1/* Functions to compute SHA1 message digest of files or memory blocks.
2   according to the definition of SHA1 in FIPS 180-1 from April 1997.
3   Copyright (C) 2008-2011 Red Hat, Inc.
4   This file is part of Red Hat elfutils.
5   Written by Ulrich Drepper <drepper@redhat.com>, 2008.
6
7   Red Hat elfutils is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by the
9   Free Software Foundation; version 2 of the License.
10
11   Red Hat elfutils is distributed in the hope that it will be useful, but
12   WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   General Public License for more details.
15
16   You should have received a copy of the GNU General Public License along
17   with Red Hat elfutils; if not, write to the Free Software Foundation,
18   Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA.
19
20   Red Hat elfutils is an included package of the Open Invention Network.
21   An included package of the Open Invention Network is a package for which
22   Open Invention Network licensees cross-license their patents.  No patent
23   license is granted, either expressly or impliedly, by designation as an
24   included package.  Should you wish to participate in the Open Invention
25   Network licensing program, please visit www.openinventionnetwork.com
26   <http://www.openinventionnetwork.com>.  */
27
28#ifdef HAVE_CONFIG_H
29# include <config.h>
30#endif
31
32#include <stdlib.h>
33#include <string.h>
34#include <sys/types.h>
35
36#include "sha1.h"
37#include "system.h"
38
39#define SWAP(n) BE32 (n)
40
41/* This array contains the bytes used to pad the buffer to the next
42   64-byte boundary.  */
43static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
44
45
46/* Initialize structure containing state of computation.  */
47void
48sha1_init_ctx (ctx)
49     struct sha1_ctx *ctx;
50{
51  ctx->A = 0x67452301;
52  ctx->B = 0xefcdab89;
53  ctx->C = 0x98badcfe;
54  ctx->D = 0x10325476;
55  ctx->E = 0xc3d2e1f0;
56
57  ctx->total[0] = ctx->total[1] = 0;
58  ctx->buflen = 0;
59}
60
61/* Put result from CTX in first 20 bytes following RESBUF.  The result
62   must be in little endian byte order.
63
64   IMPORTANT: On some systems it is required that RESBUF is correctly
65   aligned for a 32 bits value.  */
66void *
67sha1_read_ctx (ctx, resbuf)
68     const struct sha1_ctx *ctx;
69     void *resbuf;
70{
71  ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A);
72  ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B);
73  ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C);
74  ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D);
75  ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E);
76
77  return resbuf;
78}
79
80static void
81be64_copy (char *dest, uint64_t x)
82{
83  for (size_t i = 8; i-- > 0; x >>= 8)
84    dest[i] = (uint8_t) x;
85}
86
87/* Process the remaining bytes in the internal buffer and the usual
88   prolog according to the standard and write the result to RESBUF.
89
90   IMPORTANT: On some systems it is required that RESBUF is correctly
91   aligned for a 32 bits value.  */
92void *
93sha1_finish_ctx (ctx, resbuf)
94     struct sha1_ctx *ctx;
95     void *resbuf;
96{
97  /* Take yet unprocessed bytes into account.  */
98  sha1_uint32 bytes = ctx->buflen;
99  size_t pad;
100
101  /* Now count remaining bytes.  */
102  ctx->total[0] += bytes;
103  if (ctx->total[0] < bytes)
104    ++ctx->total[1];
105
106  pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
107  memcpy (&ctx->buffer[bytes], fillbuf, pad);
108
109  /* Put the 64-bit file length in *bits* at the end of the buffer.  */
110  const uint64_t bit_length = ((ctx->total[0] << 3)
111			       + ((uint64_t) ((ctx->total[1] << 3) |
112					      (ctx->total[0] >> 29)) << 32));
113  be64_copy (&ctx->buffer[bytes + pad], bit_length);
114
115  /* Process last bytes.  */
116  sha1_process_block (ctx->buffer, bytes + pad + 8, ctx);
117
118  return sha1_read_ctx (ctx, resbuf);
119}
120
121
122void
123sha1_process_bytes (buffer, len, ctx)
124     const void *buffer;
125     size_t len;
126     struct sha1_ctx *ctx;
127{
128  /* When we already have some bits in our internal buffer concatenate
129     both inputs first.  */
130  if (ctx->buflen != 0)
131    {
