1// Copyright 2005, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31//
32// Tests for Google Test itself.  This verifies that the basic constructs of
33// Google Test work.
34
35#include "gtest/gtest.h"
36
37// Verifies that the command line flag variables can be accessed
38// in code once <gtest/gtest.h> has been #included.
39// Do not move it after other #includes.
40TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
41  bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
42      || testing::GTEST_FLAG(break_on_failure)
43      || testing::GTEST_FLAG(catch_exceptions)
44      || testing::GTEST_FLAG(color) != "unknown"
45      || testing::GTEST_FLAG(filter) != "unknown"
46      || testing::GTEST_FLAG(list_tests)
47      || testing::GTEST_FLAG(output) != "unknown"
48      || testing::GTEST_FLAG(print_time)
49      || testing::GTEST_FLAG(random_seed)
50      || testing::GTEST_FLAG(repeat) > 0
51      || testing::GTEST_FLAG(show_internal_stack_frames)
52      || testing::GTEST_FLAG(shuffle)
53      || testing::GTEST_FLAG(stack_trace_depth) > 0
54      || testing::GTEST_FLAG(stream_result_to) != "unknown"
55      || testing::GTEST_FLAG(throw_on_failure);
56  EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
57}
58
59#include <limits.h>  // For INT_MAX.
60#include <stdlib.h>
61#include <string.h>
62#include <time.h>
63
64#include <map>
65#include <vector>
66#include <ostream>
67
68#include "gtest/gtest-spi.h"
69
70// Indicates that this translation unit is part of Google Test's
71// implementation.  It must come before gtest-internal-inl.h is
72// included, or there will be a compiler error.  This trick is to
73// prevent a user from accidentally including gtest-internal-inl.h in
74// his code.
75#define GTEST_IMPLEMENTATION_ 1
76#include "src/gtest-internal-inl.h"
77#undef GTEST_IMPLEMENTATION_
78
79namespace testing {
80namespace internal {
81
82#if GTEST_CAN_STREAM_RESULTS_
83
84class StreamingListenerTest : public Test {
85 public:
86  class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
87   public:
88    // Sends a string to the socket.
89    virtual void Send(const string& message) { output_ += message; }
90
91    string output_;
92  };
93
94  StreamingListenerTest()
95      : fake_sock_writer_(new FakeSocketWriter),
96        streamer_(fake_sock_writer_),
97        test_info_obj_("FooTest", "Bar", NULL, NULL, 0, NULL) {}
98
99 protected:
100  string* output() { return &(fake_sock_writer_->output_); }
101
102  FakeSocketWriter* const fake_sock_writer_;
103  StreamingListener streamer_;
104  UnitTest unit_test_;
105  TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
106};
107
108TEST_F(StreamingListenerTest, OnTestProgramEnd) {
109  *output() = "";
110  streamer_.OnTestProgramEnd(unit_test_);
111  EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
112}
113
114TEST_F(StreamingListenerTest, OnTestIterationEnd) {
115  *output() = "";
116  streamer_.OnTestIterationEnd(unit_test_, 42);
117  EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
118}
119
120TEST_F(StreamingListenerTest, OnTestCaseStart) {
121  *output() = "";
122  streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
123  EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
124}
125
126TEST_F(StreamingListenerTest, OnTestCaseEnd) {
127  *output() = "";
128  streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
129  EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
130}
131
132TEST_F(StreamingListenerTest, OnTestStart) {
133  *output() = "";
134  streamer_.OnTestStart(test_info_obj_);
135  EXPECT_EQ("event=TestStart&name=Bar\n", *output());
136}
137
138TEST_F(StreamingListenerTest, OnTestEnd) {
139  *output() = "";
140  streamer_.OnTestEnd(test_info_obj_);
141  EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
142}
143
144TEST_F(StreamingListenerTest, OnTestPartResult) {
145  *output() = "";
146  streamer_.OnTestPartResult(TestPartResult(
147      TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
148
149  // Meta characters in the failure message should be properly escaped.
150  EXPECT_EQ(
151      "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
152      *output());
153}
154
155#endif  // GTEST_CAN_STREAM_RESULTS_
156
157// Provides access to otherwise private parts of the TestEventListeners class
158// that are needed to test it.
159class TestEventListenersAccessor {
160 public:
161  static TestEventListener* GetRepeater(TestEventListeners* listeners) {
162    return listeners->repeater();
163  }
164
165  static void SetDefaultResultPrinter(TestEventListeners* listeners,
166                                      TestEventListener* listener) {
167    listeners->SetDefaultResultPrinter(listener);
168  }
169  static void SetDefaultXmlGenerator(TestEventListeners* listeners,
170                                     TestEventListener* listener) {
171    listeners->SetDefaultXmlGenerator(listener);
172  }
173
174  static bool EventForwardingEnabled(const TestEventListeners& listeners) {
175    return listeners.EventForwardingEnabled();
176  }
177
178  static void SuppressEventForwarding(TestEventListeners* listeners) {
179    listeners->SuppressEventForwarding();
180  }
181};
182
183class UnitTestRecordPropertyTestHelper : public Test {
184 protected:
185  UnitTestRecordPropertyTestHelper() {}
186
187  // Forwards to UnitTest::RecordProperty() to bypass access controls.
188  void UnitTestRecordProperty(const char* key, const std::string& value) {
189    unit_test_.RecordProperty(key, value);
190  }
191
192  UnitTest unit_test_;
193};
194
195}  // namespace internal
196}  // namespace testing
197
198using testing::AssertionFailure;
199using testing::AssertionResult;
200using testing::AssertionSuccess;
201using testing::DoubleLE;
202using testing::EmptyTestEventListener;
203using testing::Environment;
204using testing::FloatLE;
205using testing::GTEST_FLAG(also_run_disabled_tests);
206using testing::GTEST_FLAG(break_on_failure);
207using testing::GTEST_FLAG(catch_exceptions);
208using testing::GTEST_FLAG(color);
209using testing::GTEST_FLAG(death_test_use_fork);
210using testing::GTEST_FLAG(filter);
211using testing::GTEST_FLAG(list_tests);
212using testing::GTEST_FLAG(output);
213using testing::GTEST_FLAG(print_time);
214using testing::GTEST_FLAG(random_seed);
215using testing::GTEST_FLAG(repeat);
216using testing::GTEST_FLAG(show_internal_stack_frames);
217using testing::GTEST_FLAG(shuffle);
218using testing::GTEST_FLAG(stack_trace_depth);
219using testing::GTEST_FLAG(stream_result_to);
220using testing::GTEST_FLAG(throw_on_failure);
221using testing::IsNotSubstring;
222using testing::IsSubstring;
223using testing::Message;
224using testing::ScopedFakeTestPartResultReporter;
225using testing::StaticAssertTypeEq;
226using testing::Test;
227using testing::TestCase;
228using testing::TestEventListeners;
229using testing::TestInfo;
230using testing::TestPartResult;
231using testing::TestPartResultArray;
232using testing::TestProperty;
233using testing::TestResult;
234using testing::TimeInMillis;
235using testing::UnitTest;
236using testing::kMaxStackTraceDepth;
237using testing::internal::AddReference;
238using testing::internal::AlwaysFalse;
239using testing::internal::AlwaysTrue;
240using testing::internal::AppendUserMessage;
241using testing::internal::ArrayAwareFind;
242using testing::internal::ArrayEq;
243using testing::internal::CodePointToUtf8;
244using testing::internal::CompileAssertTypesEqual;
245using testing::internal::CopyArray;
246using testing::internal::CountIf;
247using testing::internal::EqFailure;
248using testing::internal::FloatingPoint;
249using testing::internal::ForEach;
250using testing::internal::FormatEpochTimeInMillisAsIso8601;
251using testing::internal::FormatTimeInMillisAsSeconds;
252using testing::internal::GTestFlagSaver;
253using testing::internal::GetCurrentOsStackTraceExceptTop;
254using testing::internal::GetElementOr;
255using testing::internal::GetNextRandomSeed;
256using testing::internal::GetRandomSeedFromFlag;
257using testing::internal::GetTestTypeId;
258using testing::internal::GetTimeInMillis;
259using testing::internal::GetTypeId;
260using testing::internal::GetUnitTestImpl;
261using testing::internal::ImplicitlyConvertible;
262using testing::internal::Int32;
263using testing::internal::Int32FromEnvOrDie;
264using testing::internal::IsAProtocolMessage;
265using testing::internal::IsContainer;
266using testing::internal::IsContainerTest;
267using testing::internal::IsNotContainer;
268using testing::internal::NativeArray;
269using testing::internal::ParseInt32Flag;
270using testing::internal::RemoveConst;
271using testing::internal::RemoveReference;
272using testing::internal::ShouldRunTestOnShard;
273using testing::internal::ShouldShard;
274using testing::internal::ShouldUseColor;
275using testing::internal::Shuffle;
276using testing::internal::ShuffleRange;
277using testing::internal::SkipPrefix;
278using testing::internal::StreamableToString;
279using testing::internal::String;
280using testing::internal::TestEventListenersAccessor;
281using testing::internal::TestResultAccessor;
282using testing::internal::UInt32;
283using testing::internal::WideStringToUtf8;
284using testing::internal::kCopy;
285using testing::internal::kMaxRandomSeed;
286using testing::internal::kReference;
287using testing::internal::kTestTypeIdInGoogleTest;
288using testing::internal::scoped_ptr;
289
290#if GTEST_HAS_STREAM_REDIRECTION
291using testing::internal::CaptureStdout;
292using testing::internal::GetCapturedStdout;
293#endif
294
295#if GTEST_IS_THREADSAFE
296using testing::internal::ThreadWithParam;
297#endif
298
299class TestingVector : public std::vector<int> {
300};
301
302::std::ostream& operator<<(::std::ostream& os,
303                           const TestingVector& vector) {
304  os << "{ ";
305  for (size_t i = 0; i < vector.size(); i++) {
306    os << vector[i] << " ";
307  }
308  os << "}";
309  return os;
310}
311
312// This line tests that we can define tests in an unnamed namespace.
313namespace {
314
315TEST(GetRandomSeedFromFlagTest, HandlesZero) {
316  const int seed = GetRandomSeedFromFlag(0);
317  EXPECT_LE(1, seed);
318  EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
319}
320
321TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
322  EXPECT_EQ(1, GetRandomSeedFromFlag(1));
323  EXPECT_EQ(2, GetRandomSeedFromFlag(2));
324  EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
325  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
326            GetRandomSeedFromFlag(kMaxRandomSeed));
327}
328
329TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
330  const int seed1 = GetRandomSeedFromFlag(-1);
331  EXPECT_LE(1, seed1);
332  EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
333
334  const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
335  EXPECT_LE(1, seed2);
336  EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
337}
338
339TEST(GetNextRandomSeedTest, WorksForValidInput) {
340  EXPECT_EQ(2, GetNextRandomSeed(1));
341  EXPECT_EQ(3, GetNextRandomSeed(2));
342  EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
343            GetNextRandomSeed(kMaxRandomSeed - 1));
344  EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
345
346  // We deliberately don't test GetNextRandomSeed() with invalid
347  // inputs, as that requires death tests, which are expensive.  This
348  // is fine as GetNextRandomSeed() is internal and has a
349  // straightforward definition.
