1/*
2 * Diff Match and Patch
3 *
4 * Copyright 2006 Google Inc.
5 * http://code.google.com/p/google-diff-match-patch/
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 *   http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
20package name.fraser.neil.plaintext;
21
22import java.io.UnsupportedEncodingException;
23import java.net.URLEncoder;
24import java.net.URLDecoder;
25import java.util.ArrayList;
26import java.util.Arrays;
27import java.util.HashMap;
28import java.util.HashSet;
29import java.util.LinkedList;
30import java.util.List;
31import java.util.ListIterator;
32import java.util.Map;
33import java.util.Set;
34import java.util.Stack;
35import java.util.regex.Matcher;
36import java.util.regex.Pattern;
37
38
39/*
40 * Functions for diff, match and patch.
41 * Computes the difference between two texts to create a patch.
42 * Applies the patch onto another text, allowing for errors.
43 *
44 * @author fraser@google.com (Neil Fraser)
45 */
46
47/**
48 * Class containing the diff, match and patch methods.
49 * Also contains the behaviour settings.
50 */
51public class diff_match_patch {
52
53  // Defaults.
54  // Set these on your diff_match_patch instance to override the defaults.
55
56  /**
57   * Number of seconds to map a diff before giving up (0 for infinity).
58   */
59  public float Diff_Timeout = 1.0f;
60  /**
61   * Cost of an empty edit operation in terms of edit characters.
62   */
63  public short Diff_EditCost = 4;
64  /**
65   * The size beyond which the double-ended diff activates.
66   * Double-ending is twice as fast, but less accurate.
67   */
68  public short Diff_DualThreshold = 32;
69  /**
70   * At what point is no match declared (0.0 = perfection, 1.0 = very loose).
71   */
72  public float Match_Threshold = 0.5f;
73  /**
74   * How far to search for a match (0 = exact location, 1000+ = broad match).
75   * A match this many characters away from the expected location will add
76   * 1.0 to the score (0.0 is a perfect match).
77   */
78  public int Match_Distance = 1000;
79  /**
80   * When deleting a large block of text (over ~64 characters), how close does
81   * the contents have to match the expected contents. (0.0 = perfection,
82   * 1.0 = very loose).  Note that Match_Threshold controls how closely the
83   * end points of a delete need to match.
84   */
85  public float Patch_DeleteThreshold = 0.5f;
86  /**
87   * Chunk size for context length.
88   */
89  public short Patch_Margin = 4;
90
91  /**
92   * The number of bits in an int.
93   */
94  private int Match_MaxBits = 32;
95
96  /**
97   * Internal class for returning results from diff_linesToChars().
98   * Other less paranoid languages just use a three-element array.
99   */
100  protected static class LinesToCharsResult {
101    protected String chars1;
102    protected String chars2;
103    protected List<String> lineArray;
104
105    protected LinesToCharsResult(String chars1, String chars2,
106        List<String> lineArray) {
107      this.chars1 = chars1;
108      this.chars2 = chars2;
109      this.lineArray = lineArray;
110    }
111  }
112
113
114  //  DIFF FUNCTIONS
115
116
117  /**
118   * The data structure representing a diff is a Linked list of Diff objects:
119   * {Diff(Operation.DELETE, "Hello"), Diff(Operation.INSERT, "Goodbye"),
120   *  Diff(Operation.EQUAL, " world.")}
121   * which means: delete "Hello", add "Goodbye" and keep " world."
122   */
123  public enum Operation {
124    DELETE, INSERT, EQUAL
125  }
126
127
128  /**
129   * Find the differences between two texts.
130   * Run a faster slightly less optimal diff
131   * This method allows the 'checklines' of diff_main() to be optional.
132   * Most of the time checklines is wanted, so default to true.
133   * @param text1 Old string to be diffed.
134   * @param text2 New string to be diffed.
135   * @return Linked List of Diff objects.
136   */
137  public LinkedList<Diff> diff_main(String text1, String text2) {
138    return diff_main(text1, text2, true);
139  }
140
141  /**
142   * Find the differences between two texts.  Simplifies the problem by
143   * stripping any common prefix or suffix off the texts before diffing.
144   * @param text1 Old string to be diffed.
145   * @param text2 New string to be diffed.
146   * @param checklines Speedup flag.  If false, then don't run a
147   *     line-level diff first to identify the changed areas.
148   *     If true, then run a faster slightly less optimal diff
149   * @return Linked List of Diff objects.
150   */
151  public LinkedList<Diff> diff_main(String text1, String text2,
152                                    boolean checklines) {
153    // Check for null inputs.
154    if (text1 == null || text2 == null) {
155      throw new IllegalArgumentException("Null inputs. (diff_main)");
156    }
157
158    // Check for equality (speedup).
159    LinkedList<Diff> diffs;
160    if (text1.equals(text2)) {
161      diffs = new LinkedList<Diff>();
162      diffs.add(new Diff(Operation.EQUAL, text1));
163      return diffs;
164    }
165
166    // Trim off common prefix (speedup).
167    int commonlength = diff_commonPrefix(text1, text2);
168    String commonprefix = text1.substring(0, commonlength);
169    text1 = text1.substring(commonlength);
170    text2 = text2.substring(commonlength);
171
172    // Trim off common suffix (speedup).
173    commonlength = diff_commonSuffix(text1, text2);
174    String commonsuffix = text1.substring(text1.length() - commonlength);
175    text1 = text1.substring(0, text1.length() - commonlength);
176    text2 = text2.substring(0, text2.length() - commonlength);
177
178    // Compute the diff on the middle block.
179    diffs = diff_compute(text1, text2, checklines);
180
181    // Restore the prefix and suffix.
182    if (commonprefix.length() != 0) {
183      diffs.addFirst(new Diff(Operation.EQUAL, commonprefix));
184    }
185    if (commonsuffix.length() != 0) {
186      diffs.addLast(new Diff(Operation.EQUAL, commonsuffix));
187    }
188
189    diff_cleanupMerge(diffs);
190    return diffs;
191  }
192
193
194  /**
195   * Find the differences between two texts.  Assumes that the texts do not
196   * have any common prefix or suffix.
197   * @param text1 Old string to be diffed.
198   * @param text2 New string to be diffed.
199   * @param checklines Speedup flag.  If false, then don't run a
200   *     line-level diff first to identify the changed areas.
201   *     If true, then run a faster slightly less optimal diff
202   * @return Linked List of Diff objects.
203   */
204  protected LinkedList<Diff> diff_compute(String text1, String text2,
205                                          boolean checklines) {
206    LinkedList<Diff> diffs = new LinkedList<Diff>();
207
208    if (text1.length() == 0) {
209      // Just add some text (speedup).
210      diffs.add(new Diff(Operation.INSERT, text2));
211      return diffs;
212    }
213
214    if (text2.length() == 0) {
215      // Just delete some text (speedup).
216      diffs.add(new Diff(Operation.DELETE, text1));
217      return diffs;
218    }
219
220    String longtext = text1.length() > text2.length() ? text1 : text2;
221    String shorttext = text1.length() > text2.length() ? text2 : text1;
222    int i = longtext.indexOf(shorttext);
223    if (i != -1) {
224      // Shorter text is inside the longer text (speedup).
225      Operation op = (text1.length() > text2.length()) ?
226                     Operation.DELETE : Operation.INSERT;
227      diffs.add(new Diff(op, longtext.substring(0, i)));
228      diffs.add(new Diff(Operation.EQUAL, shorttext));
229      diffs.add(new Diff(op, longtext.substring(i + shorttext.length())));
230      return diffs;
231    }
232    longtext = shorttext = null;  // Garbage collect.
233
234    // Check to see if the problem can be split in two.
235    String[] hm = diff_halfMatch(text1, text2);
236    if (hm != null) {
237      // A half-match was found, sort out the return data.
238      String text1_a = hm[0];
239      String text1_b = hm[1];
240      String text2_a = hm[2];
241      String text2_b = hm[3];
242      String mid_common = hm[4];
243      // Send both pairs off for separate processing.
244      LinkedList<Diff> diffs_a = diff_main(text1_a, text2_a, checklines);
245      LinkedList<Diff> diffs_b = diff_main(text1_b, text2_b, checklines);
246      // Merge the results.
247      diffs = diffs_a;
248      diffs.add(new Diff(Operation.EQUAL, mid_common));
249      diffs.addAll(diffs_b);
250      return diffs;
251    }
252
253    // Perform a real diff.
254    if (checklines && (text1.length() < 100 || text2.length() < 100)) {
255      checklines = false;  // Too trivial for the overhead.
256    }
257    List<String> linearray = null;
258    if (checklines) {
259      // Scan the text on a line-by-line basis first.
260      LinesToCharsResult b = diff_linesToChars(text1, text2);
261      text1 = b.chars1;
262      text2 = b.chars2;
263      linearray = b.lineArray;
264    }
265
266    diffs = diff_map(text1, text2);
267    if (diffs == null) {
268      // No acceptable result.
269      diffs = new LinkedList<Diff>();
270      diffs.add(new Diff(Operation.DELETE, text1));
271      diffs.add(new Diff(Operation.INSERT, text2));
272    }
273
274    if (checklines) {
275      // Convert the diff back to original text.
276      diff_charsToLines(diffs, linearray);
277      // Eliminate freak matches (e.g. blank lines)
278      diff_cleanupSemantic(diffs);
279
280      // Rediff any replacement blocks, this time character-by-character.
281      // Add a dummy entry at the end.
282      diffs.add(new Diff(Operation.EQUAL, ""));
283      int count_delete = 0;
284      int count_insert = 0;
285      String text_delete = "";
286      String text_insert = "";
287      ListIterator<Diff> pointer = diffs.listIterator();
288      Diff thisDiff = pointer.next();
289      while (thisDiff != null) {
290        switch (thisDiff.operation) {
291        case INSERT:
292          count_insert++;
293          text_insert += thisDiff.text;
294          break;
295        case DELETE:
296          count_delete++;
297          text_delete += thisDiff.text;
298          break;
299        case EQUAL:
300          // Upon reaching an equality, check for prior redundancies.
301          if (count_delete >= 1 && count_insert >= 1) {
302            // Delete the offending records and add the merged ones.
303            pointer.previous();
304            for (int j = 0; j < count_delete + count_insert; j++) {
305              pointer.previous();
306              pointer.remove();
307            }
308            for (Diff newDiff : diff_main(text_delete, text_insert, false)) {
309              pointer.add(newDiff);
310            }
311          }
312          count_insert = 0;
313          count_delete = 0;
314          text_delete = "";
315          text_insert = "";
316          break;
317        }
318        thisDiff = pointer.hasNext() ? pointer.next() : null;
319      }
320      diffs.removeLast();  // Remove the dummy entry at the end.
321    }
322    return diffs;
323  }
324
325
326  /**
327   * Split two texts into a list of strings.  Reduce the texts to a string of
328   * hashes where each Unicode character represents one line.
329   * @param text1 First string.
330   * @param text2 Second string.
331   * @return An object containing the encoded text1, the encoded text2 and
332   *     the List of unique strings.  The zeroth element of the List of
333   *     unique strings is intentionally blank.
334   */
335  protected LinesToCharsResult diff_linesToChars(String text1, String text2) {
336    List<String> lineArray = new ArrayList<String>();
337    Map<String, Integer> lineHash = new HashMap<String, Integer>();
338    // e.g. linearray[4] == "Hello\n"
339    // e.g. linehash.get("Hello\n") == 4
340
341    // "\x00" is a valid character, but various debuggers don't like it.
