sparse_solver.h revision 7faaa9f3f0df9d23790277834d426c3d992ac3ba
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "sparse.h"
11#include <Eigen/SparseCore>
12
13template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
14void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
15{
16  typedef typename Solver::MatrixType Mat;
17  typedef typename Mat::Scalar Scalar;
18
19  DenseRhs refX = dA.lu().solve(db);
20  {
21    Rhs x(b.rows(), b.cols());
22    Rhs oldb = b;
23
24    solver.compute(A);
25    if (solver.info() != Success)
26    {
27      std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
28      exit(0);
29      return;
30    }
31    x = solver.solve(b);
32    if (solver.info() != Success)
33    {
34      std::cerr << "sparse solver testing: solving failed\n";
35      return;
36    }
37    VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
38
39    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
40    x.setZero();
41    // test the analyze/factorize API
42    solver.analyzePattern(A);
43    solver.factorize(A);
44    if (solver.info() != Success)
45    {
46      std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
47      exit(0);
48      return;
49    }
50    x = solver.solve(b);
51    if (solver.info() != Success)
52    {
53      std::cerr << "sparse solver testing: solving failed\n";
54      return;
55    }
56    VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
57
58    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
59  }
60
61  // test dense Block as the result and rhs:
62  {
63    DenseRhs x(db.rows(), db.cols());
64    DenseRhs oldb(db);
65    x.setZero();
66    x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
67    VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!");
68    VERIFY(x.isApprox(refX,test_precision<Scalar>()));
69  }
70}
71
72template<typename Solver, typename Rhs>
73void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const Rhs& refX)
74{
75  typedef typename Solver::MatrixType Mat;
76  typedef typename Mat::Scalar Scalar;
77  typedef typename Mat::RealScalar RealScalar;
78
79  Rhs x(b.rows(), b.cols());
80
81  solver.compute(A);
82  if (solver.info() != Success)
83  {
84    std::cerr << "sparse solver testing: factorization failed (check_sparse_solving_real_cases)\n";
85    exit(0);
86    return;
87  }
88  x = solver.solve(b);
89  if (solver.info() != Success)
90  {
91    std::cerr << "sparse solver testing: solving failed\n";
92    return;
93  }
94
95  RealScalar res_error;
96  // Compute the norm of the relative error
97  if(refX.size() != 0)
98    res_error = (refX - x).norm()/refX.norm();
99  else
100  {
101    // Compute the relative residual norm
102    res_error = (b - A * x).norm()/b.norm();
103  }
104  if (res_error > test_precision<Scalar>() ){
105    std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__)
106    << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" << std::endl << std::endl;
107    abort();
108  }
109
110}
111template<typename Solver, typename DenseMat>
112void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
113{
114  typedef typename Solver::MatrixType Mat;
115  typedef typename Mat::Scalar Scalar;
116
117  solver.compute(A);
118  if (solver.info() != Success)
119  {
120    std::cerr << "sparse solver testing: factorization failed (check_sparse_determinant)\n";
121    return;
122  }
123
124  Scalar refDet = dA.determinant();
125  VERIFY_IS_APPROX(refDet,solver.determinant());
126}
127
128
129template<typename Solver, typename DenseMat>
130int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
131{
132  typedef typename Solver::MatrixType Mat;
133  typedef typename Mat::Scalar Scalar;
134  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
135
136  int size = internal::random<int>(1,maxSize);
137  double density = (std::max)(8./(size*size), 0.01);
138
139  Mat M(size, size);
140  DenseMatrix dM(size, size);
141
142  initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
143
144  A = M * M.adjoint();
145  dA = dM * dM.adjoint();
146
147  halfA.resize(size,size);
148  halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
149
150  return size;
151}
152
153
154#ifdef TEST_REAL_CASES
155template<typename Scalar>
156inline std::string get_matrixfolder()
157{
158  std::string mat_folder = TEST_REAL_CASES;
159  if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
160    mat_folder  = mat_folder + static_cast<std::string>("/complex/");
161  else
162    mat_folder = mat_folder + static_cast<std::string>("/real/");
163  return mat_folder;
164}
165#endif
166
167template<typename Solver> void check_sparse_spd_solving(Solver& solver)
168{
169  typedef typename Solver::MatrixType Mat;
170  typedef typename Mat::Scalar Scalar;
171  typedef SparseMatrix<Scalar,ColMajor> SpMat;
172  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
173  typedef Matrix<Scalar,Dynamic,1> DenseVector;
174
175  // generate the problem