350}
351
352static void ClearCurrentTestPartResults() {
353  TestResultAccessor::ClearTestPartResults(
354      GetUnitTestImpl()->current_test_result());
355}
356
357// Tests GetTypeId.
358
359TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
360  EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
361  EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
362}
363
364class SubClassOfTest : public Test {};
365class AnotherSubClassOfTest : public Test {};
366
367TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
368  EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
369  EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
370  EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
371  EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
372  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
373  EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
374}
375
376// Verifies that GetTestTypeId() returns the same value, no matter it
377// is called from inside Google Test or outside of it.
378TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
379  EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
380}
381
382// Tests FormatTimeInMillisAsSeconds().
383
384TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
385  EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
386}
387
388TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
389  EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
390  EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
391  EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
392  EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
393  EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
394}
395
396TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
397  EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
398  EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
399  EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
400  EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
401  EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
402}
403
404// Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
405// for particular dates below was verified in Python using
406// datetime.datetime.fromutctimestamp(<timetamp>/1000).
407
408// FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
409// have to set up a particular timezone to obtain predictable results.
410class FormatEpochTimeInMillisAsIso8601Test : public Test {
411 public:
412  // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
413  // 32 bits, even when 64-bit integer types are available.  We have to
414  // force the constants to have a 64-bit type here.
415  static const TimeInMillis kMillisPerSec = 1000;
416
417 private:
418  virtual void SetUp() {
419    saved_tz_ = NULL;
420#if _MSC_VER
421# pragma warning(push)          // Saves the current warning state.
422# pragma warning(disable:4996)  // Temporarily disables warning 4996
423                                // (function or variable may be unsafe
424                                // for getenv, function is deprecated for
425                                // strdup).
426    if (getenv("TZ"))
427      saved_tz_ = strdup(getenv("TZ"));
428# pragma warning(pop)           // Restores the warning state again.
429#else
430    if (getenv("TZ"))
431      saved_tz_ = strdup(getenv("TZ"));
432#endif
433
434    // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
435    // cannot use the local time zone because the function's output depends
436    // on the time zone.
437    SetTimeZone("UTC+00");
438  }
439
440  virtual void TearDown() {
441    SetTimeZone(saved_tz_);
442    free(const_cast<char*>(saved_tz_));
443    saved_tz_ = NULL;
444  }
445
446  static void SetTimeZone(const char* time_zone) {
447    // tzset() distinguishes between the TZ variable being present and empty
448    // and not being present, so we have to consider the case of time_zone
449    // being NULL.
450#if _MSC_VER
451    // ...Unless it's MSVC, whose standard library's _putenv doesn't
452    // distinguish between an empty and a missing variable.
453    const std::string env_var =
454        std::string("TZ=") + (time_zone ? time_zone : "");
455    _putenv(env_var.c_str());
456# pragma warning(push)          // Saves the current warning state.
457# pragma warning(disable:4996)  // Temporarily disables warning 4996
458                                // (function is deprecated).
459    tzset();
460# pragma warning(pop)           // Restores the warning state again.
461#else
462    if (time_zone) {
463      setenv(("TZ"), time_zone, 1);
464    } else {
465      unsetenv("TZ");
466    }
467    tzset();
468#endif
469  }
470
471  const char* saved_tz_;
472};
473
474const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
475
476TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
477  EXPECT_EQ("2011-10-31T18:52:42",
478            FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
479}
480
481TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
482  EXPECT_EQ(
483      "2011-10-31T18:52:42",
484      FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
485}
486
487TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
488  EXPECT_EQ("2011-09-03T05:07:02",
489            FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
490}
491
492TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
493  EXPECT_EQ("2011-09-28T17:08:22",
494            FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
495}
496
497TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
498  EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
499}
500
501#if GTEST_CAN_COMPARE_NULL
502
503# ifdef __BORLANDC__
504// Silences warnings: "Condition is always true", "Unreachable code"
505#  pragma option push -w-ccc -w-rch
506# endif
507
508// Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
509// pointer literal.
510TEST(NullLiteralTest, IsTrueForNullLiterals) {
511  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
512  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
513  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
514  EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
515}
516
517// Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
518// pointer literal.
519TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
520  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
521  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
522  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
523  EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
524}
525
526# ifdef __BORLANDC__
527// Restores warnings after previous "#pragma option push" suppressed them.
528#  pragma option pop
529# endif
530
531#endif  // GTEST_CAN_COMPARE_NULL
532//
533// Tests CodePointToUtf8().
534
535// Tests that the NUL character L'\0' is encoded correctly.
536TEST(CodePointToUtf8Test, CanEncodeNul) {
537  EXPECT_EQ("", CodePointToUtf8(L'\0'));
538}
539
540// Tests that ASCII characters are encoded correctly.
541TEST(CodePointToUtf8Test, CanEncodeAscii) {
542  EXPECT_EQ("a", CodePointToUtf8(L'a'));
543  EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
544  EXPECT_EQ("&", CodePointToUtf8(L'&'));
545  EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
546}
547
548// Tests that Unicode code-points that have 8 to 11 bits are encoded
549// as 110xxxxx 10xxxxxx.
550TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
551  // 000 1101 0011 => 110-00011 10-010011
552  EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
553
554  // 101 0111 0110 => 110-10101 10-110110
555  // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
556  // in wide strings and wide chars. In order to accomodate them, we have to
557  // introduce such character constants as integers.
558  EXPECT_EQ("\xD5\xB6",
559            CodePointToUtf8(static_cast<wchar_t>(0x576)));
560}
561
562// Tests that Unicode code-points that have 12 to 16 bits are encoded
563// as 1110xxxx 10xxxxxx 10xxxxxx.
564TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
565  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
566  EXPECT_EQ("\xE0\xA3\x93",
567            CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
568
569  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
570  EXPECT_EQ("\xEC\x9D\x8D",
571            CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
572}
573
574#if !GTEST_WIDE_STRING_USES_UTF16_
575// Tests in this group require a wchar_t to hold > 16 bits, and thus
576// are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
577// 16-bit wide. This code may not compile on those systems.
578
579// Tests that Unicode code-points that have 17 to 21 bits are encoded
580// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
581TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
582  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
583  EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
584
585  // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
586  EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
587
588  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
589  EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
590}
591
592// Tests that encoding an invalid code-point generates the expected result.
593TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
594  EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
595}
596
597#endif  // !GTEST_WIDE_STRING_USES_UTF16_
598
599// Tests WideStringToUtf8().
600
601// Tests that the NUL character L'\0' is encoded correctly.
602TEST(WideStringToUtf8Test, CanEncodeNul) {
603  EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
604  EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
605}
606
607// Tests that ASCII strings are encoded correctly.
608TEST(WideStringToUtf8Test, CanEncodeAscii) {
609  EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
610  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
611  EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
612  EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
613}
614
615// Tests that Unicode code-points that have 8 to 11 bits are encoded
616// as 110xxxxx 10xxxxxx.
617TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
618  // 000 1101 0011 => 110-00011 10-010011
619  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
620  EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
621
622  // 101 0111 0110 => 110-10101 10-110110
623  const wchar_t s[] = { 0x576, '\0' };
624  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
625  EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
626}
627
628// Tests that Unicode code-points that have 12 to 16 bits are encoded
629// as 1110xxxx 10xxxxxx 10xxxxxx.
630TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
631  // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
632  const wchar_t s1[] = { 0x8D3, '\0' };
633  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
634  EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
635
636  // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
637  const wchar_t s2[] = { 0xC74D, '\0' };
638  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
639  EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
640}
641
642// Tests that the conversion stops when the function encounters \0 character.
643TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
644  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
645}
646
647// Tests that the conversion stops when the function reaches the limit
648// specified by the 'length' parameter.
649TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
650  EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
651}
652
653#if !GTEST_WIDE_STRING_USES_UTF16_
654// Tests that Unicode code-points that have 17 to 21 bits are encoded
655// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
656// on the systems using UTF-16 encoding.
657TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
658  // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
659  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
660  EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
661
662  // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
663  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
664  EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
665}
666
667// Tests that encoding an invalid code-point generates the expected result.
668TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
669  EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
670               WideStringToUtf8(L"\xABCDFF", -1).c_str());
671}
672#else  // !GTEST_WIDE_STRING_USES_UTF16_
673// Tests that surrogate pairs are encoded correctly on the systems using
674// UTF-16 encoding in the wide strings.
675TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
676  const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
677  EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
678}
679
680// Tests that encoding an invalid UTF-16 surrogate pair
681// generates the expected result.
682TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
683  // Leading surrogate is at the end of the string.
684  const wchar_t s1[] = { 0xD800, '\0' };
685  EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
686  // Leading surrogate is not followed by the trailing surrogate.
687  const wchar_t s2[] = { 0xD800, 'M', '\0' };
688  EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
689  // Trailing surrogate appearas without a leading surrogate.
690  const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
691  EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
692}
693#endif  // !GTEST_WIDE_STRING_USES_UTF16_
694
695// Tests that codepoint concatenation works correctly.
696#if !GTEST_WIDE_STRING_USES_UTF16_
697TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
698  const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
699  EXPECT_STREQ(
700      "\xF4\x88\x98\xB4"
701          "\xEC\x9D\x8D"
702          "\n"
703          "\xD5\xB6"
704          "\xE0\xA3\x93"
705          "\xF4\x88\x98\xB4",
706      WideStringToUtf8(s, -1).c_str());
707}
708#else
709TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
710  const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
711  EXPECT_STREQ(
712      "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
713      WideStringToUtf8(s, -1).c_str());
714}
715#endif  // !GTEST_WIDE_STRING_USES_UTF16_
716
717// Tests the Random class.