342    // So we'll insert a junk entry to avoid generating a null character.
343    lineArray.add("");
344
345    String chars1 = diff_linesToCharsMunge(text1, lineArray, lineHash);
346    String chars2 = diff_linesToCharsMunge(text2, lineArray, lineHash);
347    return new LinesToCharsResult(chars1, chars2, lineArray);
348  }
349
350
351  /**
352   * Split a text into a list of strings.  Reduce the texts to a string of
353   * hashes where each Unicode character represents one line.
354   * @param text String to encode.
355   * @param lineArray List of unique strings.
356   * @param lineHash Map of strings to indices.
357   * @return Encoded string.
358   */
359  private String diff_linesToCharsMunge(String text, List<String> lineArray,
360                                        Map<String, Integer> lineHash) {
361    int lineStart = 0;
362    int lineEnd = -1;
363    String line;
364    StringBuilder chars = new StringBuilder();
365    // Walk the text, pulling out a substring for each line.
366    // text.split('\n') would would temporarily double our memory footprint.
367    // Modifying text would create many large strings to garbage collect.
368    while (lineEnd < text.length() - 1) {
369      lineEnd = text.indexOf('\n', lineStart);
370      if (lineEnd == -1) {
371        lineEnd = text.length() - 1;
372      }
373      line = text.substring(lineStart, lineEnd + 1);
374      lineStart = lineEnd + 1;
375
376      if (lineHash.containsKey(line)) {
377        chars.append(String.valueOf((char) (int) lineHash.get(line)));
378      } else {
379        lineArray.add(line);
380        lineHash.put(line, lineArray.size() - 1);
381        chars.append(String.valueOf((char) (lineArray.size() - 1)));
382      }
383    }
384    return chars.toString();
385  }
386
387
388  /**
389   * Rehydrate the text in a diff from a string of line hashes to real lines of
390   * text.
391   * @param diffs LinkedList of Diff objects.
392   * @param lineArray List of unique strings.
393   */
394  protected void diff_charsToLines(LinkedList<Diff> diffs,
395                                  List<String> lineArray) {
396    StringBuilder text;
397    for (Diff diff : diffs) {
398      text = new StringBuilder();
399      for (int y = 0; y < diff.text.length(); y++) {
400        text.append(lineArray.get(diff.text.charAt(y)));
401      }
402      diff.text = text.toString();
403    }
404  }
405
406
407  /**
408   * Explore the intersection points between the two texts.
409   * @param text1 Old string to be diffed.
410   * @param text2 New string to be diffed.
411   * @return LinkedList of Diff objects or null if no diff available.
412   */
413  protected LinkedList<Diff> diff_map(String text1, String text2) {
414    long ms_end = System.currentTimeMillis() + (long) (Diff_Timeout * 1000);
415    // Cache the text lengths to prevent multiple calls.
416    int text1_length = text1.length();
417    int text2_length = text2.length();
418    int max_d = text1_length + text2_length - 1;
419    boolean doubleEnd = Diff_DualThreshold * 2 < max_d;
420    List<Set<Long>> v_map1 = new ArrayList<Set<Long>>();
421    List<Set<Long>> v_map2 = new ArrayList<Set<Long>>();
422    Map<Integer, Integer> v1 = new HashMap<Integer, Integer>();
423    Map<Integer, Integer> v2 = new HashMap<Integer, Integer>();
424    v1.put(1, 0);
425    v2.put(1, 0);
426    int x, y;
427    Long footstep = 0L;  // Used to track overlapping paths.
428    Map<Long, Integer> footsteps = new HashMap<Long, Integer>();
429    boolean done = false;
430    // If the total number of characters is odd, then the front path will
431    // collide with the reverse path.
432    boolean front = ((text1_length + text2_length) % 2 == 1);
433    for (int d = 0; d < max_d; d++) {
434      // Bail out if timeout reached.
435      if (Diff_Timeout > 0 && System.currentTimeMillis() > ms_end) {
436        return null;
437      }
438
439      // Walk the front path one step.
440      v_map1.add(new HashSet<Long>());  // Adds at index 'd'.
441      for (int k = -d; k <= d; k += 2) {
442        if (k == -d || k != d && v1.get(k - 1) < v1.get(k + 1)) {
443          x = v1.get(k + 1);
444        } else {
445          x = v1.get(k - 1) + 1;
446        }
447        y = x - k;
448        if (doubleEnd) {
449          footstep = diff_footprint(x, y);
450          if (front && (footsteps.containsKey(footstep))) {
451            done = true;
452          }
453          if (!front) {
454            footsteps.put(footstep, d);
455          }
456        }
457        while (!done && x < text1_length && y < text2_length
458               && text1.charAt(x) == text2.charAt(y)) {
459          x++;
460          y++;
461          if (doubleEnd) {
462            footstep = diff_footprint(x, y);
463            if (front && (footsteps.containsKey(footstep))) {
464              done = true;
465            }
466            if (!front) {
467              footsteps.put(footstep, d);
468            }
469          }
470        }
471        v1.put(k, x);
472        v_map1.get(d).add(diff_footprint(x, y));
473        if (x == text1_length && y == text2_length) {
474          // Reached the end in single-path mode.
475          return diff_path1(v_map1, text1, text2);
476        } else if (done) {
477          // Front path ran over reverse path.
478          v_map2 = v_map2.subList(0, footsteps.get(footstep) + 1);
479          LinkedList<Diff> a = diff_path1(v_map1, text1.substring(0, x),
480                                          text2.substring(0, y));
481          a.addAll(diff_path2(v_map2, text1.substring(x), text2.substring(y)));
482          return a;
483        }
484      }
485
486      if (doubleEnd) {
487        // Walk the reverse path one step.
488        v_map2.add(new HashSet<Long>());  // Adds at index 'd'.
489        for (int k = -d; k <= d; k += 2) {
490          if (k == -d || k != d && v2.get(k - 1) < v2.get(k + 1)) {
491            x = v2.get(k + 1);
492          } else {
493            x = v2.get(k - 1) + 1;
494          }
495          y = x - k;
496          footstep = diff_footprint(text1_length - x, text2_length - y);
497          if (!front && (footsteps.containsKey(footstep))) {
498            done = true;
499          }
500          if (front) {
501            footsteps.put(footstep, d);
502          }
503          while (!done && x < text1_length && y < text2_length
504                 && text1.charAt(text1_length - x - 1)
505                 == text2.charAt(text2_length - y - 1)) {
506            x++;
507            y++;
508            footstep = diff_footprint(text1_length - x, text2_length - y);
509            if (!front && (footsteps.containsKey(footstep))) {
510              done = true;
511            }
512            if (front) {
513              footsteps.put(footstep, d);
514            }
515          }
516          v2.put(k, x);
517          v_map2.get(d).add(diff_footprint(x, y));
518          if (done) {
519            // Reverse path ran over front path.
520            v_map1 = v_map1.subList(0, footsteps.get(footstep) + 1);
521            LinkedList<Diff> a
522                = diff_path1(v_map1, text1.substring(0, text1_length - x),
523                             text2.substring(0, text2_length - y));
524            a.addAll(diff_path2(v_map2, text1.substring(text1_length - x),
525                                text2.substring(text2_length - y)));
526            return a;
527          }
528        }
529      }
530    }
531    // Number of diffs equals number of characters, no commonality at all.
532    return null;
533  }
534
535
536  /**
537   * Work from the middle back to the start to determine the path.
538   * @param v_map List of path sets.
539   * @param text1 Old string fragment to be diffed.
540   * @param text2 New string fragment to be diffed.
541   * @return LinkedList of Diff objects.
542   */
543  protected LinkedList<Diff> diff_path1(List<Set<Long>> v_map,
544                                        String text1, String text2) {
545    LinkedList<Diff> path = new LinkedList<Diff>();
546    int x = text1.length();
547    int y = text2.length();
548    Operation last_op = null;
549    for (int d = v_map.size() - 2; d >= 0; d--) {
550      while (true) {
551        if (v_map.get(d).contains(diff_footprint(x - 1, y))) {
552          x--;
553          if (last_op == Operation.DELETE) {
554            path.getFirst().text = text1.charAt(x) + path.getFirst().text;
555          } else {
556            path.addFirst(new Diff(Operation.DELETE,
557                                   text1.substring(x, x + 1)));
558          }
559          last_op = Operation.DELETE;
560          break;
561        } else if (v_map.get(d).contains(diff_footprint(x, y - 1))) {
562          y--;
563          if (last_op == Operation.INSERT) {
564            path.getFirst().text = text2.charAt(y) + path.getFirst().text;
565          } else {
566            path.addFirst(new Diff(Operation.INSERT,
567                                   text2.substring(y, y + 1)));
568          }
569          last_op = Operation.INSERT;
570          break;
571        } else {
572          x--;
573          y--;
574          assert (text1.charAt(x) == text2.charAt(y))
575                 : "No diagonal.  Can't happen. (diff_path1)";
576          if (last_op == Operation.EQUAL) {
577            path.getFirst().text = text1.charAt(x) + path.getFirst().text;
578          } else {
579            path.addFirst(new Diff(Operation.EQUAL, text1.substring(x, x + 1)));
580          }
581          last_op = Operation.EQUAL;
582        }
583      }
584    }
585    return path;
586  }
587
588
589  /**
590   * Work from the middle back to the end to determine the path.
591   * @param v_map List of path sets.
592   * @param text1 Old string fragment to be diffed.
593   * @param text2 New string fragment to be diffed.
594   * @return LinkedList of Diff objects.
595   */
596  protected LinkedList<Diff> diff_path2(List<Set<Long>> v_map,
597                                        String text1, String text2) {
598    LinkedList<Diff> path = new LinkedList<Diff>();
599    int x = text1.length();
600    int y = text2.length();
601    Operation last_op = null;
602    for (int d = v_map.size() - 2; d >= 0; d--) {
603      while (true) {
604        if (v_map.get(d).contains(diff_footprint(x - 1, y))) {
605          x--;
606          if (last_op == Operation.DELETE) {
607            path.getLast().text += text1.charAt(text1.length() - x - 1);
608          } else {
609            path.addLast(new Diff(Operation.DELETE,
610                text1.substring(text1.length() - x - 1, text1.length() - x)));
611          }
612          last_op = Operation.DELETE;
613          break;
614        } else if (v_map.get(d).contains(diff_footprint(x, y - 1))) {
615          y--;
616          if (last_op == Operation.INSERT) {
617            path.getLast().text += text2.charAt(text2.length() - y - 1);
618          } else {
619            path.addLast(new Diff(Operation.INSERT,
620                text2.substring(text2.length() - y - 1, text2.length() - y)));
621          }
622          last_op = Operation.INSERT;
623          break;
624        } else {
625          x--;
626          y--;
627          assert (text1.charAt(text1.length() - x - 1)
628                  == text2.charAt(text2.length() - y - 1))
629                 : "No diagonal.  Can't happen. (diff_path2)";
630          if (last_op == Operation.EQUAL) {
631            path.getLast().text += text1.charAt(text1.length() - x - 1);
632          } else {
633            path.addLast(new Diff(Operation.EQUAL,
634                text1.substring(text1.length() - x - 1, text1.length() - x)));
635          }
636          last_op = Operation.EQUAL;
637        }
638      }
639    }
640    return path;
641  }
642
643
644  /**
645   * Compute a good hash of two integers.