176  Mat A, halfA;
177  DenseMatrix dA;
178  for (int i = 0; i < g_repeat; i++) {
179    int size = generate_sparse_spd_problem(solver, A, halfA, dA);
180
181    // generate the right hand sides
182    int rhsCols = internal::random<int>(1,16);
183    double density = (std::max)(8./(size*rhsCols), 0.1);
184    SpMat B(size,rhsCols);
185    DenseVector b = DenseVector::Random(size);
186    DenseMatrix dB(size,rhsCols);
187    initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
188
189    check_sparse_solving(solver, A,     b,  dA, b);
190    check_sparse_solving(solver, halfA, b,  dA, b);
191    check_sparse_solving(solver, A,     dB, dA, dB);
192    check_sparse_solving(solver, halfA, dB, dA, dB);
193    check_sparse_solving(solver, A,     B,  dA, dB);
194    check_sparse_solving(solver, halfA, B,  dA, dB);
195
196    // check only once
197    if(i==0)
198    {
199      b = DenseVector::Zero(size);
200      check_sparse_solving(solver, A, b, dA, b);
201    }
202  }
203
204  // First, get the folder
205#ifdef TEST_REAL_CASES
206  if (internal::is_same<Scalar, float>::value
207      || internal::is_same<Scalar, std::complex<float> >::value)
208    return ;
209
210  std::string mat_folder = get_matrixfolder<Scalar>();
211  MatrixMarketIterator<Scalar> it(mat_folder);
212  for (; it; ++it)
213  {
214    if (it.sym() == SPD){
215      Mat halfA;
216      PermutationMatrix<Dynamic, Dynamic, Index> pnull;
217      halfA.template selfadjointView<Solver::UpLo>() = it.matrix().template triangularView<Eigen::Lower>().twistedBy(pnull);
218
219      std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
220      check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
221      check_sparse_solving_real_cases(solver, halfA, it.rhs(), it.refX());
222    }
223  }
224#endif
225}
226
227template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
228{
229  typedef typename Solver::MatrixType Mat;
230  typedef typename Mat::Scalar Scalar;
231  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
232
233  // generate the problem
234  Mat A, halfA;
235  DenseMatrix dA;
236  generate_sparse_spd_problem(solver, A, halfA, dA, 30);
237
238  for (int i = 0; i < g_repeat; i++) {
239    check_sparse_determinant(solver, A,     dA);
240    check_sparse_determinant(solver, halfA, dA );
241  }
242}
243
244template<typename Solver, typename DenseMat>
245int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300)
246{
247  typedef typename Solver::MatrixType Mat;
248  typedef typename Mat::Scalar Scalar;
249
250  int size = internal::random<int>(1,maxSize);
251  double density = (std::max)(8./(size*size), 0.01);
252
253  A.resize(size,size);
254  dA.resize(size,size);
255
256  initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
257
258  return size;
259}
260
261template<typename Solver> void check_sparse_square_solving(Solver& solver)
262{
263  typedef typename Solver::MatrixType Mat;
264  typedef typename Mat::Scalar Scalar;
265  typedef SparseMatrix<Scalar,ColMajor> SpMat;
266  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
267  typedef Matrix<Scalar,Dynamic,1> DenseVector;
268
269  int rhsCols = internal::random<int>(1,16);
270
271  Mat A;
272  DenseMatrix dA;
273  for (int i = 0; i < g_repeat; i++) {
274    int size = generate_sparse_square_problem(solver, A, dA);
275
276    A.makeCompressed();
277    DenseVector b = DenseVector::Random(size);
278    DenseMatrix dB(size,rhsCols);
279    SpMat B(size,rhsCols);
280    double density = (std::max)(8./(size*rhsCols), 0.1);
281    initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
282    B.makeCompressed();
283    check_sparse_solving(solver, A, b,  dA, b);
284    check_sparse_solving(solver, A, dB, dA, dB);
285    check_sparse_solving(solver, A, B,  dA, dB);
286
287    // check only once
288    if(i==0)
289    {
290      b = DenseVector::Zero(size);
291      check_sparse_solving(solver, A, b, dA, b);
292    }
293  }
294
295  // First, get the folder
296#ifdef TEST_REAL_CASES
297  if (internal::is_same<Scalar, float>::value
298      || internal::is_same<Scalar, std::complex<float> >::value)
299    return ;
300
301  std::string mat_folder = get_matrixfolder<Scalar>();
302  MatrixMarketIterator<Scalar> it(mat_folder);
303  for (; it; ++it)
304  {
305    std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
306    check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
307  }
308#endif
309
310}
311
312template<typename Solver> void check_sparse_square_determinant(Solver& solver)
313{
314  typedef typename Solver::MatrixType Mat;
315  typedef typename Mat::Scalar Scalar;
316  typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
317
318  // generate the problem
319  Mat A;
320  DenseMatrix dA;
321  generate_sparse_square_problem(solver, A, dA, 30);
322  A.makeCompressed();
323  for (int i = 0; i < g_repeat; i++) {
324    check_sparse_determinant(solver, A, dA);
325  }
326}
327