1#if HAVE_CONFIG_H
2#  include <config.h>
3#endif
4
5#include <stdlib.h>		/* for malloc() */
6#include <string.h>		/* for memcpy() */
7
8#include "private/md5.h"
9#include "share/alloc.h"
10
11#ifndef FLaC__INLINE
12#define FLaC__INLINE
13#endif
14
15/*
16 * This code implements the MD5 message-digest algorithm.
17 * The algorithm is due to Ron Rivest.  This code was
18 * written by Colin Plumb in 1993, no copyright is claimed.
19 * This code is in the public domain; do with it what you wish.
20 *
21 * Equivalent code is available from RSA Data Security, Inc.
22 * This code has been tested against that, and is equivalent,
23 * except that you don't need to include two pages of legalese
24 * with every copy.
25 *
26 * To compute the message digest of a chunk of bytes, declare an
27 * MD5Context structure, pass it to MD5Init, call MD5Update as
28 * needed on buffers full of bytes, and then call MD5Final, which
29 * will fill a supplied 16-byte array with the digest.
30 *
31 * Changed so as no longer to depend on Colin Plumb's `usual.h' header
32 * definitions; now uses stuff from dpkg's config.h.
33 *  - Ian Jackson <ijackson@nyx.cs.du.edu>.
34 * Still in the public domain.
35 *
36 * Josh Coalson: made some changes to integrate with libFLAC.
37 * Still in the public domain.
38 */
39
40/* The four core functions - F1 is optimized somewhat */
41
42/* #define F1(x, y, z) (x & y | ~x & z) */
43#define F1(x, y, z) (z ^ (x & (y ^ z)))
44#define F2(x, y, z) F1(z, x, y)
45#define F3(x, y, z) (x ^ y ^ z)
46#define F4(x, y, z) (y ^ (x | ~z))
47
48/* This is the central step in the MD5 algorithm. */
49#define MD5STEP(f,w,x,y,z,in,s) \
50	 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
51
52/*
53 * The core of the MD5 algorithm, this alters an existing MD5 hash to
54 * reflect the addition of 16 longwords of new data.  MD5Update blocks
55 * the data and converts bytes into longwords for this routine.
56 */
57static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16])
58{
59	register FLAC__uint32 a, b, c, d;
60
61	a = buf[0];
62	b = buf[1];
63	c = buf[2];
64	d = buf[3];
65
66	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
67	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
68	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
69	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
70	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
71	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
72	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
73	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
74	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
75	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
76	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
77	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
78	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
79	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
80	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
81	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
82
83	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
84	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
85	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
86	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
87	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
88	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
89	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
90	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
91	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
92	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
93	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
94	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
95	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
96	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
97	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
98	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
99
100	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
101	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
102	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
103	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
104	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
105	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
106	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
107	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
108	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
109	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
110	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
111	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
112	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
113	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
114	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
115	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
116
117	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
118	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
119	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
120	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
121	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
122	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
123	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
124	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
125	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
126	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
127	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
128	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
129	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
130	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
131	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
132	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
133
134	buf[0] += a;
135	buf[1] += b;
136	buf[2] += c;
137	buf[3] += d;
138}
139
140#if WORDS_BIGENDIAN
141//@@@@@@ OPT: use bswap/intrinsics
142static void byteSwap(FLAC__uint32 *buf, unsigned words)
143{
144	register FLAC__uint32 x;
145	do {
146		x = *buf;
147		x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff);
148		*buf++ = (x >> 16) | (x << 16);
149	} while (--words);
150}
151static void byteSwapX16(FLAC__uint32 *buf)
152{
153	register FLAC__uint32 x;
154
155	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
156	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
157	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
158	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
159	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
160	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
161	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
162	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
163	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
164	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
165	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
166	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
167	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
168	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
169	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
170	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf   = (x >> 16) | (x << 16);
171}
172#else
173#define byteSwap(buf, words)
174#define byteSwapX16(buf)
175#endif
176
177/*
178 * Update context to reflect the concatenation of another buffer full
179 * of bytes.