646   * @param x First int.
647   * @param y Second int.
648   * @return A long made up of both ints.
649   */
650  protected long diff_footprint(int x, int y) {
651    // The maximum size for a long is 9,223,372,036,854,775,807
652    // The maximum size for an int is 2,147,483,647
653    // Two ints fit nicely in one long.
654    long result = x;
655    result = result << 32;
656    result += y;
657    return result;
658  }
659
660
661  /**
662   * Determine the common prefix of two strings
663   * @param text1 First string.
664   * @param text2 Second string.
665   * @return The number of characters common to the start of each string.
666   */
667  public int diff_commonPrefix(String text1, String text2) {
668    // Performance analysis: http://neil.fraser.name/news/2007/10/09/
669    int n = Math.min(text1.length(), text2.length());
670    for (int i = 0; i < n; i++) {
671      if (text1.charAt(i) != text2.charAt(i)) {
672        return i;
673      }
674    }
675    return n;
676  }
677
678
679  /**
680   * Determine the common suffix of two strings
681   * @param text1 First string.
682   * @param text2 Second string.
683   * @return The number of characters common to the end of each string.
684   */
685  public int diff_commonSuffix(String text1, String text2) {
686    // Performance analysis: http://neil.fraser.name/news/2007/10/09/
687    int text1_length = text1.length();
688    int text2_length = text2.length();
689    int n = Math.min(text1_length, text2_length);
690    for (int i = 1; i <= n; i++) {
691      if (text1.charAt(text1_length - i) != text2.charAt(text2_length - i)) {
692        return i - 1;
693      }
694    }
695    return n;
696  }
697
698
699  /**
700   * Do the two texts share a substring which is at least half the length of
701   * the longer text?
702   * @param text1 First string.
703   * @param text2 Second string.
704   * @return Five element String array, containing the prefix of text1, the
705   *     suffix of text1, the prefix of text2, the suffix of text2 and the
706   *     common middle.  Or null if there was no match.
707   */
708  protected String[] diff_halfMatch(String text1, String text2) {
709    String longtext = text1.length() > text2.length() ? text1 : text2;
710    String shorttext = text1.length() > text2.length() ? text2 : text1;
711    if (longtext.length() < 10 || shorttext.length() < 1) {
712      return null;  // Pointless.
713    }
714
715    // First check if the second quarter is the seed for a half-match.
716    String[] hm1 = diff_halfMatchI(longtext, shorttext,
717                                   (longtext.length() + 3) / 4);
718    // Check again based on the third quarter.
719    String[] hm2 = diff_halfMatchI(longtext, shorttext,
720                                   (longtext.length() + 1) / 2);
721    String[] hm;
722    if (hm1 == null && hm2 == null) {
723      return null;
724    } else if (hm2 == null) {
725      hm = hm1;
726    } else if (hm1 == null) {
727      hm = hm2;
728    } else {
729      // Both matched.  Select the longest.
730      hm = hm1[4].length() > hm2[4].length() ? hm1 : hm2;
731    }
732
733    // A half-match was found, sort out the return data.
734    if (text1.length() > text2.length()) {
735      return hm;
736      //return new String[]{hm[0], hm[1], hm[2], hm[3], hm[4]};
737    } else {
738      return new String[]{hm[2], hm[3], hm[0], hm[1], hm[4]};
739    }
740  }
741
742
743  /**
744   * Does a substring of shorttext exist within longtext such that the
745   * substring is at least half the length of longtext?
746   * @param longtext Longer string.
747   * @param shorttext Shorter string.
748   * @param i Start index of quarter length substring within longtext.
749   * @return Five element String array, containing the prefix of longtext, the
750   *     suffix of longtext, the prefix of shorttext, the suffix of shorttext
751   *     and the common middle.  Or null if there was no match.
752   */
753  private String[] diff_halfMatchI(String longtext, String shorttext, int i) {
754    // Start with a 1/4 length substring at position i as a seed.
755    String seed = longtext.substring(i, i + longtext.length() / 4);
756    int j = -1;
757    String best_common = "";
758    String best_longtext_a = "", best_longtext_b = "";
759    String best_shorttext_a = "", best_shorttext_b = "";
760    while ((j = shorttext.indexOf(seed, j + 1)) != -1) {
761      int prefixLength = diff_commonPrefix(longtext.substring(i),
762                                           shorttext.substring(j));
763      int suffixLength = diff_commonSuffix(longtext.substring(0, i),
764                                           shorttext.substring(0, j));
765      if (best_common.length() < suffixLength + prefixLength) {
766        best_common = shorttext.substring(j - suffixLength, j)
767            + shorttext.substring(j, j + prefixLength);
768        best_longtext_a = longtext.substring(0, i - suffixLength);
769        best_longtext_b = longtext.substring(i + prefixLength);
770        best_shorttext_a = shorttext.substring(0, j - suffixLength);
771        best_shorttext_b = shorttext.substring(j + prefixLength);
772      }
773    }
774    if (best_common.length() >= longtext.length() / 2) {
775      return new String[]{best_longtext_a, best_longtext_b,
776                          best_shorttext_a, best_shorttext_b, best_common};
777    } else {
778      return null;
779    }
780  }
781
782
783  /**
784   * Reduce the number of edits by eliminating semantically trivial equalities.
785   * @param diffs LinkedList of Diff objects.
786   */
787  public void diff_cleanupSemantic(LinkedList<Diff> diffs) {
788    if (diffs.isEmpty()) {
789      return;
790    }
791    boolean changes = false;
792    Stack<Diff> equalities = new Stack<Diff>();  // Stack of qualities.
793    String lastequality = null; // Always equal to equalities.lastElement().text
794    ListIterator<Diff> pointer = diffs.listIterator();
795    // Number of characters that changed prior to the equality.
796    int length_changes1 = 0;
797    // Number of characters that changed after the equality.
798    int length_changes2 = 0;
799    Diff thisDiff = pointer.next();
800    while (thisDiff != null) {
801      if (thisDiff.operation == Operation.EQUAL) {
802        // equality found
803        equalities.push(thisDiff);
804        length_changes1 = length_changes2;
805        length_changes2 = 0;
806        lastequality = thisDiff.text;
807      } else {
808        // an insertion or deletion
809        length_changes2 += thisDiff.text.length();
810        if (lastequality != null && (lastequality.length() <= length_changes1)
811            && (lastequality.length() <= length_changes2)) {
812          //System.out.println("Splitting: '" + lastequality + "'");
813          // Walk back to offending equality.
814          while (thisDiff != equalities.lastElement()) {
815            thisDiff = pointer.previous();
816          }
817          pointer.next();
818
819          // Replace equality with a delete.
820          pointer.set(new Diff(Operation.DELETE, lastequality));
821          // Insert a corresponding an insert.
822          pointer.add(new Diff(Operation.INSERT, lastequality));
823
824          equalities.pop();  // Throw away the equality we just deleted.
825          if (!equalities.empty()) {
826            // Throw away the previous equality (it needs to be reevaluated).
827            equalities.pop();
828          }
829          if (equalities.empty()) {
830            // There are no previous equalities, walk back to the start.
831            while (pointer.hasPrevious()) {
832              pointer.previous();
833            }
834          } else {
835            // There is a safe equality we can fall back to.
836            thisDiff = equalities.lastElement();
837            while (thisDiff != pointer.previous()) {
838              // Intentionally empty loop.
839            }
840          }
841
842          length_changes1 = 0;  // Reset the counters.
843          length_changes2 = 0;
844          lastequality = null;
845          changes = true;
846        }
847      }
848      thisDiff = pointer.hasNext() ? pointer.next() : null;
849    }
850
851    if (changes) {
852      diff_cleanupMerge(diffs);
853    }
854    diff_cleanupSemanticLossless(diffs);
855  }
856
857
858  /**
859   * Look for single edits surrounded on both sides by equalities
860   * which can be shifted sideways to align the edit to a word boundary.
861   * e.g: The c<ins>at c</ins>ame. -> The <ins>cat </ins>came.
862   * @param diffs LinkedList of Diff objects.
863   */
864  public void diff_cleanupSemanticLossless(LinkedList<Diff> diffs) {
865    String equality1, edit, equality2;
866    String commonString;
867    int commonOffset;
868    int score, bestScore;
869    String bestEquality1, bestEdit, bestEquality2;
870    // Create a new iterator at the start.
871    ListIterator<Diff> pointer = diffs.listIterator();
872    Diff prevDiff = pointer.hasNext() ? pointer.next() : null;
873    Diff thisDiff = pointer.hasNext() ? pointer.next() : null;
874    Diff nextDiff = pointer.hasNext() ? pointer.next() : null;
875    // Intentionally ignore the first and last element (don't need checking).
876    while (nextDiff != null) {
877      if (prevDiff.operation == Operation.EQUAL &&
878          nextDiff.operation == Operation.EQUAL) {
879        // This is a single edit surrounded by equalities.
880        equality1 = prevDiff.text;
881        edit = thisDiff.text;
882        equality2 = nextDiff.text;
883
884        // First, shift the edit as far left as possible.
885        commonOffset = diff_commonSuffix(equality1, edit);
886        if (commonOffset != 0) {
887          commonString = edit.substring(edit.length() - commonOffset);
888          equality1 = equality1.substring(0, equality1.length() - commonOffset);
889          edit = commonString + edit.substring(0, edit.length() - commonOffset);
890          equality2 = commonString + equality2;
891        }
892
893        // Second, step character by character right, looking for the best fit.
894        bestEquality1 = equality1;
895        bestEdit = edit;
896        bestEquality2 = equality2;
897        bestScore = diff_cleanupSemanticScore(equality1, edit)
898            + diff_cleanupSemanticScore(edit, equality2);
899        while (edit.length() != 0 && equality2.length() != 0
900            && edit.charAt(0) == equality2.charAt(0)) {
901          equality1 += edit.charAt(0);
902          edit = edit.substring(1) + equality2.charAt(0);
903          equality2 = equality2.substring(1);
904          score = diff_cleanupSemanticScore(equality1, edit)
905              + diff_cleanupSemanticScore(edit, equality2);
906          // The >= encourages trailing rather than leading whitespace on edits.
907          if (score >= bestScore) {
908            bestScore = score;
909            bestEquality1 = equality1;
910            bestEdit = edit;
911            bestEquality2 = equality2;
912          }
913        }
914
915        if (!prevDiff.text.equals(bestEquality1)) {
916          // We have an improvement, save it back to the diff.
917          if (bestEquality1.length() != 0) {
918            prevDiff.text = bestEquality1;
919          } else {
920            pointer.previous(); // Walk past nextDiff.
921            pointer.previous(); // Walk past thisDiff.
922            pointer.previous(); // Walk past prevDiff.
923            pointer.remove(); // Delete prevDiff.
924            pointer.next(); // Walk past thisDiff.
925            pointer.next(); // Walk past nextDiff.
926          }
927          thisDiff.text = bestEdit;
928          if (bestEquality2.length() != 0) {
929            nextDiff.text = bestEquality2;
930          } else {
931            pointer.remove(); // Delete nextDiff.
932            nextDiff = thisDiff;
933            thisDiff = prevDiff;
934          }
935        }
936      }
937      prevDiff = thisDiff;
938      thisDiff = nextDiff;
939      nextDiff = pointer.hasNext() ? pointer.next() : null;
940    }
941  }
942
943
944  /**
945   * Given two strings, compute a score representing whether the internal
946   * boundary falls on logical boundaries.