718
719TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
720  testing::internal::Random random(42);
721  EXPECT_DEATH_IF_SUPPORTED(
722      random.Generate(0),
723      "Cannot generate a number in the range \\[0, 0\\)");
724  EXPECT_DEATH_IF_SUPPORTED(
725      random.Generate(testing::internal::Random::kMaxRange + 1),
726      "Generation of a number in \\[0, 2147483649\\) was requested, "
727      "but this can only generate numbers in \\[0, 2147483648\\)");
728}
729
730TEST(RandomTest, GeneratesNumbersWithinRange) {
731  const UInt32 kRange = 10000;
732  testing::internal::Random random(12345);
733  for (int i = 0; i < 10; i++) {
734    EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
735  }
736
737  testing::internal::Random random2(testing::internal::Random::kMaxRange);
738  for (int i = 0; i < 10; i++) {
739    EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
740  }
741}
742
743TEST(RandomTest, RepeatsWhenReseeded) {
744  const int kSeed = 123;
745  const int kArraySize = 10;
746  const UInt32 kRange = 10000;
747  UInt32 values[kArraySize];
748
749  testing::internal::Random random(kSeed);
750  for (int i = 0; i < kArraySize; i++) {
751    values[i] = random.Generate(kRange);
752  }
753
754  random.Reseed(kSeed);
755  for (int i = 0; i < kArraySize; i++) {
756    EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
757  }
758}
759
760// Tests STL container utilities.
761
762// Tests CountIf().
763
764static bool IsPositive(int n) { return n > 0; }
765
766TEST(ContainerUtilityTest, CountIf) {
767  std::vector<int> v;
768  EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
769
770  v.push_back(-1);
771  v.push_back(0);
772  EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
773
774  v.push_back(2);
775  v.push_back(-10);
776  v.push_back(10);
777  EXPECT_EQ(2, CountIf(v, IsPositive));
778}
779
780// Tests ForEach().
781
782static int g_sum = 0;
783static void Accumulate(int n) { g_sum += n; }
784
785TEST(ContainerUtilityTest, ForEach) {
786  std::vector<int> v;
787  g_sum = 0;
788  ForEach(v, Accumulate);
789  EXPECT_EQ(0, g_sum);  // Works for an empty container;
790
791  g_sum = 0;
792  v.push_back(1);
793  ForEach(v, Accumulate);
794  EXPECT_EQ(1, g_sum);  // Works for a container with one element.
795
796  g_sum = 0;
797  v.push_back(20);
798  v.push_back(300);
799  ForEach(v, Accumulate);
800  EXPECT_EQ(321, g_sum);
801}
802
803// Tests GetElementOr().
804TEST(ContainerUtilityTest, GetElementOr) {
805  std::vector<char> a;
806  EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
807
808  a.push_back('a');
809  a.push_back('b');
810  EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
811  EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
812  EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
813  EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
814}
815
816TEST(ContainerUtilityDeathTest, ShuffleRange) {
817  std::vector<int> a;
818  a.push_back(0);
819  a.push_back(1);
820  a.push_back(2);
821  testing::internal::Random random(1);
822
823  EXPECT_DEATH_IF_SUPPORTED(
824      ShuffleRange(&random, -1, 1, &a),
825      "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
826  EXPECT_DEATH_IF_SUPPORTED(
827      ShuffleRange(&random, 4, 4, &a),
828      "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
829  EXPECT_DEATH_IF_SUPPORTED(
830      ShuffleRange(&random, 3, 2, &a),
831      "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
832  EXPECT_DEATH_IF_SUPPORTED(
833      ShuffleRange(&random, 3, 4, &a),
834      "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
835}
836
837class VectorShuffleTest : public Test {
838 protected:
839  static const int kVectorSize = 20;
840
841  VectorShuffleTest() : random_(1) {
842    for (int i = 0; i < kVectorSize; i++) {
843      vector_.push_back(i);
844    }
845  }
846
847  static bool VectorIsCorrupt(const TestingVector& vector) {
848    if (kVectorSize != static_cast<int>(vector.size())) {
849      return true;
850    }
851
852    bool found_in_vector[kVectorSize] = { false };
853    for (size_t i = 0; i < vector.size(); i++) {
854      const int e = vector[i];
855      if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
856        return true;
857      }
858      found_in_vector[e] = true;
859    }
860
861    // Vector size is correct, elements' range is correct, no
862    // duplicate elements.  Therefore no corruption has occurred.
863    return false;
864  }
865
866  static bool VectorIsNotCorrupt(const TestingVector& vector) {
867    return !VectorIsCorrupt(vector);
868  }
869
870  static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
871    for (int i = begin; i < end; i++) {
872      if (i != vector[i]) {
873        return true;
874      }
875    }
876    return false;
877  }
878
879  static bool RangeIsUnshuffled(
880      const TestingVector& vector, int begin, int end) {
881    return !RangeIsShuffled(vector, begin, end);
882  }
883
884  static bool VectorIsShuffled(const TestingVector& vector) {
885    return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
886  }
887
888  static bool VectorIsUnshuffled(const TestingVector& vector) {
889    return !VectorIsShuffled(vector);
890  }
891
892  testing::internal::Random random_;
893  TestingVector vector_;
894};  // class VectorShuffleTest
895
896const int VectorShuffleTest::kVectorSize;
897
898TEST_F(VectorShuffleTest, HandlesEmptyRange) {
899  // Tests an empty range at the beginning...
900  ShuffleRange(&random_, 0, 0, &vector_);
901  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
902  ASSERT_PRED1(VectorIsUnshuffled, vector_);
903
904  // ...in the middle...
905  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
906  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
907  ASSERT_PRED1(VectorIsUnshuffled, vector_);
908
909  // ...at the end...
910  ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
911  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
912  ASSERT_PRED1(VectorIsUnshuffled, vector_);
913
914  // ...and past the end.
915  ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
916  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
917  ASSERT_PRED1(VectorIsUnshuffled, vector_);
918}
919
920TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
921  // Tests a size one range at the beginning...
922  ShuffleRange(&random_, 0, 1, &vector_);
923  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
924  ASSERT_PRED1(VectorIsUnshuffled, vector_);
925
926  // ...in the middle...
927  ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
928  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
929  ASSERT_PRED1(VectorIsUnshuffled, vector_);
930
931  // ...and at the end.
932  ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
933  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
934  ASSERT_PRED1(VectorIsUnshuffled, vector_);
935}
936
937// Because we use our own random number generator and a fixed seed,
938// we can guarantee that the following "random" tests will succeed.
939
940TEST_F(VectorShuffleTest, ShufflesEntireVector) {
941  Shuffle(&random_, &vector_);
942  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
943  EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
944
945  // Tests the first and last elements in particular to ensure that
946  // there are no off-by-one problems in our shuffle algorithm.
947  EXPECT_NE(0, vector_[0]);
948  EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
949}
950
951TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
952  const int kRangeSize = kVectorSize/2;
953
954  ShuffleRange(&random_, 0, kRangeSize, &vector_);
955
956  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
957  EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
958  EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
959}
960
961TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
962  const int kRangeSize = kVectorSize / 2;
963  ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
964
965  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
966  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
967  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
968}
969
970TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
971  int kRangeSize = kVectorSize/3;
972  ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
973
974  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
975  EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
976  EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
977  EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
978}
979
980TEST_F(VectorShuffleTest, ShufflesRepeatably) {
981  TestingVector vector2;
982  for (int i = 0; i < kVectorSize; i++) {
983    vector2.push_back(i);
984  }
985
986  random_.Reseed(1234);
987  Shuffle(&random_, &vector_);
988  random_.Reseed(1234);
989  Shuffle(&random_, &vector2);
990
991  ASSERT_PRED1(VectorIsNotCorrupt, vector_);
992  ASSERT_PRED1(VectorIsNotCorrupt, vector2);
993
994  for (int i = 0; i < kVectorSize; i++) {
995    EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
996  }
997}
998
999// Tests the size of the AssertHelper class.
1000
1001TEST(AssertHelperTest, AssertHelperIsSmall) {
1002  // To avoid breaking clients that use lots of assertions in one
1003  // function, we cannot grow the size of AssertHelper.
1004  EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1005}
1006
1007// Tests String::EndsWithCaseInsensitive().
1008TEST(StringTest, EndsWithCaseInsensitive) {
1009  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1010  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1011  EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1012  EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1013
1014  EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1015  EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1016  EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1017}
1018
1019// C++Builder's preprocessor is buggy; it fails to expand macros that
1020// appear in macro parameters after wide char literals.  Provide an alias
1021// for NULL as a workaround.
1022static const wchar_t* const kNull = NULL;
1023
1024// Tests String::CaseInsensitiveWideCStringEquals
1025TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1026  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
1027  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1028  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1029  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1030  EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1031  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1032  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1033  EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1034}
1035
1036#if GTEST_OS_WINDOWS
1037
1038// Tests String::ShowWideCString().
1039TEST(StringTest, ShowWideCString) {
1040  EXPECT_STREQ("(null)",
1041               String::ShowWideCString(NULL).c_str());
1042  EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1043  EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1044}
1045
1046# if GTEST_OS_WINDOWS_MOBILE
1047TEST(StringTest, AnsiAndUtf16Null) {
1048  EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1049  EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1050}
1051
1052TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1053  const char* ansi = String::Utf16ToAnsi(L"str");
1054  EXPECT_STREQ("str", ansi);
1055  delete [] ansi;
1056  const WCHAR* utf16 = String::AnsiToUtf16("str");
1057  EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1058  delete [] utf16;
1059}
1060
1061TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1062  const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1063  EXPECT_STREQ(".:\\ \"*?", ansi);
1064  delete [] ansi;
1065  const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1066  EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1067  delete [] utf16;
1068}
1069# endif  // GTEST_OS_WINDOWS_MOBILE
1070
1071#endif  // GTEST_OS_WINDOWS
1072
1073// Tests TestProperty construction.
1074TEST(TestPropertyTest, StringValue) {
1075  TestProperty property("key", "1");
1076  EXPECT_STREQ("key", property.key());
1077  EXPECT_STREQ("1", property.value());
1078}
1079
1080// Tests TestProperty replacing a value.
1081TEST(TestPropertyTest, ReplaceStringValue) {
1082  TestProperty property("key", "1");
1083  EXPECT_STREQ("1", property.value());
1084  property.SetValue("2");
1085  EXPECT_STREQ("2", property.value());
1086}
1087
1088// AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1089// functions (i.e. their definitions cannot be inlined at the call
1090// sites), or C++Builder won't compile the code.
1091static void AddFatalFailure() {
1092  FAIL() << "Expected fatal failure.";
1093}
1094
1095static void AddNonfatalFailure() {
1096  ADD_FAILURE() << "Expected non-fatal failure.";
1097}
1098
1099class ScopedFakeTestPartResultReporterTest : public Test {
1100 public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1101  enum FailureMode {
1102    FATAL_FAILURE,
1103    NONFATAL_FAILURE
1104  };
1105  static void AddFailure(FailureMode failure) {
1106    if (failure == FATAL_FAILURE) {
1107      AddFatalFailure();
1108    } else {
1109      AddNonfatalFailure();
1110    }
1111  }
1112};
1113
1114// Tests that ScopedFakeTestPartResultReporter intercepts test
1115// failures.