132      size_t left_over = ctx->buflen;
133      size_t add = 128 - left_over > len ? len : 128 - left_over;
134
135      memcpy (&ctx->buffer[left_over], buffer, add);
136      ctx->buflen += add;
137
138      if (ctx->buflen > 64)
139	{
140	  sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
141
142	  ctx->buflen &= 63;
143	  /* The regions in the following copy operation cannot overlap.  */
144	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
145		  ctx->buflen);
146	}
147
148      buffer = (const char *) buffer + add;
149      len -= add;
150    }
151
152  /* Process available complete blocks.  */
153  if (len >= 64)
154    {
155#if !_STRING_ARCH_unaligned
156/* To check alignment gcc has an appropriate operator.  Other
157   compilers don't.  */
158# if __GNUC__ >= 2
159#  define UNALIGNED_P(p) (((sha1_uintptr) p) % __alignof__ (sha1_uint32) != 0)
160# else
161#  define UNALIGNED_P(p) (((sha1_uintptr) p) % sizeof (sha1_uint32) != 0)
162# endif
163      if (UNALIGNED_P (buffer))
164	while (len > 64)
165	  {
166	    sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
167	    buffer = (const char *) buffer + 64;
168	    len -= 64;
169	  }
170      else
171#endif
172	{
173	  sha1_process_block (buffer, len & ~63, ctx);
174	  buffer = (const char *) buffer + (len & ~63);
175	  len &= 63;
176	}
177    }
178
179  /* Move remaining bytes in internal buffer.  */
180  if (len > 0)
181    {
182      size_t left_over = ctx->buflen;
183
184      memcpy (&ctx->buffer[left_over], buffer, len);
185      left_over += len;
186      if (left_over >= 64)
187	{
188	  sha1_process_block (ctx->buffer, 64, ctx);
189	  left_over -= 64;
190	  memcpy (ctx->buffer, &ctx->buffer[64], left_over);
191	}
192      ctx->buflen = left_over;
193    }
194}
195
196
197/* These are the four functions used in the four steps of the SHA1 algorithm
198   and defined in the FIPS 180-1.  */
199/* #define FF(b, c, d) ((b & c) | (~b & d)) */
200#define FF(b, c, d) (d ^ (b & (c ^ d)))
201#define FG(b, c, d) (b ^ c ^ d)
202/* define FH(b, c, d) ((b & c) | (b & d) | (c & d)) */
203#define FH(b, c, d) (((b | c) & d) | (b & c))
204
205/* It is unfortunate that C does not provide an operator for cyclic
206   rotation.  Hope the C compiler is smart enough.  */
207#define CYCLIC(w, s) (((w) << s) | ((w) >> (32 - s)))
208
209/* Magic constants.  */
210#define K0 0x5a827999
211#define K1 0x6ed9eba1
212#define K2 0x8f1bbcdc
213#define K3 0xca62c1d6
214
215
216/* Process LEN bytes of BUFFER, accumulating context into CTX.
217   It is assumed that LEN % 64 == 0.  */
218
219void
220sha1_process_block (buffer, len, ctx)
221     const void *buffer;
222     size_t len;
223     struct sha1_ctx *ctx;
224{
225  sha1_uint32 computed_words[16];
226#define W(i) computed_words[(i) % 16]
227  const sha1_uint32 *words = buffer;
228  size_t nwords = len / sizeof (sha1_uint32);
229  const sha1_uint32 *endp = words + nwords;
230  sha1_uint32 A = ctx->A;
231  sha1_uint32 B = ctx->B;
232  sha1_uint32 C = ctx->C;
233  sha1_uint32 D = ctx->D;
234  sha1_uint32 E = ctx->E;
235
236  /* First increment the byte count.  FIPS 180-1 specifies the possible
237     length of the file up to 2^64 bits.  Here we only compute the
238     number of bytes.  Do a double word increment.  */
239  ctx->total[0] += len;
240  if (ctx->total[0] < len)
241    ++ctx->total[1];
242
243  /* Process all bytes in the buffer with 64 bytes in each round of
244     the loop.  */
245  while (words < endp)
246    {
247      sha1_uint32 A_save = A;
248      sha1_uint32 B_save = B;
249      sha1_uint32 C_save = C;
250      sha1_uint32 D_save = D;
251      sha1_uint32 E_save = E;
252
253      /* First round: using the given function, the context and a constant
254	 the next context is computed.  Because the algorithms processing
255	 unit is a 32-bit word and it is determined to work on words in
256	 little endian byte order we perhaps have to change the byte order
257	 before the computation.  */
258
259#define OP(i, a, b, c, d, e)						\
260      do								\
261        {								\
262	  W (i) = SWAP (*words);					\
263	  e = CYCLIC (a, 5) + FF (b, c, d) + e + W (i) + K0;		\
264	  ++words;							\
265	  b = CYCLIC (b, 30);						\
266        }								\
267      while (0)