947   * Scores range from 5 (best) to 0 (worst).
948   * @param one First string.
949   * @param two Second string.
950   * @return The score.
951   */
952  private int diff_cleanupSemanticScore(String one, String two) {
953    if (one.length() == 0 || two.length() == 0) {
954      // Edges are the best.
955      return 5;
956    }
957
958    // Each port of this function behaves slightly differently due to
959    // subtle differences in each language's definition of things like
960    // 'whitespace'.  Since this function's purpose is largely cosmetic,
961    // the choice has been made to use each language's native features
962    // rather than force total conformity.
963    int score = 0;
964    // One point for non-alphanumeric.
965    if (!Character.isLetterOrDigit(one.charAt(one.length() - 1))
966        || !Character.isLetterOrDigit(two.charAt(0))) {
967      score++;
968      // Two points for whitespace.
969      if (Character.isWhitespace(one.charAt(one.length() - 1))
970          || Character.isWhitespace(two.charAt(0))) {
971        score++;
972        // Three points for line breaks.
973        if (Character.getType(one.charAt(one.length() - 1)) == Character.CONTROL
974            || Character.getType(two.charAt(0)) == Character.CONTROL) {
975          score++;
976          // Four points for blank lines.
977          if (BLANKLINEEND.matcher(one).find()
978              || BLANKLINESTART.matcher(two).find()) {
979            score++;
980          }
981        }
982      }
983    }
984    return score;
985  }
986
987
988  private Pattern BLANKLINEEND
989      = Pattern.compile("\\n\\r?\\n\\Z", Pattern.DOTALL);
990  private Pattern BLANKLINESTART
991      = Pattern.compile("\\A\\r?\\n\\r?\\n", Pattern.DOTALL);
992
993
994  /**
995   * Reduce the number of edits by eliminating operationally trivial equalities.
996   * @param diffs LinkedList of Diff objects.
997   */
998  public void diff_cleanupEfficiency(LinkedList<Diff> diffs) {
999    if (diffs.isEmpty()) {
1000      return;
1001    }
1002    boolean changes = false;
1003    Stack<Diff> equalities = new Stack<Diff>();  // Stack of equalities.
1004    String lastequality = null; // Always equal to equalities.lastElement().text
1005    ListIterator<Diff> pointer = diffs.listIterator();
1006    // Is there an insertion operation before the last equality.
1007    boolean pre_ins = false;
1008    // Is there a deletion operation before the last equality.
1009    boolean pre_del = false;
1010    // Is there an insertion operation after the last equality.
1011    boolean post_ins = false;
1012    // Is there a deletion operation after the last equality.
1013    boolean post_del = false;
1014    Diff thisDiff = pointer.next();
1015    Diff safeDiff = thisDiff;  // The last Diff that is known to be unsplitable.
1016    while (thisDiff != null) {
1017      if (thisDiff.operation == Operation.EQUAL) {
1018        // equality found
1019        if (thisDiff.text.length() < Diff_EditCost && (post_ins || post_del)) {
1020          // Candidate found.
1021          equalities.push(thisDiff);
1022          pre_ins = post_ins;
1023          pre_del = post_del;
1024          lastequality = thisDiff.text;
1025        } else {
1026          // Not a candidate, and can never become one.
1027          equalities.clear();
1028          lastequality = null;
1029          safeDiff = thisDiff;
1030        }
1031        post_ins = post_del = false;
1032      } else {
1033        // an insertion or deletion
1034        if (thisDiff.operation == Operation.DELETE) {
1035          post_del = true;
1036        } else {
1037          post_ins = true;
1038        }
1039        /*
1040         * Five types to be split:
1041         * <ins>A</ins><del>B</del>XY<ins>C</ins><del>D</del>
1042         * <ins>A</ins>X<ins>C</ins><del>D</del>
1043         * <ins>A</ins><del>B</del>X<ins>C</ins>
1044         * <ins>A</del>X<ins>C</ins><del>D</del>
1045         * <ins>A</ins><del>B</del>X<del>C</del>
1046         */
1047        if (lastequality != null
1048            && ((pre_ins && pre_del && post_ins && post_del)
1049                || ((lastequality.length() < Diff_EditCost / 2)
1050                    && ((pre_ins ? 1 : 0) + (pre_del ? 1 : 0)
1051                        + (post_ins ? 1 : 0) + (post_del ? 1 : 0)) == 3))) {
1052          //System.out.println("Splitting: '" + lastequality + "'");
1053          // Walk back to offending equality.
1054          while (thisDiff != equalities.lastElement()) {
1055            thisDiff = pointer.previous();
1056          }
1057          pointer.next();
1058
1059          // Replace equality with a delete.
1060          pointer.set(new Diff(Operation.DELETE, lastequality));
1061          // Insert a corresponding an insert.
1062          pointer.add(thisDiff = new Diff(Operation.INSERT, lastequality));
1063
1064          equalities.pop();  // Throw away the equality we just deleted.
1065          lastequality = null;
1066          if (pre_ins && pre_del) {
1067            // No changes made which could affect previous entry, keep going.
1068            post_ins = post_del = true;
1069            equalities.clear();
1070            safeDiff = thisDiff;
1071          } else {
1072            if (!equalities.empty()) {
1073              // Throw away the previous equality (it needs to be reevaluated).
1074              equalities.pop();
1075            }
1076            if (equalities.empty()) {
1077              // There are no previous questionable equalities,
1078              // walk back to the last known safe diff.
1079              thisDiff = safeDiff;
1080            } else {
1081              // There is an equality we can fall back to.
1082              thisDiff = equalities.lastElement();
1083            }
1084            while (thisDiff != pointer.previous()) {
1085              // Intentionally empty loop.
1086            }
1087            post_ins = post_del = false;
1088          }
1089
1090          changes = true;
1091        }
1092      }
1093      thisDiff = pointer.hasNext() ? pointer.next() : null;
1094    }
1095
1096    if (changes) {
1097      diff_cleanupMerge(diffs);
1098    }
1099  }
1100
1101
1102  /**
1103   * Reorder and merge like edit sections.  Merge equalities.
1104   * Any edit section can move as long as it doesn't cross an equality.
1105   * @param diffs LinkedList of Diff objects.
1106   */
1107  public void diff_cleanupMerge(LinkedList<Diff> diffs) {
1108    diffs.add(new Diff(Operation.EQUAL, ""));  // Add a dummy entry at the end.
1109    ListIterator<Diff> pointer = diffs.listIterator();
1110    int count_delete = 0;
1111    int count_insert = 0;
1112    String text_delete = "";
1113    String text_insert = "";
1114    Diff thisDiff = pointer.next();
1115    Diff prevEqual = null;
1116    int commonlength;
1117    while (thisDiff != null) {
1118      switch (thisDiff.operation) {
1119      case INSERT:
1120        count_insert++;
1121        text_insert += thisDiff.text;
1122        prevEqual = null;
1123        break;
1124      case DELETE:
1125        count_delete++;
1126        text_delete += thisDiff.text;
1127        prevEqual = null;
1128        break;
1129      case EQUAL:
1130        if (count_delete != 0 || count_insert != 0) {
1131          // Delete the offending records.
1132          pointer.previous();  // Reverse direction.
1133          while (count_delete-- > 0) {
1134            pointer.previous();
1135            pointer.remove();
1136          }
1137          while (count_insert-- > 0) {
1138            pointer.previous();
1139            pointer.remove();
1140          }
1141          if (count_delete != 0 && count_insert != 0) {
1142            // Factor out any common prefixies.
1143            commonlength = diff_commonPrefix(text_insert, text_delete);
1144            if (commonlength != 0) {
1145              if (pointer.hasPrevious()) {
1146                thisDiff = pointer.previous();
1147                assert thisDiff.operation == Operation.EQUAL
1148                       : "Previous diff should have been an equality.";
1149                thisDiff.text += text_insert.substring(0, commonlength);
1150                pointer.next();
1151              } else {
1152                pointer.add(new Diff(Operation.EQUAL,
1153                    text_insert.substring(0, commonlength)));
1154              }
1155              text_insert = text_insert.substring(commonlength);
1156              text_delete = text_delete.substring(commonlength);
1157            }
1158            // Factor out any common suffixies.
1159            commonlength = diff_commonSuffix(text_insert, text_delete);
1160            if (commonlength != 0) {
1161              thisDiff = pointer.next();
1162              thisDiff.text = text_insert.substring(text_insert.length()
1163                  - commonlength) + thisDiff.text;
1164              text_insert = text_insert.substring(0, text_insert.length()
1165                  - commonlength);
1166              text_delete = text_delete.substring(0, text_delete.length()
1167                  - commonlength);
1168              pointer.previous();
1169            }
1170          }
1171          // Insert the merged records.
1172          if (text_delete.length() != 0) {
1173            pointer.add(new Diff(Operation.DELETE, text_delete));
1174          }
1175          if (text_insert.length() != 0) {
1176            pointer.add(new Diff(Operation.INSERT, text_insert));
1177          }
1178          // Step forward to the equality.
1179          thisDiff = pointer.hasNext() ? pointer.next() : null;
1180        } else if (prevEqual != null) {
1181          // Merge this equality with the previous one.
1182          prevEqual.text += thisDiff.text;
1183          pointer.remove();
1184          thisDiff = pointer.previous();
1185          pointer.next();  // Forward direction
1186        }
1187        count_insert = 0;
1188        count_delete = 0;
1189        text_delete = "";
1190        text_insert = "";
1191        prevEqual = thisDiff;
1192        break;
1193      }
1194      thisDiff = pointer.hasNext() ? pointer.next() : null;
1195    }
1196    // System.out.println(diff);
1197    if (diffs.getLast().text.length() == 0) {
1198      diffs.removeLast();  // Remove the dummy entry at the end.
1199    }
1200
1201    /*
1202     * Second pass: look for single edits surrounded on both sides by equalities
1203     * which can be shifted sideways to eliminate an equality.
1204     * e.g: A<ins>BA</ins>C -> <ins>AB</ins>AC
1205     */
1206    boolean changes = false;
1207    // Create a new iterator at the start.
1208    // (As opposed to walking the current one back.)
1209    pointer = diffs.listIterator();
1210    Diff prevDiff = pointer.hasNext() ? pointer.next() : null;
1211    thisDiff = pointer.hasNext() ? pointer.next() : null;
1212    Diff nextDiff = pointer.hasNext() ? pointer.next() : null;
1213    // Intentionally ignore the first and last element (don't need checking).
1214    while (nextDiff != null) {
1215      if (prevDiff.operation == Operation.EQUAL &&
1216          nextDiff.operation == Operation.EQUAL) {
1217        // This is a single edit surrounded by equalities.
1218        if (thisDiff.text.endsWith(prevDiff.text)) {
1219          // Shift the edit over the previous equality.
1220          thisDiff.text = prevDiff.text
1221              + thisDiff.text.substring(0, thisDiff.text.length()
1222                                           - prevDiff.text.length());
1223          nextDiff.text = prevDiff.text + nextDiff.text;
1224          pointer.previous(); // Walk past nextDiff.
1225          pointer.previous(); // Walk past thisDiff.
1226          pointer.previous(); // Walk past prevDiff.
1227          pointer.remove(); // Delete prevDiff.
1228          pointer.next(); // Walk past thisDiff.