1116TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1117  TestPartResultArray results;
1118  {
1119    ScopedFakeTestPartResultReporter reporter(
1120        ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1121        &results);
1122    AddFailure(NONFATAL_FAILURE);
1123    AddFailure(FATAL_FAILURE);
1124  }
1125
1126  EXPECT_EQ(2, results.size());
1127  EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1128  EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1129}
1130
1131TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1132  TestPartResultArray results;
1133  {
1134    // Tests, that the deprecated constructor still works.
1135    ScopedFakeTestPartResultReporter reporter(&results);
1136    AddFailure(NONFATAL_FAILURE);
1137  }
1138  EXPECT_EQ(1, results.size());
1139}
1140
1141#if GTEST_IS_THREADSAFE
1142
1143class ScopedFakeTestPartResultReporterWithThreadsTest
1144  : public ScopedFakeTestPartResultReporterTest {
1145 protected:
1146  static void AddFailureInOtherThread(FailureMode failure) {
1147    ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
1148    thread.Join();
1149  }
1150};
1151
1152TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1153       InterceptsTestFailuresInAllThreads) {
1154  TestPartResultArray results;
1155  {
1156    ScopedFakeTestPartResultReporter reporter(
1157        ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1158    AddFailure(NONFATAL_FAILURE);
1159    AddFailure(FATAL_FAILURE);
1160    AddFailureInOtherThread(NONFATAL_FAILURE);
1161    AddFailureInOtherThread(FATAL_FAILURE);
1162  }
1163
1164  EXPECT_EQ(4, results.size());
1165  EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1166  EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1167  EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1168  EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1169}
1170
1171#endif  // GTEST_IS_THREADSAFE
1172
1173// Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1174// work even if the failure is generated in a called function rather than
1175// the current context.
1176
1177typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1178
1179TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1180  EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1181}
1182
1183#if GTEST_HAS_GLOBAL_STRING
1184TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1185  EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1186}
1187#endif
1188
1189TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1190  EXPECT_FATAL_FAILURE(AddFatalFailure(),
1191                       ::std::string("Expected fatal failure."));
1192}
1193
1194TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1195  // We have another test below to verify that the macro catches fatal
1196  // failures generated on another thread.
1197  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1198                                      "Expected fatal failure.");
1199}
1200
1201#ifdef __BORLANDC__
1202// Silences warnings: "Condition is always true"
1203# pragma option push -w-ccc
1204#endif
1205
1206// Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1207// function even when the statement in it contains ASSERT_*.
1208
1209int NonVoidFunction() {
1210  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1211  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1212  return 0;
1213}
1214
1215TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1216  NonVoidFunction();
1217}
1218
1219// Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1220// current function even though 'statement' generates a fatal failure.
1221
1222void DoesNotAbortHelper(bool* aborted) {
1223  EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1224  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1225
1226  *aborted = false;
1227}
1228
1229#ifdef __BORLANDC__
1230// Restores warnings after previous "#pragma option push" suppressed them.
1231# pragma option pop
1232#endif
1233
1234TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1235  bool aborted = true;
1236  DoesNotAbortHelper(&aborted);
1237  EXPECT_FALSE(aborted);
1238}
1239
1240// Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1241// statement that contains a macro which expands to code containing an
1242// unprotected comma.
1243
1244static int global_var = 0;
1245#define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1246
1247TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1248#ifndef __BORLANDC__
1249  // ICE's in C++Builder.
1250  EXPECT_FATAL_FAILURE({
1251    GTEST_USE_UNPROTECTED_COMMA_;
1252    AddFatalFailure();
1253  }, "");
1254#endif
1255
1256  EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1257    GTEST_USE_UNPROTECTED_COMMA_;
1258    AddFatalFailure();
1259  }, "");
1260}
1261
1262// Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1263
1264typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1265
1266TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1267  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1268                          "Expected non-fatal failure.");
1269}
1270
1271#if GTEST_HAS_GLOBAL_STRING
1272TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1273  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1274                          ::string("Expected non-fatal failure."));
1275}
1276#endif
1277
1278TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1279  EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1280                          ::std::string("Expected non-fatal failure."));
1281}
1282
1283TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1284  // We have another test below to verify that the macro catches
1285  // non-fatal failures generated on another thread.
1286  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1287                                         "Expected non-fatal failure.");
1288}
1289
1290// Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1291// statement that contains a macro which expands to code containing an
1292// unprotected comma.
1293TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1294  EXPECT_NONFATAL_FAILURE({
1295    GTEST_USE_UNPROTECTED_COMMA_;
1296    AddNonfatalFailure();
1297  }, "");
1298
1299  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1300    GTEST_USE_UNPROTECTED_COMMA_;
1301    AddNonfatalFailure();
1302  }, "");
1303}
1304
1305#if GTEST_IS_THREADSAFE
1306
1307typedef ScopedFakeTestPartResultReporterWithThreadsTest
1308    ExpectFailureWithThreadsTest;
1309
1310TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1311  EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1312                                      "Expected fatal failure.");
1313}
1314
1315TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1316  EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1317      AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1318}
1319
1320#endif  // GTEST_IS_THREADSAFE
1321
1322// Tests the TestProperty class.
1323
1324TEST(TestPropertyTest, ConstructorWorks) {
1325  const TestProperty property("key", "value");
1326  EXPECT_STREQ("key", property.key());
1327  EXPECT_STREQ("value", property.value());
1328}
1329
1330TEST(TestPropertyTest, SetValue) {
1331  TestProperty property("key", "value_1");
1332  EXPECT_STREQ("key", property.key());
1333  property.SetValue("value_2");
1334  EXPECT_STREQ("key", property.key());
1335  EXPECT_STREQ("value_2", property.value());
1336}
1337
1338// Tests the TestResult class
1339
1340// The test fixture for testing TestResult.
1341class TestResultTest : public Test {
1342 protected:
1343  typedef std::vector<TestPartResult> TPRVector;
1344
1345  // We make use of 2 TestPartResult objects,
1346  TestPartResult * pr1, * pr2;
1347
1348  // ... and 3 TestResult objects.
1349  TestResult * r0, * r1, * r2;
1350
1351  virtual void SetUp() {
1352    // pr1 is for success.
1353    pr1 = new TestPartResult(TestPartResult::kSuccess,
1354                             "foo/bar.cc",
1355                             10,
1356                             "Success!");
1357
1358    // pr2 is for fatal failure.
1359    pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1360                             "foo/bar.cc",
1361                             -1,  // This line number means "unknown"
1362                             "Failure!");
1363
1364    // Creates the TestResult objects.
1365    r0 = new TestResult();
1366    r1 = new TestResult();
1367    r2 = new TestResult();
1368
1369    // In order to test TestResult, we need to modify its internal
1370    // state, in particular the TestPartResult vector it holds.
1371    // test_part_results() returns a const reference to this vector.
1372    // We cast it to a non-const object s.t. it can be modified (yes,
1373    // this is a hack).
1374    TPRVector* results1 = const_cast<TPRVector*>(
1375        &TestResultAccessor::test_part_results(*r1));
1376    TPRVector* results2 = const_cast<TPRVector*>(
1377        &TestResultAccessor::test_part_results(*r2));
1378
1379    // r0 is an empty TestResult.
1380
1381    // r1 contains a single SUCCESS TestPartResult.
1382    results1->push_back(*pr1);
1383
1384    // r2 contains a SUCCESS, and a FAILURE.
1385    results2->push_back(*pr1);
1386    results2->push_back(*pr2);
1387  }
1388
1389  virtual void TearDown() {
1390    delete pr1;
1391    delete pr2;
1392
1393    delete r0;
1394    delete r1;
1395    delete r2;
1396  }
1397
1398  // Helper that compares two two TestPartResults.
1399  static void CompareTestPartResult(const TestPartResult& expected,
1400                                    const TestPartResult& actual) {
1401    EXPECT_EQ(expected.type(), actual.type());
1402    EXPECT_STREQ(expected.file_name(), actual.file_name());
1403    EXPECT_EQ(expected.line_number(), actual.line_number());
1404    EXPECT_STREQ(expected.summary(), actual.summary());
1405    EXPECT_STREQ(expected.message(), actual.message());
1406    EXPECT_EQ(expected.passed(), actual.passed());
1407    EXPECT_EQ(expected.failed(), actual.failed());
1408    EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1409    EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1410  }
1411};
1412
1413// Tests TestResult::total_part_count().
1414TEST_F(TestResultTest, total_part_count) {
1415  ASSERT_EQ(0, r0->total_part_count());
1416  ASSERT_EQ(1, r1->total_part_count());
1417  ASSERT_EQ(2, r2->total_part_count());
1418}
1419
1420// Tests TestResult::Passed().
1421TEST_F(TestResultTest, Passed) {
1422  ASSERT_TRUE(r0->Passed());
1423  ASSERT_TRUE(r1->Passed());
1424  ASSERT_FALSE(r2->Passed());
1425}
1426
1427// Tests TestResult::Failed().
1428TEST_F(TestResultTest, Failed) {
1429  ASSERT_FALSE(r0->Failed());
1430  ASSERT_FALSE(r1->Failed());
1431  ASSERT_TRUE(r2->Failed());
1432}
1433
1434// Tests TestResult::GetTestPartResult().
1435
1436typedef TestResultTest TestResultDeathTest;
1437
1438TEST_F(TestResultDeathTest, GetTestPartResult) {
1439  CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1440  CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1441  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1442  EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1443}
1444
1445// Tests TestResult has no properties when none are added.
1446TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1447  TestResult test_result;
1448  ASSERT_EQ(0, test_result.test_property_count());
1449}
1450
1451// Tests TestResult has the expected property when added.
1452TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1453  TestResult test_result;
1454  TestProperty property("key_1", "1");
1455  TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1456  ASSERT_EQ(1, test_result.test_property_count());
1457  const TestProperty& actual_property = test_result.GetTestProperty(0);
1458  EXPECT_STREQ("key_1", actual_property.key());
1459  EXPECT_STREQ("1", actual_property.value());
1460}
1461
1462// Tests TestResult has multiple properties when added.
1463TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1464  TestResult test_result;
1465  TestProperty property_1("key_1", "1");
1466  TestProperty property_2("key_2", "2");
1467  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1468  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1469  ASSERT_EQ(2, test_result.test_property_count());
1470  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1471  EXPECT_STREQ("key_1", actual_property_1.key());
1472  EXPECT_STREQ("1", actual_property_1.value());
1473
1474  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1475  EXPECT_STREQ("key_2", actual_property_2.key());
1476  EXPECT_STREQ("2", actual_property_2.value());
1477}
1478
1479// Tests TestResult::RecordProperty() overrides values for duplicate keys.