180 */
181static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, unsigned len)
182{
183	FLAC__uint32 t;
184
185	/* Update byte count */
186
187	t = ctx->bytes[0];
188	if ((ctx->bytes[0] = t + len) < t)
189		ctx->bytes[1]++;	/* Carry from low to high */
190
191	t = 64 - (t & 0x3f);	/* Space available in ctx->in (at least 1) */
192	if (t > len) {
193		memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len);
194		return;
195	}
196	/* First chunk is an odd size */
197	memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t);
198	byteSwapX16(ctx->in);
199	FLAC__MD5Transform(ctx->buf, ctx->in);
200	buf += t;
201	len -= t;
202
203	/* Process data in 64-byte chunks */
204	while (len >= 64) {
205		memcpy(ctx->in, buf, 64);
206		byteSwapX16(ctx->in);
207		FLAC__MD5Transform(ctx->buf, ctx->in);
208		buf += 64;
209		len -= 64;
210	}
211
212	/* Handle any remaining bytes of data. */
213	memcpy(ctx->in, buf, len);
214}
215
216/*
217 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
218 * initialization constants.
219 */
220void FLAC__MD5Init(FLAC__MD5Context *ctx)
221{
222	ctx->buf[0] = 0x67452301;
223	ctx->buf[1] = 0xefcdab89;
224	ctx->buf[2] = 0x98badcfe;
225	ctx->buf[3] = 0x10325476;
226
227	ctx->bytes[0] = 0;
228	ctx->bytes[1] = 0;
229
230	ctx->internal_buf = 0;
231	ctx->capacity = 0;
232}
233
234/*
235 * Final wrapup - pad to 64-byte boundary with the bit pattern
236 * 1 0* (64-bit count of bits processed, MSB-first)
237 */
238void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx)
239{
240	int count = ctx->bytes[0] & 0x3f;	/* Number of bytes in ctx->in */
241	FLAC__byte *p = (FLAC__byte *)ctx->in + count;
242
243	/* Set the first char of padding to 0x80.  There is always room. */
244	*p++ = 0x80;
245
246	/* Bytes of padding needed to make 56 bytes (-8..55) */
247	count = 56 - 1 - count;
248
249	if (count < 0) {	/* Padding forces an extra block */
250		memset(p, 0, count + 8);
251		byteSwapX16(ctx->in);
252		FLAC__MD5Transform(ctx->buf, ctx->in);
253		p = (FLAC__byte *)ctx->in;
254		count = 56;
255	}
256	memset(p, 0, count);
257	byteSwap(ctx->in, 14);
258
259	/* Append length in bits and transform */
260	ctx->in[14] = ctx->bytes[0] << 3;
261	ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
262	FLAC__MD5Transform(ctx->buf, ctx->in);
263
264	byteSwap(ctx->buf, 4);
265	memcpy(digest, ctx->buf, 16);
266	memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
267	if(0 != ctx->internal_buf) {
268		free(ctx->internal_buf);
269		ctx->internal_buf = 0;
270		ctx->capacity = 0;
271	}
272}
273
274/*
275 * Convert the incoming audio signal to a byte stream
276 */
277static void format_input_(FLAC__byte *buf, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
278{
279	unsigned channel, sample;
280	register FLAC__int32 a_word;
281	register FLAC__byte *buf_ = buf;
282
283#if WORDS_BIGENDIAN
284#else
285	if(channels == 2 && bytes_per_sample == 2) {
286		FLAC__int16 *buf1_ = ((FLAC__int16*)buf_) + 1;
287		memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples);
288		for(sample = 0; sample < samples; sample++, buf1_+=2)
289			*buf1_ = (FLAC__int16)signal[1][sample];
290	}
291	else if(channels == 1 && bytes_per_sample == 2) {
292		FLAC__int16 *buf1_ = (FLAC__int16*)buf_;
293		for(sample = 0; sample < samples; sample++)
294			*buf1_++ = (FLAC__int16)signal[0][sample];
295	}
296	else
297#endif
298	if(bytes_per_sample == 2) {
299		if(channels == 2) {
300			for(sample = 0; sample < samples; sample++) {
301				a_word = signal[0][sample];
302				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
303				*buf_++ = (FLAC__byte)a_word;
304				a_word = signal[1][sample];
305				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
306				*buf_++ = (FLAC__byte)a_word;
307			}
308		}