1229          thisDiff = pointer.next(); // Walk past nextDiff.
1230          nextDiff = pointer.hasNext() ? pointer.next() : null;
1231          changes = true;
1232        } else if (thisDiff.text.startsWith(nextDiff.text)) {
1233          // Shift the edit over the next equality.
1234          prevDiff.text += nextDiff.text;
1235          thisDiff.text = thisDiff.text.substring(nextDiff.text.length())
1236              + nextDiff.text;
1237          pointer.remove(); // Delete nextDiff.
1238          nextDiff = pointer.hasNext() ? pointer.next() : null;
1239          changes = true;
1240        }
1241      }
1242      prevDiff = thisDiff;
1243      thisDiff = nextDiff;
1244      nextDiff = pointer.hasNext() ? pointer.next() : null;
1245    }
1246    // If shifts were made, the diff needs reordering and another shift sweep.
1247    if (changes) {
1248      diff_cleanupMerge(diffs);
1249    }
1250  }
1251
1252
1253  /**
1254   * loc is a location in text1, compute and return the equivalent location in
1255   * text2.
1256   * e.g. "The cat" vs "The big cat", 1->1, 5->8
1257   * @param diffs LinkedList of Diff objects.
1258   * @param loc Location within text1.
1259   * @return Location within text2.
1260   */
1261  public int diff_xIndex(LinkedList<Diff> diffs, int loc) {
1262    int chars1 = 0;
1263    int chars2 = 0;
1264    int last_chars1 = 0;
1265    int last_chars2 = 0;
1266    Diff lastDiff = null;
1267    for (Diff aDiff : diffs) {
1268      if (aDiff.operation != Operation.INSERT) {
1269        // Equality or deletion.
1270        chars1 += aDiff.text.length();
1271      }
1272      if (aDiff.operation != Operation.DELETE) {
1273        // Equality or insertion.
1274        chars2 += aDiff.text.length();
1275      }
1276      if (chars1 > loc) {
1277        // Overshot the location.
1278        lastDiff = aDiff;
1279        break;
1280      }
1281      last_chars1 = chars1;
1282      last_chars2 = chars2;
1283    }
1284    if (lastDiff != null && lastDiff.operation == Operation.DELETE) {
1285      // The location was deleted.
1286      return last_chars2;
1287    }
1288    // Add the remaining character length.
1289    return last_chars2 + (loc - last_chars1);
1290  }
1291
1292
1293  /**
1294   * Convert a Diff list into a pretty HTML report.
1295   * @param diffs LinkedList of Diff objects.
1296   * @return HTML representation.
1297   */
1298  public String diff_prettyHtml(LinkedList<Diff> diffs) {
1299    StringBuilder html = new StringBuilder();
1300    int i = 0;
1301    for (Diff aDiff : diffs) {
1302      String text = aDiff.text.replace("&", "&amp;").replace("<", "&lt;")
1303          .replace(">", "&gt;").replace("\n", "&para;<BR>");
1304      switch (aDiff.operation) {
1305      case INSERT:
1306        html.append("<INS STYLE=\"background:#E6FFE6;\" TITLE=\"i=").append(i)
1307            .append("\">").append(text).append("</INS>");
1308        break;
1309      case DELETE:
1310        html.append("<DEL STYLE=\"background:#FFE6E6;\" TITLE=\"i=").append(i)
1311            .append("\">").append(text).append("</DEL>");
1312        break;
1313      case EQUAL:
1314        html.append("<SPAN TITLE=\"i=").append(i).append("\">").append(text)
1315            .append("</SPAN>");
1316        break;
1317      }
1318      if (aDiff.operation != Operation.DELETE) {
1319        i += aDiff.text.length();
1320      }
1321    }
1322    return html.toString();
1323  }
1324
1325
1326  /**
1327   * Compute and return the source text (all equalities and deletions).
1328   * @param diffs LinkedList of Diff objects.
1329   * @return Source text.
1330   */
1331  public String diff_text1(LinkedList<Diff> diffs) {
1332    StringBuilder text = new StringBuilder();
1333    for (Diff aDiff : diffs) {
1334      if (aDiff.operation != Operation.INSERT) {
1335        text.append(aDiff.text);
1336      }
1337    }
1338    return text.toString();
1339  }
1340
1341
1342  /**
1343   * Compute and return the destination text (all equalities and insertions).
1344   * @param diffs LinkedList of Diff objects.
1345   * @return Destination text.
1346   */
1347  public String diff_text2(LinkedList<Diff> diffs) {
1348    StringBuilder text = new StringBuilder();
1349    for (Diff aDiff : diffs) {
1350      if (aDiff.operation != Operation.DELETE) {
1351        text.append(aDiff.text);
1352      }
1353    }
1354    return text.toString();
1355  }
1356
1357
1358  /**
1359   * Compute the Levenshtein distance; the number of inserted, deleted or
1360   * substituted characters.
1361   * @param diffs LinkedList of Diff objects.
1362   * @return Number of changes.
1363   */
1364  public int diff_levenshtein(LinkedList<Diff> diffs) {
1365    int levenshtein = 0;
1366    int insertions = 0;
1367    int deletions = 0;
1368    for (Diff aDiff : diffs) {
1369      switch (aDiff.operation) {
1370      case INSERT:
1371        insertions += aDiff.text.length();
1372        break;
1373      case DELETE:
1374        deletions += aDiff.text.length();
1375        break;
1376      case EQUAL:
1377        // A deletion and an insertion is one substitution.
1378        levenshtein += Math.max(insertions, deletions);
1379        insertions = 0;
1380        deletions = 0;
1381        break;
1382      }
1383    }
1384    levenshtein += Math.max(insertions, deletions);
1385    return levenshtein;
1386  }
1387
1388
1389  /**
1390   * Crush the diff into an encoded string which describes the operations
1391   * required to transform text1 into text2.
1392   * E.g. =3\t-2\t+ing  -> Keep 3 chars, delete 2 chars, insert 'ing'.
1393   * Operations are tab-separated.  Inserted text is escaped using %xx notation.
1394   * @param diffs Array of diff tuples.
1395   * @return Delta text.
1396   */
1397  public String diff_toDelta(LinkedList<Diff> diffs) {
1398    StringBuilder text = new StringBuilder();
1399    for (Diff aDiff : diffs) {
1400      switch (aDiff.operation) {
1401      case INSERT:
1402        try {
1403          text.append("+").append(URLEncoder.encode(aDiff.text, "UTF-8")
1404                                            .replace('+', ' ')).append("\t");
1405        } catch (UnsupportedEncodingException e) {
1406          // Not likely on modern system.
1407          throw new Error("This system does not support UTF-8.", e);
1408        }
1409        break;
1410      case DELETE:
1411        text.append("-").append(aDiff.text.length()).append("\t");
1412        break;
1413      case EQUAL:
1414        text.append("=").append(aDiff.text.length()).append("\t");
1415        break;
1416      }
1417    }
1418    String delta = text.toString();
1419    if (delta.length() != 0) {
1420      // Strip off trailing tab character.
1421      delta = delta.substring(0, delta.length() - 1);
1422      delta = unescapeForEncodeUriCompatability(delta);
1423    }
1424    return delta;
1425  }
1426
1427
1428  /**
1429   * Given the original text1, and an encoded string which describes the
1430   * operations required to transform text1 into text2, compute the full diff.
1431   * @param text1 Source string for the diff.
1432   * @param delta Delta text.
1433   * @return Array of diff tuples or null if invalid.
1434   * @throws IllegalArgumentException If invalid input.
1435   */
1436  public LinkedList<Diff> diff_fromDelta(String text1, String delta)
1437      throws IllegalArgumentException {
1438    LinkedList<Diff> diffs = new LinkedList<Diff>();
1439    int pointer = 0;  // Cursor in text1
1440    String[] tokens = delta.split("\t");
1441    for (String token : tokens) {
1442      if (token.length() == 0) {
1443        // Blank tokens are ok (from a trailing \t).
1444        continue;
1445      }
1446      // Each token begins with a one character parameter which specifies the
1447      // operation of this token (delete, insert, equality).
1448      String param = token.substring(1);
1449      switch (token.charAt(0)) {
1450      case '+':
1451        // decode would change all "+" to " "
1452        param = param.replace("+", "%2B");
1453        try {
1454          param = URLDecoder.decode(param, "UTF-8");
1455        } catch (UnsupportedEncodingException e) {
1456          // Not likely on modern system.
1457          throw new Error("This system does not support UTF-8.", e);
1458        } catch (IllegalArgumentException e) {
1459          // Malformed URI sequence.
1460          throw new IllegalArgumentException(
1461              "Illegal escape in diff_fromDelta: " + param, e);
1462        }
1463        diffs.add(new Diff(Operation.INSERT, param));
1464        break;
1465      case '-':
1466        // Fall through.
1467      case '=':
1468        int n;
1469        try {
1470          n = Integer.parseInt(param);
1471        } catch (NumberFormatException e) {
1472          throw new IllegalArgumentException(
1473              "Invalid number in diff_fromDelta: " + param, e);
1474        }
1475        if (n < 0) {
1476          throw new IllegalArgumentException(
1477              "Negative number in diff_fromDelta: " + param);
1478        }
1479        String text;
1480        try {
1481          text = text1.substring(pointer, pointer += n);
1482        } catch (StringIndexOutOfBoundsException e) {
1483          throw new IllegalArgumentException("Delta length (" + pointer
1484              + ") larger than source text length (" + text1.length()
1485              + ").", e);
1486        }
1487        if (token.charAt(0) == '=') {
1488          diffs.add(new Diff(Operation.EQUAL, text));
1489        } else {
1490          diffs.add(new Diff(Operation.DELETE, text));
1491        }
1492        break;
1493      default:
1494        // Anything else is an error.
1495        throw new IllegalArgumentException(
1496            "Invalid diff operation in diff_fromDelta: " + token.charAt(0));
1497      }
1498    }
1499    if (pointer != text1.length()) {
1500      throw new IllegalArgumentException("Delta length (" + pointer
1501          + ") smaller than source text length (" + text1.length() + ").");
1502    }
1503    return diffs;
1504  }
1505
1506
1507  //  MATCH FUNCTIONS
1508
1509
1510  /**
1511   * Locate the best instance of 'pattern' in 'text' near 'loc'.
1512   * Returns -1 if no match found.
1513   * @param text The text to search.
1514   * @param pattern The pattern to search for.
1515   * @param loc The location to search around.
1516   * @return Best match index or -1.
1517   */
1518  public int match_main(String text, String pattern, int loc) {
1519    // Check for null inputs.
1520    if (text == null || pattern == null) {
1521      throw new IllegalArgumentException("Null inputs. (match_main)");
1522    }
1523
1524    loc = Math.max(0, Math.min(loc, text.length()));
1525    if (text.equals(pattern)) {
1526      // Shortcut (potentially not guaranteed by the algorithm)
1527      return 0;
1528    } else if (text.length() == 0) {
1529      // Nothing to match.
1530      return -1;
1531    } else if (loc + pattern.length() <= text.length()
1532        && text.substring(loc, loc + pattern.length()).equals(pattern)) {
1533      // Perfect match at the perfect spot!  (Includes case of null pattern)
1534      return loc;
1535    } else {
1536      // Do a fuzzy compare.
1537      return match_bitap(text, pattern, loc);
1538    }
1539  }
1540
1541
1542  /**
1543   * Locate the best instance of 'pattern' in 'text' near 'loc' using the
1544   * Bitap algorithm.  Returns -1 if no match found.