1480TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1481  TestResult test_result;
1482  TestProperty property_1_1("key_1", "1");
1483  TestProperty property_2_1("key_2", "2");
1484  TestProperty property_1_2("key_1", "12");
1485  TestProperty property_2_2("key_2", "22");
1486  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1487  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1488  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1489  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1490
1491  ASSERT_EQ(2, test_result.test_property_count());
1492  const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1493  EXPECT_STREQ("key_1", actual_property_1.key());
1494  EXPECT_STREQ("12", actual_property_1.value());
1495
1496  const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1497  EXPECT_STREQ("key_2", actual_property_2.key());
1498  EXPECT_STREQ("22", actual_property_2.value());
1499}
1500
1501// Tests TestResult::GetTestProperty().
1502TEST(TestResultPropertyTest, GetTestProperty) {
1503  TestResult test_result;
1504  TestProperty property_1("key_1", "1");
1505  TestProperty property_2("key_2", "2");
1506  TestProperty property_3("key_3", "3");
1507  TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1508  TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1509  TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1510
1511  const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1512  const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1513  const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1514
1515  EXPECT_STREQ("key_1", fetched_property_1.key());
1516  EXPECT_STREQ("1", fetched_property_1.value());
1517
1518  EXPECT_STREQ("key_2", fetched_property_2.key());
1519  EXPECT_STREQ("2", fetched_property_2.value());
1520
1521  EXPECT_STREQ("key_3", fetched_property_3.key());
1522  EXPECT_STREQ("3", fetched_property_3.value());
1523
1524  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1525  EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1526}
1527
1528// Tests that GTestFlagSaver works on Windows and Mac.
1529
1530class GTestFlagSaverTest : public Test {
1531 protected:
1532  // Saves the Google Test flags such that we can restore them later, and
1533  // then sets them to their default values.  This will be called
1534  // before the first test in this test case is run.
1535  static void SetUpTestCase() {
1536    saver_ = new GTestFlagSaver;
1537
1538    GTEST_FLAG(also_run_disabled_tests) = false;
1539    GTEST_FLAG(break_on_failure) = false;
1540    GTEST_FLAG(catch_exceptions) = false;
1541    GTEST_FLAG(death_test_use_fork) = false;
1542    GTEST_FLAG(color) = "auto";
1543    GTEST_FLAG(filter) = "";
1544    GTEST_FLAG(list_tests) = false;
1545    GTEST_FLAG(output) = "";
1546    GTEST_FLAG(print_time) = true;
1547    GTEST_FLAG(random_seed) = 0;
1548    GTEST_FLAG(repeat) = 1;
1549    GTEST_FLAG(shuffle) = false;
1550    GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1551    GTEST_FLAG(stream_result_to) = "";
1552    GTEST_FLAG(throw_on_failure) = false;
1553  }
1554
1555  // Restores the Google Test flags that the tests have modified.  This will
1556  // be called after the last test in this test case is run.
1557  static void TearDownTestCase() {
1558    delete saver_;
1559    saver_ = NULL;
1560  }
1561
1562  // Verifies that the Google Test flags have their default values, and then
1563  // modifies each of them.
1564  void VerifyAndModifyFlags() {
1565    EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1566    EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1567    EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1568    EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1569    EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1570    EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1571    EXPECT_FALSE(GTEST_FLAG(list_tests));
1572    EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1573    EXPECT_TRUE(GTEST_FLAG(print_time));
1574    EXPECT_EQ(0, GTEST_FLAG(random_seed));
1575    EXPECT_EQ(1, GTEST_FLAG(repeat));
1576    EXPECT_FALSE(GTEST_FLAG(shuffle));
1577    EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1578    EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1579    EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1580
1581    GTEST_FLAG(also_run_disabled_tests) = true;
1582    GTEST_FLAG(break_on_failure) = true;
1583    GTEST_FLAG(catch_exceptions) = true;
1584    GTEST_FLAG(color) = "no";
1585    GTEST_FLAG(death_test_use_fork) = true;
1586    GTEST_FLAG(filter) = "abc";
1587    GTEST_FLAG(list_tests) = true;
1588    GTEST_FLAG(output) = "xml:foo.xml";
1589    GTEST_FLAG(print_time) = false;
1590    GTEST_FLAG(random_seed) = 1;
1591    GTEST_FLAG(repeat) = 100;
1592    GTEST_FLAG(shuffle) = true;
1593    GTEST_FLAG(stack_trace_depth) = 1;
1594    GTEST_FLAG(stream_result_to) = "localhost:1234";
1595    GTEST_FLAG(throw_on_failure) = true;
1596  }
1597
1598 private:
1599  // For saving Google Test flags during this test case.
1600  static GTestFlagSaver* saver_;
1601};
1602
1603GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
1604
1605// Google Test doesn't guarantee the order of tests.  The following two
1606// tests are designed to work regardless of their order.
1607
1608// Modifies the Google Test flags in the test body.
1609TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1610  VerifyAndModifyFlags();
1611}
1612
1613// Verifies that the Google Test flags in the body of the previous test were
1614// restored to their original values.
1615TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1616  VerifyAndModifyFlags();
1617}
1618
1619// Sets an environment variable with the given name to the given
1620// value.  If the value argument is "", unsets the environment
1621// variable.  The caller must ensure that both arguments are not NULL.
1622static void SetEnv(const char* name, const char* value) {
1623#if GTEST_OS_WINDOWS_MOBILE
1624  // Environment variables are not supported on Windows CE.
1625  return;
1626#elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1627  // C++Builder's putenv only stores a pointer to its parameter; we have to
1628  // ensure that the string remains valid as long as it might be needed.
1629  // We use an std::map to do so.
1630  static std::map<std::string, std::string*> added_env;
1631
1632  // Because putenv stores a pointer to the string buffer, we can't delete the
1633  // previous string (if present) until after it's replaced.
1634  std::string *prev_env = NULL;
1635  if (added_env.find(name) != added_env.end()) {
1636    prev_env = added_env[name];
1637  }
1638  added_env[name] = new std::string(
1639      (Message() << name << "=" << value).GetString());
1640
1641  // The standard signature of putenv accepts a 'char*' argument. Other
1642  // implementations, like C++Builder's, accept a 'const char*'.
1643  // We cast away the 'const' since that would work for both variants.
1644  putenv(const_cast<char*>(added_env[name]->c_str()));
1645  delete prev_env;
1646#elif GTEST_OS_WINDOWS  // If we are on Windows proper.
1647  _putenv((Message() << name << "=" << value).GetString().c_str());
1648#else
1649  if (*value == '\0') {
1650    unsetenv(name);
1651  } else {
1652    setenv(name, value, 1);
1653  }
1654#endif  // GTEST_OS_WINDOWS_MOBILE
1655}
1656
1657#if !GTEST_OS_WINDOWS_MOBILE
1658// Environment variables are not supported on Windows CE.
1659
1660using testing::internal::Int32FromGTestEnv;
1661
1662// Tests Int32FromGTestEnv().
1663
1664// Tests that Int32FromGTestEnv() returns the default value when the
1665// environment variable is not set.
1666TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1667  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1668  EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1669}
1670
1671// Tests that Int32FromGTestEnv() returns the default value when the
1672// environment variable overflows as an Int32.
1673TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1674  printf("(expecting 2 warnings)\n");
1675
1676  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1677  EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1678
1679  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1680  EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1681}
1682
1683// Tests that Int32FromGTestEnv() returns the default value when the
1684// environment variable does not represent a valid decimal integer.
1685TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1686  printf("(expecting 2 warnings)\n");
1687
1688  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1689  EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1690
1691  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1692  EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1693}
1694
1695// Tests that Int32FromGTestEnv() parses and returns the value of the
1696// environment variable when it represents a valid decimal integer in
1697// the range of an Int32.
1698TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1699  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1700  EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1701
1702  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1703  EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1704}
1705#endif  // !GTEST_OS_WINDOWS_MOBILE
1706
1707// Tests ParseInt32Flag().
1708
1709// Tests that ParseInt32Flag() returns false and doesn't change the
1710// output value when the flag has wrong format
1711TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1712  Int32 value = 123;
1713  EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1714  EXPECT_EQ(123, value);
1715
1716  EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1717  EXPECT_EQ(123, value);
1718}
1719
1720// Tests that ParseInt32Flag() returns false and doesn't change the
1721// output value when the flag overflows as an Int32.
1722TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1723  printf("(expecting 2 warnings)\n");
1724
1725  Int32 value = 123;
1726  EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1727  EXPECT_EQ(123, value);
1728
1729  EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1730  EXPECT_EQ(123, value);
1731}
1732
1733// Tests that ParseInt32Flag() returns false and doesn't change the
1734// output value when the flag does not represent a valid decimal
1735// integer.
1736TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1737  printf("(expecting 2 warnings)\n");
1738
1739  Int32 value = 123;
1740  EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1741  EXPECT_EQ(123, value);
1742
1743  EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1744  EXPECT_EQ(123, value);
1745}
1746
1747// Tests that ParseInt32Flag() parses the value of the flag and
1748// returns true when the flag represents a valid decimal integer in
1749// the range of an Int32.
1750TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1751  Int32 value = 123;
1752  EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1753  EXPECT_EQ(456, value);
1754
1755  EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
1756                             "abc", &value));
1757  EXPECT_EQ(-789, value);
1758}
1759
1760// Tests that Int32FromEnvOrDie() parses the value of the var or
1761// returns the correct default.
1762// Environment variables are not supported on Windows CE.
1763#if !GTEST_OS_WINDOWS_MOBILE
1764TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1765  EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1766  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1767  EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1768  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1769  EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1770}
1771#endif  // !GTEST_OS_WINDOWS_MOBILE
1772
1773// Tests that Int32FromEnvOrDie() aborts with an error message
1774// if the variable is not an Int32.
1775TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1776  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1777  EXPECT_DEATH_IF_SUPPORTED(
1778      Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1779      ".*");
1780}
1781
1782// Tests that Int32FromEnvOrDie() aborts with an error message
1783// if the variable cannot be represnted by an Int32.
1784TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1785  SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1786  EXPECT_DEATH_IF_SUPPORTED(
1787      Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1788      ".*");
1789}
1790
1791// Tests that ShouldRunTestOnShard() selects all tests
1792// where there is 1 shard.
1793TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1794  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1795  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1796  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1797  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1798  EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1799}
1800
1801class ShouldShardTest : public testing::Test {
1802 protected:
1803  virtual void SetUp() {
1804    index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1805    total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1806  }
1807
1808  virtual void TearDown() {
1809    SetEnv(index_var_, "");
1810    SetEnv(total_var_, "");
1811  }
1812
1813  const char* index_var_;
1814  const char* total_var_;
1815};
1816
1817// Tests that sharding is disabled if neither of the environment variables
1818// are set.
1819TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1820  SetEnv(index_var_, "");
1821  SetEnv(total_var_, "");
1822
1823  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1824  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1825}
1826
1827// Tests that sharding is not enabled if total_shards  == 1.