309		else if(channels == 1) {
310			for(sample = 0; sample < samples; sample++) {
311				a_word = signal[0][sample];
312				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
313				*buf_++ = (FLAC__byte)a_word;
314			}
315		}
316		else {
317			for(sample = 0; sample < samples; sample++) {
318				for(channel = 0; channel < channels; channel++) {
319					a_word = signal[channel][sample];
320					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
321					*buf_++ = (FLAC__byte)a_word;
322				}
323			}
324		}
325	}
326	else if(bytes_per_sample == 3) {
327		if(channels == 2) {
328			for(sample = 0; sample < samples; sample++) {
329				a_word = signal[0][sample];
330				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
331				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
332				*buf_++ = (FLAC__byte)a_word;
333				a_word = signal[1][sample];
334				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
335				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
336				*buf_++ = (FLAC__byte)a_word;
337			}
338		}
339		else if(channels == 1) {
340			for(sample = 0; sample < samples; sample++) {
341				a_word = signal[0][sample];
342				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
343				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
344				*buf_++ = (FLAC__byte)a_word;
345			}
346		}
347		else {
348			for(sample = 0; sample < samples; sample++) {
349				for(channel = 0; channel < channels; channel++) {
350					a_word = signal[channel][sample];
351					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
352					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
353					*buf_++ = (FLAC__byte)a_word;
354				}
355			}
356		}
357	}
358	else if(bytes_per_sample == 1) {
359		if(channels == 2) {
360			for(sample = 0; sample < samples; sample++) {
361				a_word = signal[0][sample];
362				*buf_++ = (FLAC__byte)a_word;
363				a_word = signal[1][sample];
364				*buf_++ = (FLAC__byte)a_word;
365			}
366		}
367		else if(channels == 1) {
368			for(sample = 0; sample < samples; sample++) {
369				a_word = signal[0][sample];
370				*buf_++ = (FLAC__byte)a_word;
371			}
372		}
373		else {
374			for(sample = 0; sample < samples; sample++) {
375				for(channel = 0; channel < channels; channel++) {
376					a_word = signal[channel][sample];
377					*buf_++ = (FLAC__byte)a_word;
378				}
379			}
380		}
381	}
382	else { /* bytes_per_sample == 4, maybe optimize more later */
383		for(sample = 0; sample < samples; sample++) {
384			for(channel = 0; channel < channels; channel++) {
385				a_word = signal[channel][sample];
386				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
387				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
388				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
389				*buf_++ = (FLAC__byte)a_word;
390			}
391		}
392	}
393}
394
395/*
396 * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it.
397 */
398FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
399{
400	const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample;
401
402	/* overflow check */
403	if((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample)
404		return false;
405	if((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples)
406		return false;
407
408	if(ctx->capacity < bytes_needed) {
409		FLAC__byte *tmp = (FLAC__byte*)realloc(ctx->internal_buf, bytes_needed);
410		if(0 == tmp) {
411			free(ctx->internal_buf);
412			if(0 == (ctx->internal_buf = (FLAC__byte*)safe_malloc_(bytes_needed)))
413				return false;
414		}
415		ctx->internal_buf = tmp;
416		ctx->capacity = bytes_needed;
417	}
418
419	format_input_(ctx->internal_buf, signal, channels, samples, bytes_per_sample);
420
421	FLAC__MD5Update(ctx, ctx->internal_buf, bytes_needed);
422
423	return true;
424}
425