1545   * @param text The text to search.
1546   * @param pattern The pattern to search for.
1547   * @param loc The location to search around.
1548   * @return Best match index or -1.
1549   */
1550  protected int match_bitap(String text, String pattern, int loc) {
1551    assert (Match_MaxBits == 0 || pattern.length() <= Match_MaxBits)
1552        : "Pattern too long for this application.";
1553
1554    // Initialise the alphabet.
1555    Map<Character, Integer> s = match_alphabet(pattern);
1556
1557    // Highest score beyond which we give up.
1558    double score_threshold = Match_Threshold;
1559    // Is there a nearby exact match? (speedup)
1560    int best_loc = text.indexOf(pattern, loc);
1561    if (best_loc != -1) {
1562      score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern),
1563          score_threshold);
1564      // What about in the other direction? (speedup)
1565      best_loc = text.lastIndexOf(pattern, loc + pattern.length());
1566      if (best_loc != -1) {
1567        score_threshold = Math.min(match_bitapScore(0, best_loc, loc, pattern),
1568            score_threshold);
1569      }
1570    }
1571
1572    // Initialise the bit arrays.
1573    int matchmask = 1 << (pattern.length() - 1);
1574    best_loc = -1;
1575
1576    int bin_min, bin_mid;
1577    int bin_max = pattern.length() + text.length();
1578    // Empty initialization added to appease Java compiler.
1579    int[] last_rd = new int[0];
1580    for (int d = 0; d < pattern.length(); d++) {
1581      // Scan for the best match; each iteration allows for one more error.
1582      // Run a binary search to determine how far from 'loc' we can stray at
1583      // this error level.
1584      bin_min = 0;
1585      bin_mid = bin_max;
1586      while (bin_min < bin_mid) {
1587        if (match_bitapScore(d, loc + bin_mid, loc, pattern)
1588            <= score_threshold) {
1589          bin_min = bin_mid;
1590        } else {
1591          bin_max = bin_mid;
1592        }
1593        bin_mid = (bin_max - bin_min) / 2 + bin_min;
1594      }
1595      // Use the result from this iteration as the maximum for the next.
1596      bin_max = bin_mid;
1597      int start = Math.max(1, loc - bin_mid + 1);
1598      int finish = Math.min(loc + bin_mid, text.length()) + pattern.length();
1599
1600      int[] rd = new int[finish + 2];
1601      rd[finish + 1] = (1 << d) - 1;
1602      for (int j = finish; j >= start; j--) {
1603        int charMatch;
1604        if (text.length() <= j - 1 || !s.containsKey(text.charAt(j - 1))) {
1605          // Out of range.
1606          charMatch = 0;
1607        } else {
1608          charMatch = s.get(text.charAt(j - 1));
1609        }
1610        if (d == 0) {
1611          // First pass: exact match.
1612          rd[j] = ((rd[j + 1] << 1) | 1) & charMatch;
1613        } else {
1614          // Subsequent passes: fuzzy match.
1615          rd[j] = ((rd[j + 1] << 1) | 1) & charMatch
1616              | (((last_rd[j + 1] | last_rd[j]) << 1) | 1) | last_rd[j + 1];
1617        }
1618        if ((rd[j] & matchmask) != 0) {
1619          double score = match_bitapScore(d, j - 1, loc, pattern);
1620          // This match will almost certainly be better than any existing
1621          // match.  But check anyway.
1622          if (score <= score_threshold) {
1623            // Told you so.
1624            score_threshold = score;
1625            best_loc = j - 1;
1626            if (best_loc > loc) {
1627              // When passing loc, don't exceed our current distance from loc.
1628              start = Math.max(1, 2 * loc - best_loc);
1629            } else {
1630              // Already passed loc, downhill from here on in.
1631              break;
1632            }
1633          }
1634        }
1635      }
1636      if (match_bitapScore(d + 1, loc, loc, pattern) > score_threshold) {
1637        // No hope for a (better) match at greater error levels.
1638        break;
1639      }
1640      last_rd = rd;
1641    }
1642    return best_loc;
1643  }
1644
1645
1646  /**
1647   * Compute and return the score for a match with e errors and x location.
1648   * @param e Number of errors in match.
1649   * @param x Location of match.
1650   * @param loc Expected location of match.
1651   * @param pattern Pattern being sought.
1652   * @return Overall score for match (0.0 = good, 1.0 = bad).
1653   */
1654  private double match_bitapScore(int e, int x, int loc, String pattern) {
1655    float accuracy = (float) e / pattern.length();
1656    int proximity = Math.abs(loc - x);
1657    if (Match_Distance == 0) {
1658      // Dodge divide by zero error.
1659      return proximity == 0 ? accuracy : 1.0;
1660    }
1661    return accuracy + (proximity / (float) Match_Distance);
1662  }
1663
1664
1665  /**
1666   * Initialise the alphabet for the Bitap algorithm.
1667   * @param pattern The text to encode.
1668   * @return Hash of character locations.
1669   */
1670  protected Map<Character, Integer> match_alphabet(String pattern) {
1671    Map<Character, Integer> s = new HashMap<Character, Integer>();
1672    char[] char_pattern = pattern.toCharArray();
1673    for (char c : char_pattern) {
1674      s.put(c, 0);
1675    }
1676    int i = 0;
1677    for (char c : char_pattern) {
1678      s.put(c, s.get(c) | (1 << (pattern.length() - i - 1)));
1679      i++;
1680    }
1681    return s;
1682  }
1683
1684
1685  //  PATCH FUNCTIONS
1686
1687
1688  /**
1689   * Increase the context until it is unique,
1690   * but don't let the pattern expand beyond Match_MaxBits.
1691   * @param patch The patch to grow.
1692   * @param text Source text.
1693   */
1694  protected void patch_addContext(Patch patch, String text) {
1695    if (text.length() == 0) {
1696      return;
1697    }
1698    String pattern = text.substring(patch.start2, patch.start2 + patch.length1);
1699    int padding = 0;
1700
1701    // Look for the first and last matches of pattern in text.  If two different
1702    // matches are found, increase the pattern length.
1703    while (text.indexOf(pattern) != text.lastIndexOf(pattern)
1704        && pattern.length() < Match_MaxBits - Patch_Margin - Patch_Margin) {
1705      padding += Patch_Margin;
1706      pattern = text.substring(Math.max(0, patch.start2 - padding),
1707          Math.min(text.length(), patch.start2 + patch.length1 + padding));
1708    }
1709    // Add one chunk for good luck.
1710    padding += Patch_Margin;
1711
1712    // Add the prefix.
1713    String prefix = text.substring(Math.max(0, patch.start2 - padding),
1714        patch.start2);
1715    if (prefix.length() != 0) {
1716      patch.diffs.addFirst(new Diff(Operation.EQUAL, prefix));
1717    }
1718    // Add the suffix.
1719    String suffix = text.substring(patch.start2 + patch.length1,
1720        Math.min(text.length(), patch.start2 + patch.length1 + padding));
1721    if (suffix.length() != 0) {
1722      patch.diffs.addLast(new Diff(Operation.EQUAL, suffix));
1723    }
1724
1725    // Roll back the start points.
1726    patch.start1 -= prefix.length();
1727    patch.start2 -= prefix.length();
1728    // Extend the lengths.
1729    patch.length1 += prefix.length() + suffix.length();
1730    patch.length2 += prefix.length() + suffix.length();
1731  }
1732
1733
1734  /**
1735   * Compute a list of patches to turn text1 into text2.
1736   * A set of diffs will be computed.
1737   * @param text1 Old text.
1738   * @param text2 New text.
1739   * @return LinkedList of Patch objects.
1740   */
1741  public LinkedList<Patch> patch_make(String text1, String text2) {
1742    if (text1 == null || text2 == null) {
1743      throw new IllegalArgumentException("Null inputs. (patch_make)");
1744    }
1745    // No diffs provided, compute our own.
1746    LinkedList<Diff> diffs = diff_main(text1, text2, true);
1747    if (diffs.size() > 2) {
1748      diff_cleanupSemantic(diffs);
1749      diff_cleanupEfficiency(diffs);
1750    }
1751    return patch_make(text1, diffs);
1752  }
1753
1754
1755  /**
1756   * Compute a list of patches to turn text1 into text2.
1757   * text1 will be derived from the provided diffs.
1758   * @param diffs Array of diff tuples for text1 to text2.
1759   * @return LinkedList of Patch objects.
1760   */
1761  public LinkedList<Patch> patch_make(LinkedList<Diff> diffs) {
1762    if (diffs == null) {
1763      throw new IllegalArgumentException("Null inputs. (patch_make)");
1764    }
1765    // No origin string provided, compute our own.
1766    String text1 = diff_text1(diffs);
1767    return patch_make(text1, diffs);
1768  }
1769
1770
1771  /**
1772   * Compute a list of patches to turn text1 into text2.
1773   * text2 is ignored, diffs are the delta between text1 and text2.
1774   * @param text1 Old text
1775   * @param text2 Ignored.
1776   * @param diffs Array of diff tuples for text1 to text2.
1777   * @return LinkedList of Patch objects.
1778   * @deprecated Prefer patch_make(String text1, LinkedList<Diff> diffs).
1779   */
1780  public LinkedList<Patch> patch_make(String text1, String text2,
1781      LinkedList<Diff> diffs) {
1782    return patch_make(text1, diffs);
1783  }
1784
1785
1786  /**
1787   * Compute a list of patches to turn text1 into text2.
1788   * text2 is not provided, diffs are the delta between text1 and text2.
1789   * @param text1 Old text.
1790   * @param diffs Array of diff tuples for text1 to text2.
1791   * @return LinkedList of Patch objects.
1792   */
1793  public LinkedList<Patch> patch_make(String text1, LinkedList<Diff> diffs) {
1794    if (text1 == null || diffs == null) {
1795      throw new IllegalArgumentException("Null inputs. (patch_make)");
1796    }
1797
1798    LinkedList<Patch> patches = new LinkedList<Patch>();
1799    if (diffs.isEmpty()) {
1800      return patches;  // Get rid of the null case.
1801    }
1802    Patch patch = new Patch();
1803    int char_count1 = 0;  // Number of characters into the text1 string.
1804    int char_count2 = 0;  // Number of characters into the text2 string.
1805    // Start with text1 (prepatch_text) and apply the diffs until we arrive at
1806    // text2 (postpatch_text). We recreate the patches one by one to determine
1807    // context info.
1808    String prepatch_text = text1;
1809    String postpatch_text = text1;
1810    for (Diff aDiff : diffs) {
1811      if (patch.diffs.isEmpty() && aDiff.operation != Operation.EQUAL) {
1812        // A new patch starts here.
1813        patch.start1 = char_count1;
1814        patch.start2 = char_count2;
1815      }
1816
1817      switch (aDiff.operation) {
1818      case INSERT:
1819        patch.diffs.add(aDiff);
1820        patch.length2 += aDiff.text.length();
1821        postpatch_text = postpatch_text.substring(0, char_count2)
1822            + aDiff.text + postpatch_text.substring(char_count2);
1823        break;
1824      case DELETE:
1825        patch.length1 += aDiff.text.length();
1826        patch.diffs.add(aDiff);
1827        postpatch_text = postpatch_text.substring(0, char_count2)
1828            + postpatch_text.substring(char_count2 + aDiff.text.length());
1829        break;
1830      case EQUAL:
1831        if (aDiff.text.length() <= 2 * Patch_Margin
1832            && !patch.diffs.isEmpty() && aDiff != diffs.getLast()) {
1833          // Small equality inside a patch.