1828TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1829  SetEnv(index_var_, "0");
1830  SetEnv(total_var_, "1");
1831  EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1832  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1833}
1834
1835// Tests that sharding is enabled if total_shards > 1 and
1836// we are not in a death test subprocess.
1837// Environment variables are not supported on Windows CE.
1838#if !GTEST_OS_WINDOWS_MOBILE
1839TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1840  SetEnv(index_var_, "4");
1841  SetEnv(total_var_, "22");
1842  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1843  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1844
1845  SetEnv(index_var_, "8");
1846  SetEnv(total_var_, "9");
1847  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1848  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1849
1850  SetEnv(index_var_, "0");
1851  SetEnv(total_var_, "9");
1852  EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1853  EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1854}
1855#endif  // !GTEST_OS_WINDOWS_MOBILE
1856
1857// Tests that we exit in error if the sharding values are not valid.
1858
1859typedef ShouldShardTest ShouldShardDeathTest;
1860
1861TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1862  SetEnv(index_var_, "4");
1863  SetEnv(total_var_, "4");
1864  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1865
1866  SetEnv(index_var_, "4");
1867  SetEnv(total_var_, "-2");
1868  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1869
1870  SetEnv(index_var_, "5");
1871  SetEnv(total_var_, "");
1872  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1873
1874  SetEnv(index_var_, "");
1875  SetEnv(total_var_, "5");
1876  EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1877}
1878
1879// Tests that ShouldRunTestOnShard is a partition when 5
1880// shards are used.
1881TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1882  // Choose an arbitrary number of tests and shards.
1883  const int num_tests = 17;
1884  const int num_shards = 5;
1885
1886  // Check partitioning: each test should be on exactly 1 shard.
1887  for (int test_id = 0; test_id < num_tests; test_id++) {
1888    int prev_selected_shard_index = -1;
1889    for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1890      if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1891        if (prev_selected_shard_index < 0) {
1892          prev_selected_shard_index = shard_index;
1893        } else {
1894          ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1895            << shard_index << " are both selected to run test " << test_id;
1896        }
1897      }
1898    }
1899  }
1900
1901  // Check balance: This is not required by the sharding protocol, but is a
1902  // desirable property for performance.
1903  for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1904    int num_tests_on_shard = 0;
1905    for (int test_id = 0; test_id < num_tests; test_id++) {
1906      num_tests_on_shard +=
1907        ShouldRunTestOnShard(num_shards, shard_index, test_id);
1908    }
1909    EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1910  }
1911}
1912
1913// For the same reason we are not explicitly testing everything in the
1914// Test class, there are no separate tests for the following classes
1915// (except for some trivial cases):
1916//
1917//   TestCase, UnitTest, UnitTestResultPrinter.
1918//
1919// Similarly, there are no separate tests for the following macros:
1920//
1921//   TEST, TEST_F, RUN_ALL_TESTS
1922
1923TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1924  ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
1925  EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1926}
1927
1928TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1929  EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
1930  EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
1931}
1932
1933// When a property using a reserved key is supplied to this function, it
1934// tests that a non-fatal failure is added, a fatal failure is not added,
1935// and that the property is not recorded.
1936void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1937    const TestResult& test_result, const char* key) {
1938  EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
1939  ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
1940                                                  << "' recorded unexpectedly.";
1941}
1942
1943void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
1944    const char* key) {
1945  const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
1946  ASSERT_TRUE(test_info != NULL);
1947  ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
1948                                                        key);
1949}
1950
1951void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1952    const char* key) {
1953  const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1954  ASSERT_TRUE(test_case != NULL);
1955  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1956      test_case->ad_hoc_test_result(), key);
1957}
1958
1959void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
1960    const char* key) {
1961  ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1962      UnitTest::GetInstance()->ad_hoc_test_result(), key);
1963}
1964
1965// Tests that property recording functions in UnitTest outside of tests
1966// functions correcly.  Creating a separate instance of UnitTest ensures it
1967// is in a state similar to the UnitTest's singleton's between tests.
1968class UnitTestRecordPropertyTest :
1969    public testing::internal::UnitTestRecordPropertyTestHelper {
1970 public:
1971  static void SetUpTestCase() {
1972    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1973        "disabled");
1974    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1975        "errors");
1976    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1977        "failures");
1978    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1979        "name");
1980    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1981        "tests");
1982    ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1983        "time");
1984
1985    Test::RecordProperty("test_case_key_1", "1");
1986    const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1987    ASSERT_TRUE(test_case != NULL);
1988
1989    ASSERT_EQ(1, test_case->ad_hoc_test_result().test_property_count());
1990    EXPECT_STREQ("test_case_key_1",
1991                 test_case->ad_hoc_test_result().GetTestProperty(0).key());
1992    EXPECT_STREQ("1",
1993                 test_case->ad_hoc_test_result().GetTestProperty(0).value());
1994  }
1995};
1996
1997// Tests TestResult has the expected property when added.
1998TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
1999  UnitTestRecordProperty("key_1", "1");
2000
2001  ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2002
2003  EXPECT_STREQ("key_1",
2004               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2005  EXPECT_STREQ("1",
2006               unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2007}
2008
2009// Tests TestResult has multiple properties when added.
2010TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2011  UnitTestRecordProperty("key_1", "1");
2012  UnitTestRecordProperty("key_2", "2");
2013
2014  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2015
2016  EXPECT_STREQ("key_1",
2017               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2018  EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2019
2020  EXPECT_STREQ("key_2",
2021               unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2022  EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2023}
2024
2025// Tests TestResult::RecordProperty() overrides values for duplicate keys.
2026TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2027  UnitTestRecordProperty("key_1", "1");
2028  UnitTestRecordProperty("key_2", "2");
2029  UnitTestRecordProperty("key_1", "12");
2030  UnitTestRecordProperty("key_2", "22");
2031
2032  ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2033
2034  EXPECT_STREQ("key_1",
2035               unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2036  EXPECT_STREQ("12",
2037               unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2038
2039  EXPECT_STREQ("key_2",
2040               unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2041  EXPECT_STREQ("22",
2042               unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2043}
2044
2045TEST_F(UnitTestRecordPropertyTest,
2046       AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
2047  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2048      "name");
2049  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2050      "value_param");
2051  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2052      "type_param");
2053  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2054      "status");
2055  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2056      "time");
2057  ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2058      "classname");
2059}
2060
2061TEST_F(UnitTestRecordPropertyTest,
2062       AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2063  EXPECT_NONFATAL_FAILURE(
2064      Test::RecordProperty("name", "1"),
2065      "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
2066      " are reserved");
2067}
2068
2069class UnitTestRecordPropertyTestEnvironment : public Environment {
2070 public:
2071  virtual void TearDown() {
2072    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2073        "tests");
2074    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2075        "failures");
2076    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2077        "disabled");
2078    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2079        "errors");
2080    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2081        "name");
2082    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2083        "timestamp");
2084    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2085        "time");
2086    ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2087        "random_seed");
2088  }
2089};
2090
2091// This will test property recording outside of any test or test case.
2092static Environment* record_property_env =
2093    AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2094
2095// This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2096// of various arities.  They do not attempt to be exhaustive.  Rather,
2097// view them as smoke tests that can be easily reviewed and verified.
2098// A more complete set of tests for predicate assertions can be found
2099// in gtest_pred_impl_unittest.cc.
2100
2101// First, some predicates and predicate-formatters needed by the tests.
2102
2103// Returns true iff the argument is an even number.
2104bool IsEven(int n) {
2105  return (n % 2) == 0;
2106}
2107
2108// A functor that returns true iff the argument is an even number.
2109struct IsEvenFunctor {
2110  bool operator()(int n) { return IsEven(n); }
2111};
2112
2113// A predicate-formatter function that asserts the argument is an even
2114// number.
2115AssertionResult AssertIsEven(const char* expr, int n) {
2116  if (IsEven(n)) {
2117    return AssertionSuccess();
2118  }
2119
2120  Message msg;
2121  msg << expr << " evaluates to " << n << ", which is not even.";
2122  return AssertionFailure(msg);
2123}
2124
2125// A predicate function that returns AssertionResult for use in
2126// EXPECT/ASSERT_TRUE/FALSE.
2127AssertionResult ResultIsEven(int n) {
2128  if (IsEven(n))
2129    return AssertionSuccess() << n << " is even";
2130  else
2131    return AssertionFailure() << n << " is odd";
2132}
2133
2134// A predicate function that returns AssertionResult but gives no
2135// explanation why it succeeds. Needed for testing that
2136// EXPECT/ASSERT_FALSE handles such functions correctly.
2137AssertionResult ResultIsEvenNoExplanation(int n) {
2138  if (IsEven(n))
2139    return AssertionSuccess();
2140  else
2141    return AssertionFailure() << n << " is odd";
2142}
2143
2144// A predicate-formatter functor that asserts the argument is an even
2145// number.
2146struct AssertIsEvenFunctor {
2147  AssertionResult operator()(const char* expr, int n) {
2148    return AssertIsEven(expr, n);
2149  }
2150};
2151
2152// Returns true iff the sum of the arguments is an even number.
2153bool SumIsEven2(int n1, int n2) {
2154  return IsEven(n1 + n2);
2155}
2156
2157// A functor that returns true iff the sum of the arguments is an even
2158// number.
2159struct SumIsEven3Functor {
2160  bool operator()(int n1, int n2, int n3) {
2161    return IsEven(n1 + n2 + n3);
2162  }
2163};
2164
2165// A predicate-formatter function that asserts the sum of the
2166// arguments is an even number.
2167AssertionResult AssertSumIsEven4(
2168    const char* e1, const char* e2, const char* e3, const char* e4,
2169    int n1, int n2, int n3, int n4) {
2170  const int sum = n1 + n2 + n3 + n4;
2171  if (IsEven(sum)) {
2172    return AssertionSuccess();
2173  }
2174
2175  Message msg;
2176  msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2177      << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2178      << ") evaluates to " << sum << ", which is not even.";
2179  return AssertionFailure(msg);
2180}
2181
2182// A predicate-formatter functor that asserts the sum of the arguments
2183// is an even number.
2184struct AssertSumIsEven5Functor {
2185  AssertionResult operator()(
2186      const char* e1, const char* e2, const char* e3, const char* e4,
2187      const char* e5, int n1, int n2, int n3, int n4, int n5) {
2188    const int sum = n1 + n2 + n3 + n4 + n5;
2189    if (IsEven(sum)) {
2190      return AssertionSuccess();
2191    }
2192
2193    Message msg;
2194    msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2195        << " ("
2196        << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2197        << ") evaluates to " << sum << ", which is not even.";
2198    return AssertionFailure(msg);
2199  }
2200};
2201
2202
2203// Tests unary predicate assertions.
