat_from_string(const char *str)
388{
389  errno = 0;
390  g_repeat = int(strtoul(str, 0, 10));
391  if(errno || g_repeat <= 0)
392  {
393    std::cout << "Invalid repeat value " << str << std::endl;
394    exit(EXIT_FAILURE);
395  }
396  g_has_set_repeat = true;
397}
398
399void set_seed_from_string(const char *str)
400{
401  errno = 0;
402  g_seed = strtoul(str, 0, 10);
403  if(errno || g_seed == 0)
404  {
405    std::cout << "Invalid seed value " << str << std::endl;
406    exit(EXIT_FAILURE);
407  }
408  g_has_set_seed = true;
409}
410
411int main(int argc, char *argv[])
412{
413    g_has_set_repeat = false;
414    g_has_set_seed = false;
415    bool need_help = false;
416
417    for(int i = 1; i < argc; i++)
418    {
419      if(argv[i][0] == 'r')
420      {
421        if(g_has_set_repeat)
422        {
423          std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
424          return 1;
425        }
426        set_repeat_from_string(argv[i]+1);
427      }
428      else if(argv[i][0] == 's')
429      {
430        if(g_has_set_seed)
431        {
432          std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
433          return 1;
434        }
435         set_seed_from_string(argv[i]+1);
436      }
437      else
438      {
439        need_help = true;
440      }
441    }
442
443    if(need_help)
444    {
445      std::cout << "This test application takes the following optional arguments:" << std::endl;
446      std::cout << "  rN     Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl;
447      std::cout << "  sN     Use N as seed for random numbers (default: based on current time)" << std::endl;
448      std::cout << std::endl;
449      std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl;
450      std::cout << "will be used as default values for these parameters." << std::endl;
451      return 1;
452    }
453
454    char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT");
455    if(!g_has_set_repeat && env_EIGEN_REPEAT)
456      set_repeat_from_string(env_EIGEN_REPEAT);
457    char *env_EIGEN_SEED = getenv("EIGEN_SEED");
458    if(!g_has_set_seed && env_EIGEN_SEED)
459      set_seed_from_string(env_EIGEN_SEED);
460
461    if(!g_has_set_seed) g_seed = (unsigned int) time(NULL);
462    if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
463
464    std::cout << "Initializing random number generator with seed " << g_seed << std::endl;
465    srand(g_seed);
466    std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
467
468    Eigen::g_test_stack.push_back(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC));
469
470    EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
471    return 0;
472}
473