1834          patch.diffs.add(aDiff);
1835          patch.length1 += aDiff.text.length();
1836          patch.length2 += aDiff.text.length();
1837        }
1838
1839        if (aDiff.text.length() >= 2 * Patch_Margin) {
1840          // Time for a new patch.
1841          if (!patch.diffs.isEmpty()) {
1842            patch_addContext(patch, prepatch_text);
1843            patches.add(patch);
1844            patch = new Patch();
1845            // Unlike Unidiff, our patch lists have a rolling context.
1846            // http://code.google.com/p/google-diff-match-patch/wiki/Unidiff
1847            // Update prepatch text & pos to reflect the application of the
1848            // just completed patch.
1849            prepatch_text = postpatch_text;
1850            char_count1 = char_count2;
1851          }
1852        }
1853        break;
1854      }
1855
1856      // Update the current character count.
1857      if (aDiff.operation != Operation.INSERT) {
1858        char_count1 += aDiff.text.length();
1859      }
1860      if (aDiff.operation != Operation.DELETE) {
1861        char_count2 += aDiff.text.length();
1862      }
1863    }
1864    // Pick up the leftover patch if not empty.
1865    if (!patch.diffs.isEmpty()) {
1866      patch_addContext(patch, prepatch_text);
1867      patches.add(patch);
1868    }
1869
1870    return patches;
1871  }
1872
1873
1874  /**
1875   * Given an array of patches, return another array that is identical.
1876   * @param patches Array of patch objects.
1877   * @return Array of patch objects.
1878   */
1879  public LinkedList<Patch> patch_deepCopy(LinkedList<Patch> patches) {
1880    LinkedList<Patch> patchesCopy = new LinkedList<Patch>();
1881    for (Patch aPatch : patches) {
1882      Patch patchCopy = new Patch();
1883      for (Diff aDiff : aPatch.diffs) {
1884        Diff diffCopy = new Diff(aDiff.operation, aDiff.text);
1885        patchCopy.diffs.add(diffCopy);
1886      }
1887      patchCopy.start1 = aPatch.start1;
1888      patchCopy.start2 = aPatch.start2;
1889      patchCopy.length1 = aPatch.length1;
1890      patchCopy.length2 = aPatch.length2;
1891      patchesCopy.add(patchCopy);
1892    }
1893    return patchesCopy;
1894  }
1895
1896
1897  /**
1898   * Merge a set of patches onto the text.  Return a patched text, as well
1899   * as an array of true/false values indicating which patches were applied.
1900   * @param patches Array of patch objects
1901   * @param text Old text.
1902   * @return Two element Object array, containing the new text and an array of
1903   *      boolean values.
1904   */
1905  public Object[] patch_apply(LinkedList<Patch> patches, String text) {
1906    if (patches.isEmpty()) {
1907      return new Object[]{text, new boolean[0]};
1908    }
1909
1910    // Deep copy the patches so that no changes are made to originals.
1911    patches = patch_deepCopy(patches);
1912
1913    String nullPadding = patch_addPadding(patches);
1914    text = nullPadding + text + nullPadding;
1915    patch_splitMax(patches);
1916
1917    int x = 0;
1918    // delta keeps track of the offset between the expected and actual location
1919    // of the previous patch.  If there are patches expected at positions 10 and
1920    // 20, but the first patch was found at 12, delta is 2 and the second patch
1921    // has an effective expected position of 22.
1922    int delta = 0;
1923    boolean[] results = new boolean[patches.size()];
1924    for (Patch aPatch : patches) {
1925      int expected_loc = aPatch.start2 + delta;
1926      String text1 = diff_text1(aPatch.diffs);
1927      int start_loc;
1928      int end_loc = -1;
1929      if (text1.length() > this.Match_MaxBits) {
1930        // patch_splitMax will only provide an oversized pattern in the case of
1931        // a monster delete.
1932        start_loc = match_main(text,
1933            text1.substring(0, this.Match_MaxBits), expected_loc);
1934        if (start_loc != -1) {
1935          end_loc = match_main(text,
1936              text1.substring(text1.length() - this.Match_MaxBits),
1937              expected_loc + text1.length() - this.Match_MaxBits);
1938          if (end_loc == -1 || start_loc >= end_loc) {
1939            // Can't find valid trailing context.  Drop this patch.
1940            start_loc = -1;
1941          }
1942        }
1943      } else {
1944        start_loc = match_main(text, text1, expected_loc);
1945      }
1946      if (start_loc == -1) {
1947        // No match found.  :(
1948        results[x] = false;
1949        // Subtract the delta for this failed patch from subsequent patches.
1950        delta -= aPatch.length2 - aPatch.length1;
1951      } else {
1952        // Found a match.  :)
1953        results[x] = true;
1954        delta = start_loc - expected_loc;
1955        String text2;
1956        if (end_loc == -1) {
1957          text2 = text.substring(start_loc,
1958              Math.min(start_loc + text1.length(), text.length()));
1959        } else {
1960          text2 = text.substring(start_loc,
1961              Math.min(end_loc + this.Match_MaxBits, text.length()));
1962        }
1963        if (text1.equals(text2)) {
1964          // Perfect match, just shove the replacement text in.
1965          text = text.substring(0, start_loc) + diff_text2(aPatch.diffs)
1966              + text.substring(start_loc + text1.length());
1967        } else {
1968          // Imperfect match.  Run a diff to get a framework of equivalent
1969          // indices.
1970          LinkedList<Diff> diffs = diff_main(text1, text2, false);
1971          if (text1.length() > this.Match_MaxBits
1972              && diff_levenshtein(diffs) / (float) text1.length()
1973              > this.Patch_DeleteThreshold) {
1974            // The end points match, but the content is unacceptably bad.
1975            results[x] = false;
1976          } else {
1977            diff_cleanupSemanticLossless(diffs);
1978            int index1 = 0;
1979            for (Diff aDiff : aPatch.diffs) {
1980              if (aDiff.operation != Operation.EQUAL) {
1981                int index2 = diff_xIndex(diffs, index1);
1982                if (aDiff.operation == Operation.INSERT) {
1983                  // Insertion
1984                  text = text.substring(0, start_loc + index2) + aDiff.text
1985                      + text.substring(start_loc + index2);
1986                } else if (aDiff.operation == Operation.DELETE) {
1987                  // Deletion
1988                  text = text.substring(0, start_loc + index2)
1989                      + text.substring(start_loc + diff_xIndex(diffs,
1990                      index1 + aDiff.text.length()));
1991                }
1992              }
1993              if (aDiff.operation != Operation.DELETE) {
1994                index1 += aDiff.text.length();
1995              }
1996            }
1997          }
1998        }
1999      }
2000      x++;
2001    }
2002    // Strip the padding off.
2003    text = text.substring(nullPadding.length(), text.length()
2004        - nullPadding.length());
2005    return new Object[]{text, results};
2006  }
2007
2008
2009  /**
2010   * Add some padding on text start and end so that edges can match something.
2011   * Intended to be called only from within patch_apply.
2012   * @param patches Array of patch objects.
2013   * @return The padding string added to each side.
2014   */
2015  public String patch_addPadding(LinkedList<Patch> patches) {
2016    int paddingLength = this.Patch_Margin;
2017    String nullPadding = "";
2018    for (int x = 1; x <= paddingLength; x++) {
2019      nullPadding += String.valueOf((char) x);
2020    }
2021
2022    // Bump all the patches forward.
2023    for (Patch aPatch : patches) {
2024      aPatch.start1 += paddingLength;
2025      aPatch.start2 += paddingLength;
2026    }
2027
2028    // Add some padding on start of first diff.
2029    Patch patch = patches.getFirst();
2030    LinkedList<Diff> diffs = patch.diffs;
2031    if (diffs.isEmpty() || diffs.getFirst().operation != Operation.EQUAL) {
2032      // Add nullPadding equality.
2033      diffs.addFirst(new Diff(Operation.EQUAL, nullPadding));
2034      patch.start1 -= paddingLength;  // Should be 0.
2035      patch.start2 -= paddingLength;  // Should be 0.
2036      patch.length1 += paddingLength;
2037      patch.length2 += paddingLength;
2038    } else if (paddingLength > diffs.getFirst().text.length()) {
2039      // Grow first equality.
2040      Diff firstDiff = diffs.getFirst();
2041      int extraLength = paddingLength - firstDiff.text.length();
2042      firstDiff.text = nullPadding.substring(firstDiff.text.length())
2043          + firstDiff.text;
2044      patch.start1 -= extraLength;
2045      patch.start2 -= extraLength;
2046      patch.length1 += extraLength;
2047      patch.length2 += extraLength;
2048    }
2049
2050    // Add some padding on end of last diff.
2051    patch = patches.getLast();
2052    diffs = patch.diffs;
2053    if (diffs.isEmpty() || diffs.getLast().operation != Operation.EQUAL) {
2054      // Add nullPadding equality.
2055      diffs.addLast(new Diff(Operation.EQUAL, nullPadding));
2056      patch.length1 += paddingLength;
2057      patch.length2 += paddingLength;
2058    } else if (paddingLength > diffs.getLast().text.length()) {
2059      // Grow last equality.
2060      Diff lastDiff = diffs.getLast();
2061      int extraLength = paddingLength - lastDiff.text.length();
2062      lastDiff.text += nullPadding.substring(0, extraLength);
2063      patch.length1 += extraLength;
2064      patch.length2 += extraLength;
2065    }
2066
2067    return nullPadding;
2068  }
2069
2070
2071  /**
2072   * Look through the patches and break up any which are longer than the
2073   * maximum limit of the match algorithm.
2074   * @param patches LinkedList of Patch objects.
2075   */
2076  public void patch_splitMax(LinkedList<Patch> patches) {
2077    int patch_size;
2078    String precontext, postcontext;
2079    Patch patch;
2080    int start1, start2;
2081    boolean empty;
2082    Operation diff_type;
2083    String diff_text;
2084    ListIterator<Patch> pointer = patches.listIterator();
2085    Patch bigpatch = pointer.hasNext() ? pointer.next() : null;
2086    while (bigpatch != null) {
2087      if (bigpatch.length1 <= Match_MaxBits) {
2088        bigpatch = pointer.hasNext() ? pointer.next() : null;
2089        continue;
2090      }
2091      // Remove the big old patch.
2092      pointer.remove();
2093      patch_size = Match_MaxBits;
2094      start1 = bigpatch.start1;
2095      start2 = bigpatch.start2;
2096      precontext = "";
2097      while (!bigpatch.diffs.isEmpty()) {
2098        // Create one of several smaller patches.
2099        patch = new Patch();
2100        empty = true;
2101        patch.start1 = start1 - precontext.length();
2102        patch.start2 = start2 - precontext.length();
2103        if (precontext.length() != 0) {
2104          patch.length1 = patch.length2 = precontext.length();
2105          patch.diffs.add(new Diff(Operation.EQUAL, precontext));
2106        }
2107        while (!bigpatch.diffs.isEmpty()
2108            && patch.length1 < patch_size - Patch_Margin) {
2109          diff_type = bigpatch.diffs.getFirst().operation;
2110          diff_text = bigpatch.diffs.getFirst().text;
2111          if (diff_type == Operation.INSERT) {
2112            // Insertions are harmless.