2204
2205// Tests unary predicate assertions that don't use a custom formatter.
2206TEST(Pred1Test, WithoutFormat) {
2207  // Success cases.
2208  EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2209  ASSERT_PRED1(IsEven, 4);
2210
2211  // Failure cases.
2212  EXPECT_NONFATAL_FAILURE({  // NOLINT
2213    EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2214  }, "This failure is expected.");
2215  EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2216                       "evaluates to false");
2217}
2218
2219// Tests unary predicate assertions that use a custom formatter.
2220TEST(Pred1Test, WithFormat) {
2221  // Success cases.
2222  EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2223  ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2224    << "This failure is UNEXPECTED!";
2225
2226  // Failure cases.
2227  const int n = 5;
2228  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2229                          "n evaluates to 5, which is not even.");
2230  EXPECT_FATAL_FAILURE({  // NOLINT
2231    ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2232  }, "This failure is expected.");
2233}
2234
2235// Tests that unary predicate assertions evaluates their arguments
2236// exactly once.
2237TEST(Pred1Test, SingleEvaluationOnFailure) {
2238  // A success case.
2239  static int n = 0;
2240  EXPECT_PRED1(IsEven, n++);
2241  EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2242
2243  // A failure case.
2244  EXPECT_FATAL_FAILURE({  // NOLINT
2245    ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2246        << "This failure is expected.";
2247  }, "This failure is expected.");
2248  EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2249}
2250
2251
2252// Tests predicate assertions whose arity is >= 2.
2253
2254// Tests predicate assertions that don't use a custom formatter.
2255TEST(PredTest, WithoutFormat) {
2256  // Success cases.
2257  ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2258  EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2259
2260  // Failure cases.
2261  const int n1 = 1;
2262  const int n2 = 2;
2263  EXPECT_NONFATAL_FAILURE({  // NOLINT
2264    EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2265  }, "This failure is expected.");
2266  EXPECT_FATAL_FAILURE({  // NOLINT
2267    ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2268  }, "evaluates to false");
2269}
2270
2271// Tests predicate assertions that use a custom formatter.
2272TEST(PredTest, WithFormat) {
2273  // Success cases.
2274  ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2275    "This failure is UNEXPECTED!";
2276  EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2277
2278  // Failure cases.
2279  const int n1 = 1;
2280  const int n2 = 2;
2281  const int n3 = 4;
2282  const int n4 = 6;
2283  EXPECT_NONFATAL_FAILURE({  // NOLINT
2284    EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2285  }, "evaluates to 13, which is not even.");
2286  EXPECT_FATAL_FAILURE({  // NOLINT
2287    ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2288        << "This failure is expected.";
2289  }, "This failure is expected.");
2290}
2291
2292// Tests that predicate assertions evaluates their arguments
2293// exactly once.
2294TEST(PredTest, SingleEvaluationOnFailure) {
2295  // A success case.
2296  int n1 = 0;
2297  int n2 = 0;
2298  EXPECT_PRED2(SumIsEven2, n1++, n2++);
2299  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2300  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2301
2302  // Another success case.
2303  n1 = n2 = 0;
2304  int n3 = 0;
2305  int n4 = 0;
2306  int n5 = 0;
2307  ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2308                      n1++, n2++, n3++, n4++, n5++)
2309                        << "This failure is UNEXPECTED!";
2310  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2311  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2312  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2313  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2314  EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2315
2316  // A failure case.
2317  n1 = n2 = n3 = 0;
2318  EXPECT_NONFATAL_FAILURE({  // NOLINT
2319    EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2320        << "This failure is expected.";
2321  }, "This failure is expected.");
2322  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2323  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2324  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2325
2326  // Another failure case.
2327  n1 = n2 = n3 = n4 = 0;
2328  EXPECT_NONFATAL_FAILURE({  // NOLINT
2329    EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2330  }, "evaluates to 1, which is not even.");
2331  EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2332  EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2333  EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2334  EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2335}
2336
2337
2338// Some helper functions for testing using overloaded/template
2339// functions with ASSERT_PREDn and EXPECT_PREDn.
2340
2341bool IsPositive(double x) {
2342  return x > 0;
2343}
2344
2345template <typename T>
2346bool IsNegative(T x) {
2347  return x < 0;
2348}
2349
2350template <typename T1, typename T2>
2351bool GreaterThan(T1 x1, T2 x2) {
2352  return x1 > x2;
2353}
2354
2355// Tests that overloaded functions can be used in *_PRED* as long as
2356// their types are explicitly specified.
2357TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2358  // C++Builder requires C-style casts rather than static_cast.
2359  EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
2360  ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2361}
2362
2363// Tests that template functions can be used in *_PRED* as long as
2364// their types are explicitly specified.
2365TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2366  EXPECT_PRED1(IsNegative<int>, -5);
2367  // Makes sure that we can handle templates with more than one
2368  // parameter.
2369  ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2370}
2371
2372
2373// Some helper functions for testing using overloaded/template
2374// functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2375
2376AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2377  return n > 0 ? AssertionSuccess() :
2378      AssertionFailure(Message() << "Failure");
2379}
2380
2381AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2382  return x > 0 ? AssertionSuccess() :
2383      AssertionFailure(Message() << "Failure");
2384}
2385
2386template <typename T>
2387AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2388  return x < 0 ? AssertionSuccess() :
2389      AssertionFailure(Message() << "Failure");
2390}
2391
2392template <typename T1, typename T2>
2393AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2394                             const T1& x1, const T2& x2) {
2395  return x1 == x2 ? AssertionSuccess() :
2396      AssertionFailure(Message() << "Failure");
2397}
2398
2399// Tests that overloaded functions can be used in *_PRED_FORMAT*
2400// without explicitly specifying their types.
2401TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2402  EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2403  ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2404}
2405
2406// Tests that template functions can be used in *_PRED_FORMAT* without
2407// explicitly specifying their types.
2408TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2409  EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2410  ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2411}
2412
2413
2414// Tests string assertions.
2415
2416// Tests ASSERT_STREQ with non-NULL arguments.
2417TEST(StringAssertionTest, ASSERT_STREQ) {
2418  const char * const p1 = "good";
2419  ASSERT_STREQ(p1, p1);
2420
2421  // Let p2 have the same content as p1, but be at a different address.
2422  const char p2[] = "good";
2423  ASSERT_STREQ(p1, p2);
2424
2425  EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2426                       "Expected: \"bad\"");
2427}
2428
2429// Tests ASSERT_STREQ with NULL arguments.
2430TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2431  ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
2432  EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
2433                       "non-null");
2434}
2435
2436// Tests ASSERT_STREQ with NULL arguments.
2437TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2438  EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
2439                       "non-null");
2440}
2441
2442// Tests ASSERT_STRNE.
2443TEST(StringAssertionTest, ASSERT_STRNE) {
2444  ASSERT_STRNE("hi", "Hi");
2445  ASSERT_STRNE("Hi", NULL);
2446  ASSERT_STRNE(NULL, "Hi");
2447  ASSERT_STRNE("", NULL);
2448  ASSERT_STRNE(NULL, "");
2449  ASSERT_STRNE("", "Hi");
2450  ASSERT_STRNE("Hi", "");
2451  EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2452                       "\"Hi\" vs \"Hi\"");
2453}
2454
2455// Tests ASSERT_STRCASEEQ.
2456TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2457  ASSERT_STRCASEEQ("hi", "Hi");
2458  ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
2459
2460  ASSERT_STRCASEEQ("", "");
2461  EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2462                       "(ignoring case)");
2463}
2464
2465// Tests ASSERT_STRCASENE.
2466TEST(StringAssertionTest, ASSERT_STRCASENE) {
2467  ASSERT_STRCASENE("hi1", "Hi2");
2468  ASSERT_STRCASENE("Hi", NULL);
2469  ASSERT_STRCASENE(NULL, "Hi");
2470  ASSERT_STRCASENE("", NULL);
2471  ASSERT_STRCASENE(NULL, "");
2472  ASSERT_STRCASENE("", "Hi");
2473  ASSERT_STRCASENE("Hi", "");
2474  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2475                       "(ignoring case)");
2476}
2477
2478// Tests *_STREQ on wide strings.
2479TEST(StringAssertionTest, STREQ_Wide) {
2480  // NULL strings.
2481  ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
2482
2483  // Empty strings.
2484  ASSERT_STREQ(L"", L"");
2485
2486  // Non-null vs NULL.
2487  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
2488                          "non-null");
2489
2490  // Equal strings.
2491  EXPECT_STREQ(L"Hi", L"Hi");
2492
2493  // Unequal strings.
2494  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2495                          "Abc");
2496
2497  // Strings containing wide characters.
2498  EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2499                          "abc");
2500
2501  // The streaming variation.
2502  EXPECT_NONFATAL_FAILURE({  // NOLINT
2503    EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2504  }, "Expected failure");
2505}
2506
2507// Tests *_STRNE on wide strings.
2508TEST(StringAssertionTest, STRNE_Wide) {
2509  // NULL strings.
2510  EXPECT_NONFATAL_FAILURE({  // NOLINT
2511    EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
2512  }, "");
2513
2514  // Empty strings.
2515  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2516                          "L\"\"");
2517
2518  // Non-null vs NULL.
2519  ASSERT_STRNE(L"non-null", NULL);
2520
2521  // Equal strings.
2522  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2523                          "L\"Hi\"");
2524
2525  // Unequal strings.
2526  EXPECT_STRNE(L"abc", L"Abc");
2527
2528  // Strings containing wide characters.
2529  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2530                          "abc");
2531
2532  // The streaming variation.
2533  ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2534}
2535
2536// Tests for ::testing::IsSubstring().
2537
2538// Tests that IsSubstring() returns the correct result when the input
2539// argument type is const char*.
2540TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2541  EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
2542  EXPECT_FALSE(IsSubstring("", "", "b", NULL));
2543  EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2544
2545  EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
2546  EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2547}
2548
2549// Tests that IsSubstring() returns the correct result when the input
2550// argument type is const wchar_t*.
2551TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2552  EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2553  EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2554  EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2555
2556  EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
2557  EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2558}
2559
2560// Tests that IsSubstring() generates the correct message when the input
2561// argument type is const char*.
2562TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2563  EXPECT_STREQ("Value of: needle_expr\n"
2564               "  Actual: \"needle\"\n"
2565               "Expected: a substring of haystack_expr\n"
2566               "Which is: \"haystack\"",
2567               IsSubstring("needle_expr", "haystack_expr",
2568                           "needle", "haystack").failure_message());
2569}
2570
2571// Tests that IsSubstring returns the correct result when the input
2572// argument type is ::std::string.
2573TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2574  EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2575  EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2576}
2577
2578#if GTEST_HAS_STD_WSTRING
2579// Tests that IsSubstring returns the correct result when the input
2580// argument type is ::std::wstring.