268
269      /* Steps 0 to 15.  */
270      OP (0, A, B, C, D, E);
271      OP (1, E, A, B, C, D);
272      OP (2, D, E, A, B, C);
273      OP (3, C, D, E, A, B);
274      OP (4, B, C, D, E, A);
275      OP (5, A, B, C, D, E);
276      OP (6, E, A, B, C, D);
277      OP (7, D, E, A, B, C);
278      OP (8, C, D, E, A, B);
279      OP (9, B, C, D, E, A);
280      OP (10, A, B, C, D, E);
281      OP (11, E, A, B, C, D);
282      OP (12, D, E, A, B, C);
283      OP (13, C, D, E, A, B);
284      OP (14, B, C, D, E, A);
285      OP (15, A, B, C, D, E);
286
287      /* For the remaining 64 steps we have a more complicated
288	 computation of the input data-derived values.  Redefine the
289	 macro to take an additional second argument specifying the
290	 function to use and a new last parameter for the magic
291	 constant.  */
292#undef OP
293#define OP(i, f, a, b, c, d, e, K) \
294      do								\
295        {								\
296	  W (i) = CYCLIC (W (i - 3) ^ W (i - 8) ^ W (i - 14) ^ W (i - 16), 1);\
297	  e = CYCLIC (a, 5) + f (b, c, d) + e + W (i) + K;		\
298	  b = CYCLIC (b, 30);						\
299        }								\
300      while (0)
301
302      /* Steps 16 to 19.  */
303      OP (16, FF, E, A, B, C, D, K0);
304      OP (17, FF, D, E, A, B, C, K0);
305      OP (18, FF, C, D, E, A, B, K0);
306      OP (19, FF, B, C, D, E, A, K0);
307
308      /* Steps 20 to 39.  */
309      OP (20, FG, A, B, C, D, E, K1);
310      OP (21, FG, E, A, B, C, D, K1);
311      OP (22, FG, D, E, A, B, C, K1);
312      OP (23, FG, C, D, E, A, B, K1);
313      OP (24, FG, B, C, D, E, A, K1);
314      OP (25, FG, A, B, C, D, E, K1);
315      OP (26, FG, E, A, B, C, D, K1);
316      OP (27, FG, D, E, A, B, C, K1);
317      OP (28, FG, C, D, E, A, B, K1);
318      OP (29, FG, B, C, D, E, A, K1);
319      OP (30, FG, A, B, C, D, E, K1);
320      OP (31, FG, E, A, B, C, D, K1);
321      OP (32, FG, D, E, A, B, C, K1);
322      OP (33, FG, C, D, E, A, B, K1);
323      OP (34, FG, B, C, D, E, A, K1);
324      OP (35, FG, A, B, C, D, E, K1);
325      OP (36, FG, E, A, B, C, D, K1);
326      OP (37, FG, D, E, A, B, C, K1);
327      OP (38, FG, C, D, E, A, B, K1);
328      OP (39, FG, B, C, D, E, A, K1);
329
330      /* Steps 40 to 59.  */
331      OP (40, FH, A, B, C, D, E, K2);
332      OP (41, FH, E, A, B, C, D, K2);
333      OP (42, FH, D, E, A, B, C, K2);
334      OP (43, FH, C, D, E, A, B, K2);
335      OP (44, FH, B, C, D, E, A, K2);
336      OP (45, FH, A, B, C, D, E, K2);
337      OP (46, FH, E, A, B, C, D, K2);
338      OP (47, FH, D, E, A, B, C, K2);
339      OP (48, FH, C, D, E, A, B, K2);
340      OP (49, FH, B, C, D, E, A, K2);
341      OP (50, FH, A, B, C, D, E, K2);
342      OP (51, FH, E, A, B, C, D, K2);
343      OP (52, FH, D, E, A, B, C, K2);
344      OP (53, FH, C, D, E, A, B, K2);
345      OP (54, FH, B, C, D, E, A, K2);
346      OP (55, FH, A, B, C, D, E, K2);
347      OP (56, FH, E, A, B, C, D, K2);
348      OP (57, FH, D, E, A, B, C, K2);
349      OP (58, FH, C, D, E, A, B, K2);
350      OP (59, FH, B, C, D, E, A, K2);
351
352      /* Steps 60 to 79.  */
353      OP (60, FG, A, B, C, D, E, K3);
354      OP (61, FG, E, A, B, C, D, K3);
355      OP (62, FG, D, E, A, B, C, K3);
356      OP (63, FG, C, D, E, A, B, K3);
357      OP (64, FG, B, C, D, E, A, K3);
358      OP (65, FG, A, B, C, D, E, K3);
359      OP (66, FG, E, A, B, C, D, K3);
360      OP (67, FG, D, E, A, B, C, K3);
361      OP (68, FG, C, D, E, A, B, K3);
362      OP (69, FG, B, C, D, E, A, K3);
363      OP (70, FG, A, B, C, D, E, K3);
364      OP (71, FG, E, A, B, C, D, K3);
365      OP (72, FG, D, E, A, B, C, K3);
366      OP (73, FG, C, D, E, A, B, K3);
367      OP (74, FG, B, C, D, E, A, K3);
368      OP (75, FG, A, B, C, D, E, K3);
369      OP (76, FG, E, A, B, C, D, K3);
370      OP (77, FG, D, E, A, B, C, K3);
371      OP (78, FG, C, D, E, A, B, K3);
372      OP (79, FG, B, C, D, E, A, K3);
373
374      /* Add the starting values of the context.  */
375      A += A_save;
376      B += B_save;
377      C += C_save;
378      D += D_save;
379      E += E_save;
380    }
381
382  /* Put checksum in context given as argument.  */
383  ctx->A = A;
384  ctx->B = B;
385  ctx->C = C;
386  ctx->D = D;
387  ctx->E = E;
388}
389