2113            patch.length2 += diff_text.length();
2114            start2 += diff_text.length();
2115            patch.diffs.addLast(bigpatch.diffs.removeFirst());
2116            empty = false;
2117          } else if (diff_type == Operation.DELETE && patch.diffs.size() == 1
2118              && patch.diffs.getFirst().operation == Operation.EQUAL
2119              && diff_text.length() > 2 * patch_size) {
2120            // This is a large deletion.  Let it pass in one chunk.
2121            patch.length1 += diff_text.length();
2122            start1 += diff_text.length();
2123            empty = false;
2124            patch.diffs.add(new Diff(diff_type, diff_text));
2125            bigpatch.diffs.removeFirst();
2126          } else {
2127            // Deletion or equality.  Only take as much as we can stomach.
2128            diff_text = diff_text.substring(0, Math.min(diff_text.length(),
2129                patch_size - patch.length1 - Patch_Margin));
2130            patch.length1 += diff_text.length();
2131            start1 += diff_text.length();
2132            if (diff_type == Operation.EQUAL) {
2133              patch.length2 += diff_text.length();
2134              start2 += diff_text.length();
2135            } else {
2136              empty = false;
2137            }
2138            patch.diffs.add(new Diff(diff_type, diff_text));
2139            if (diff_text.equals(bigpatch.diffs.getFirst().text)) {
2140              bigpatch.diffs.removeFirst();
2141            } else {
2142              bigpatch.diffs.getFirst().text = bigpatch.diffs.getFirst().text
2143                  .substring(diff_text.length());
2144            }
2145          }
2146        }
2147        // Compute the head context for the next patch.
2148        precontext = diff_text2(patch.diffs);
2149        precontext = precontext.substring(Math.max(0, precontext.length()
2150            - Patch_Margin));
2151        // Append the end context for this patch.
2152        if (diff_text1(bigpatch.diffs).length() > Patch_Margin) {
2153          postcontext = diff_text1(bigpatch.diffs).substring(0, Patch_Margin);
2154        } else {
2155          postcontext = diff_text1(bigpatch.diffs);
2156        }
2157        if (postcontext.length() != 0) {
2158          patch.length1 += postcontext.length();
2159          patch.length2 += postcontext.length();
2160          if (!patch.diffs.isEmpty()
2161              && patch.diffs.getLast().operation == Operation.EQUAL) {
2162            patch.diffs.getLast().text += postcontext;
2163          } else {
2164            patch.diffs.add(new Diff(Operation.EQUAL, postcontext));
2165          }
2166        }
2167        if (!empty) {
2168          pointer.add(patch);
2169        }
2170      }
2171      bigpatch = pointer.hasNext() ? pointer.next() : null;
2172    }
2173  }
2174
2175
2176  /**
2177   * Take a list of patches and return a textual representation.
2178   * @param patches List of Patch objects.
2179   * @return Text representation of patches.
2180   */
2181  public String patch_toText(List<Patch> patches) {
2182    StringBuilder text = new StringBuilder();
2183    for (Patch aPatch : patches) {
2184      text.append(aPatch);
2185    }
2186    return text.toString();
2187  }
2188
2189
2190  /**
2191   * Parse a textual representation of patches and return a List of Patch
2192   * objects.
2193   * @param textline Text representation of patches.
2194   * @return List of Patch objects.
2195   * @throws IllegalArgumentException If invalid input.
2196   */
2197  public List<Patch> patch_fromText(String textline)
2198      throws IllegalArgumentException {
2199    List<Patch> patches = new LinkedList<Patch>();
2200    if (textline.length() == 0) {
2201      return patches;
2202    }
2203    List<String> textList = Arrays.asList(textline.split("\n"));
2204    LinkedList<String> text = new LinkedList<String>(textList);
2205    Patch patch;
2206    Pattern patchHeader
2207        = Pattern.compile("^@@ -(\\d+),?(\\d*) \\+(\\d+),?(\\d*) @@$");
2208    Matcher m;
2209    char sign;
2210    String line;
2211    while (!text.isEmpty()) {
2212      m = patchHeader.matcher(text.getFirst());
2213      if (!m.matches()) {
2214        throw new IllegalArgumentException(
2215            "Invalid patch string: " + text.getFirst());
2216      }
2217      patch = new Patch();
2218      patches.add(patch);
2219      patch.start1 = Integer.parseInt(m.group(1));
2220      if (m.group(2).length() == 0) {
2221        patch.start1--;
2222        patch.length1 = 1;
2223      } else if (m.group(2).equals("0")) {
2224        patch.length1 = 0;
2225      } else {
2226        patch.start1--;
2227        patch.length1 = Integer.parseInt(m.group(2));
2228      }
2229
2230      patch.start2 = Integer.parseInt(m.group(3));
2231      if (m.group(4).length() == 0) {
2232        patch.start2--;
2233        patch.length2 = 1;
2234      } else if (m.group(4).equals("0")) {
2235        patch.length2 = 0;
2236      } else {
2237        patch.start2--;
2238        patch.length2 = Integer.parseInt(m.group(4));
2239      }
2240      text.removeFirst();
2241
2242      while (!text.isEmpty()) {
2243        try {
2244          sign = text.getFirst().charAt(0);
2245        } catch (IndexOutOfBoundsException e) {
2246          // Blank line?  Whatever.
2247          text.removeFirst();
2248          continue;
2249        }
2250        line = text.getFirst().substring(1);
2251        line = line.replace("+", "%2B");  // decode would change all "+" to " "
2252        try {
2253          line = URLDecoder.decode(line, "UTF-8");
2254        } catch (UnsupportedEncodingException e) {
2255          // Not likely on modern system.
2256          throw new Error("This system does not support UTF-8.", e);
2257        } catch (IllegalArgumentException e) {
2258          // Malformed URI sequence.
2259          throw new IllegalArgumentException(
2260              "Illegal escape in patch_fromText: " + line, e);
2261        }
2262        if (sign == '-') {
2263          // Deletion.
2264          patch.diffs.add(new Diff(Operation.DELETE, line));
2265        } else if (sign == '+') {
2266          // Insertion.
2267          patch.diffs.add(new Diff(Operation.INSERT, line));
2268        } else if (sign == ' ') {
2269          // Minor equality.
2270          patch.diffs.add(new Diff(Operation.EQUAL, line));
2271        } else if (sign == '@') {
2272          // Start of next patch.
2273          break;
2274        } else {
2275          // WTF?
2276          throw new IllegalArgumentException(
2277              "Invalid patch mode '" + sign + "' in: " + line);
2278        }
2279        text.removeFirst();
2280      }
2281    }
2282    return patches;
2283  }
2284
2285
2286  /**
2287   * Class representing one diff operation.
2288   */
2289  public static class Diff {
2290    /**
2291     * One of: INSERT, DELETE or EQUAL.
2292     */
2293    public Operation operation;
2294    /**
2295     * The text associated with this diff operation.
2296     */
2297    public String text;
2298
2299    /**
2300     * Constructor.  Initializes the diff with the provided values.
2301     * @param operation One of INSERT, DELETE or EQUAL.
2302     * @param text The text being applied.
2303     */
2304    public Diff(Operation operation, String text) {
2305      // Construct a diff with the specified operation and text.
2306      this.operation = operation;
2307      this.text = text;
2308    }
2309
2310
2311    /**
2312     * Display a human-readable version of this Diff.
2313     * @return text version.
2314     */
2315    public String toString() {
2316      String prettyText = this.text.replace('\n', '\u00b6');
2317      return "Diff(" + this.operation + ",\"" + prettyText + "\")";
2318    }
2319
2320
2321    /**
2322     * Is this Diff equivalent to another Diff?
2323     * @param d Another Diff to compare against.
2324     * @return true or false.
2325     */
2326    public boolean equals(Object d) {
2327      try {
2328        return (((Diff) d).operation == this.operation)
2329               && (((Diff) d).text.equals(this.text));
2330      } catch (ClassCastException e) {
2331        return false;
2332      }
2333    }
2334  }
2335
2336
2337  /**
2338   * Class representing one patch operation.
2339   */
2340  public static class Patch {
2341    public LinkedList<Diff> diffs;
2342    public int start1;
2343    public int start2;
2344    public int length1;
2345    public int length2;
2346
2347
2348    /**
2349     * Constructor.  Initializes with an empty list of diffs.
2350     */
2351    public Patch() {
2352      this.diffs = new LinkedList<Diff>();
2353    }
2354
2355
2356    /**
2357     * Emmulate GNU diff's format.
2358     * Header: @@ -382,8 +481,9 @@
2359     * Indicies are printed as 1-based, not 0-based.
2360     * @return The GNU diff string.
2361     */
2362    public String toString() {
2363      String coords1, coords2;
2364      if (this.length1 == 0) {
2365        coords1 = this.start1 + ",0";
2366      } else if (this.length1 == 1) {
2367        coords1 = Integer.toString(this.start1 + 1);
2368      } else {
2369        coords1 = (this.start1 + 1) + "," + this.length1;
2370      }
2371      if (this.length2 == 0) {
2372        coords2 = this.start2 + ",0";
2373      } else if (this.length2 == 1) {
2374        coords2 = Integer.toString(this.start2 + 1);
2375      } else {
2376        coords2 = (this.start2 + 1) + "," + this.length2;
2377      }
2378      StringBuilder text = new StringBuilder();
2379      text.append("@@ -").append(coords1).append(" +").append(coords2)
2380          .append(" @@\n");
2381      // Escape the body of the patch with %xx notation.
2382      for (Diff aDiff : this.diffs) {
2383        switch (aDiff.operation) {
2384        case INSERT:
2385          text.append('+');
2386          break;
2387        case DELETE:
2388          text.append('-');
2389          break;
2390        case EQUAL:
2391          text.append(' ');
2392          break;
2393        }
2394        try {
2395          text.append(URLEncoder.encode(aDiff.text, "UTF-8").replace('+', ' '))
2396              .append("\n");
2397        } catch (UnsupportedEncodingException e) {
2398          // Not likely on modern system.
2399          throw new Error("This system does not support UTF-8.", e);
2400        }
2401      }
2402      return unescapeForEncodeUriCompatability(text.toString());
2403    }
2404  }
2405
2406
2407  /**
2408   * Unescape selected chars for compatability with JavaScript's encodeURI.
2409   * In speed critical applications this could be dropped since the
2410   * receiving application will certainly decode these fine.
2411   * Note that this function is case-sensitive.  Thus "%3f" would not be
2412   * unescaped.  But this is ok because it is only called with the output of
2413   * URLEncoder.encode which returns uppercase hex.
2414   *
2415   * Example: "%3F" -> "?", "%24" -> "$", etc.
2416   *
2417   * @param str The string to escape.
2418   * @return The escaped string.
2419   */
2420  private static String unescapeForEncodeUriCompatability(String str) {
2421    return str.replace("%21", "!").replace("%7E", "~")
2422        .replace("%27", "'").replace("%28", "(").replace("%29", ")")
2423        .replace("%3B", ";").replace("%2F", "/").replace("%3F", "?")
2424        .replace("%3A", ":").replace("%40", "@").replace("%26", "&")
2425        .replace("%3D", "=").replace("%2B", "+").replace("%24", "$")
2426        .replace("%2C", ",").replace("%23", "#");
2427  }
2428}
2429