2581TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2582  EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2583  EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2584}
2585
2586// Tests that IsSubstring() generates the correct message when the input
2587// argument type is ::std::wstring.
2588TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2589  EXPECT_STREQ("Value of: needle_expr\n"
2590               "  Actual: L\"needle\"\n"
2591               "Expected: a substring of haystack_expr\n"
2592               "Which is: L\"haystack\"",
2593               IsSubstring(
2594                   "needle_expr", "haystack_expr",
2595                   ::std::wstring(L"needle"), L"haystack").failure_message());
2596}
2597
2598#endif  // GTEST_HAS_STD_WSTRING
2599
2600// Tests for ::testing::IsNotSubstring().
2601
2602// Tests that IsNotSubstring() returns the correct result when the input
2603// argument type is const char*.
2604TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2605  EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2606  EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2607}
2608
2609// Tests that IsNotSubstring() returns the correct result when the input
2610// argument type is const wchar_t*.
2611TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2612  EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2613  EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2614}
2615
2616// Tests that IsNotSubstring() generates the correct message when the input
2617// argument type is const wchar_t*.
2618TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2619  EXPECT_STREQ("Value of: needle_expr\n"
2620               "  Actual: L\"needle\"\n"
2621               "Expected: not a substring of haystack_expr\n"
2622               "Which is: L\"two needles\"",
2623               IsNotSubstring(
2624                   "needle_expr", "haystack_expr",
2625                   L"needle", L"two needles").failure_message());
2626}
2627
2628// Tests that IsNotSubstring returns the correct result when the input
2629// argument type is ::std::string.
2630TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2631  EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2632  EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2633}
2634
2635// Tests that IsNotSubstring() generates the correct message when the input
2636// argument type is ::std::string.
2637TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2638  EXPECT_STREQ("Value of: needle_expr\n"
2639               "  Actual: \"needle\"\n"
2640               "Expected: not a substring of haystack_expr\n"
2641               "Which is: \"two needles\"",
2642               IsNotSubstring(
2643                   "needle_expr", "haystack_expr",
2644                   ::std::string("needle"), "two needles").failure_message());
2645}
2646
2647#if GTEST_HAS_STD_WSTRING
2648
2649// Tests that IsNotSubstring returns the correct result when the input
2650// argument type is ::std::wstring.
2651TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2652  EXPECT_FALSE(
2653      IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2654  EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2655}
2656
2657#endif  // GTEST_HAS_STD_WSTRING
2658
2659// Tests floating-point assertions.
2660
2661template <typename RawType>
2662class FloatingPointTest : public Test {
2663 protected:
2664  // Pre-calculated numbers to be used by the tests.
2665  struct TestValues {
2666    RawType close_to_positive_zero;
2667    RawType close_to_negative_zero;
2668    RawType further_from_negative_zero;
2669
2670    RawType close_to_one;
2671    RawType further_from_one;
2672
2673    RawType infinity;
2674    RawType close_to_infinity;
2675    RawType further_from_infinity;
2676
2677    RawType nan1;
2678    RawType nan2;
2679  };
2680
2681  typedef typename testing::internal::FloatingPoint<RawType> Floating;
2682  typedef typename Floating::Bits Bits;
2683
2684  virtual void SetUp() {
2685    const size_t max_ulps = Floating::kMaxUlps;
2686
2687    // The bits that represent 0.0.
2688    const Bits zero_bits = Floating(0).bits();
2689
2690    // Makes some numbers close to 0.0.
2691    values_.close_to_positive_zero = Floating::ReinterpretBits(
2692        zero_bits + max_ulps/2);
2693    values_.close_to_negative_zero = -Floating::ReinterpretBits(
2694        zero_bits + max_ulps - max_ulps/2);
2695    values_.further_from_negative_zero = -Floating::ReinterpretBits(
2696        zero_bits + max_ulps + 1 - max_ulps/2);
2697
2698    // The bits that represent 1.0.
2699    const Bits one_bits = Floating(1).bits();
2700
2701    // Makes some numbers close to 1.0.
2702    values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2703    values_.further_from_one = Floating::ReinterpretBits(
2704        one_bits + max_ulps + 1);
2705
2706    // +infinity.
2707    values_.infinity = Floating::Infinity();
2708
2709    // The bits that represent +infinity.
2710    const Bits infinity_bits = Floating(values_.infinity).bits();
2711
2712    // Makes some numbers close to infinity.
2713    values_.close_to_infinity = Floating::ReinterpretBits(
2714        infinity_bits - max_ulps);
2715    values_.further_from_infinity = Floating::ReinterpretBits(
2716        infinity_bits - max_ulps - 1);
2717
2718    // Makes some NAN's.  Sets the most significant bit of the fraction so that
2719    // our NaN's are quiet; trying to process a signaling NaN would raise an
2720    // exception if our environment enables floating point exceptions.
2721    values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2722        | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2723    values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2724        | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2725  }
2726
2727  void TestSize() {
2728    EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2729  }
2730
2731  static TestValues values_;
2732};
2733
2734template <typename RawType>
2735typename FloatingPointTest<RawType>::TestValues
2736    FloatingPointTest<RawType>::values_;
2737
2738// Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2739typedef FloatingPointTest<float> FloatTest;
2740
2741// Tests that the size of Float::Bits matches the size of float.
2742TEST_F(FloatTest, Size) {
2743  TestSize();
2744}
2745
2746// Tests comparing with +0 and -0.
2747TEST_F(FloatTest, Zeros) {
2748  EXPECT_FLOAT_EQ(0.0, -0.0);
2749  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2750                          "1.0");
2751  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2752                       "1.5");
2753}
2754
2755// Tests comparing numbers close to 0.
2756//
2757// This ensures that *_FLOAT_EQ handles the sign correctly and no
2758// overflow occurs when comparing numbers whose absolute value is very
2759// small.
2760TEST_F(FloatTest, AlmostZeros) {
2761  // In C++Builder, names within local classes (such as used by
2762  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2763  // scoping class.  Use a static local alias as a workaround.
2764  // We use the assignment syntax since some compilers, like Sun Studio,
2765  // don't allow initializing references using construction syntax
2766  // (parentheses).
2767  static const FloatTest::TestValues& v = this->values_;
2768
2769  EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2770  EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2771  EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2772
2773  EXPECT_FATAL_FAILURE({  // NOLINT
2774    ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2775                    v.further_from_negative_zero);
2776  }, "v.further_from_negative_zero");
2777}
2778
2779// Tests comparing numbers close to each other.
2780TEST_F(FloatTest, SmallDiff) {
2781  EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2782  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2783                          "values_.further_from_one");
2784}
2785
2786// Tests comparing numbers far apart.
2787TEST_F(FloatTest, LargeDiff) {
2788  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2789                          "3.0");
2790}
2791
2792// Tests comparing with infinity.
2793//
2794// This ensures that no overflow occurs when comparing numbers whose
2795// absolute value is very large.
2796TEST_F(FloatTest, Infinity) {
2797  EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2798  EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2799#if !GTEST_OS_SYMBIAN
2800  // Nokia's STLport crashes if we try to output infinity or NaN.
2801  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2802                          "-values_.infinity");
2803
2804  // This is interesting as the representations of infinity and nan1
2805  // are only 1 DLP apart.
2806  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2807                          "values_.nan1");
2808#endif  // !GTEST_OS_SYMBIAN
2809}
2810
2811// Tests that comparing with NAN always returns false.
2812TEST_F(FloatTest, NaN) {
2813#if !GTEST_OS_SYMBIAN
2814// Nokia's STLport crashes if we try to output infinity or NaN.
2815
2816  // In C++Builder, names within local classes (such as used by
2817  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2818  // scoping class.  Use a static local alias as a workaround.
2819  // We use the assignment syntax since some compilers, like Sun Studio,
2820  // don't allow initializing references using construction syntax
2821  // (parentheses).
2822  static const FloatTest::TestValues& v = this->values_;
2823
2824  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2825                          "v.nan1");
2826  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2827                          "v.nan2");
2828  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2829                          "v.nan1");
2830
2831  EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2832                       "v.infinity");
2833#endif  // !GTEST_OS_SYMBIAN
2834}
2835
2836// Tests that *_FLOAT_EQ are reflexive.
2837TEST_F(FloatTest, Reflexive) {
2838  EXPECT_FLOAT_EQ(0.0, 0.0);
2839  EXPECT_FLOAT_EQ(1.0, 1.0);
2840  ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2841}
2842
2843// Tests that *_FLOAT_EQ are commutative.
2844TEST_F(FloatTest, Commutative) {
2845  // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2846  EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2847
2848  // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2849  EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2850                          "1.0");
2851}
2852
2853// Tests EXPECT_NEAR.
2854TEST_F(FloatTest, EXPECT_NEAR) {
2855  EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2856  EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2857  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2858                          "The difference between 1.0f and 1.5f is 0.5, "
2859                          "which exceeds 0.25f");
2860  // To work around a bug in gcc 2.95.0, there is intentionally no
2861  // space after the first comma in the previous line.
2862}
2863
2864// Tests ASSERT_NEAR.
2865TEST_F(FloatTest, ASSERT_NEAR) {
2866  ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2867  ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2868  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2869                       "The difference between 1.0f and 1.5f is 0.5, "
2870                       "which exceeds 0.25f");
2871  // To work around a bug in gcc 2.95.0, there is intentionally no
2872  // space after the first comma in the previous line.
2873}
2874
2875// Tests the cases where FloatLE() should succeed.
2876TEST_F(FloatTest, FloatLESucceeds) {
2877  EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2878  ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2879
2880  // or when val1 is greater than, but almost equals to, val2.
2881  EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2882}
2883
2884// Tests the cases where FloatLE() should fail.
2885TEST_F(FloatTest, FloatLEFails) {
2886  // When val1 is greater than val2 by a large margin,
2887  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2888                          "(2.0f) <= (1.0f)");
2889
2890  // or by a small yet non-negligible margin,
2891  EXPECT_NONFATAL_FAILURE({  // NOLINT
2892    EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2893  }, "(values_.further_from_one) <= (1.0f)");
2894
2895#if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2896  // Nokia's STLport crashes if we try to output infinity or NaN.
2897  // C++Builder gives bad results for ordered comparisons involving NaNs
2898  // due to compiler bugs.
2899  EXPECT_NONFATAL_FAILURE({  // NOLINT
2900    EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2901  }, "(values_.nan1) <= (values_.infinity)");
2902  EXPECT_NONFATAL_FAILURE({  // NOLINT
2903    EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2904  }, "(-values_.infinity) <= (values_.nan1)");
2905  EXPECT_FATAL_FAILURE({  // NOLINT
2906    ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2907  }, "(values_.nan1) <= (values_.nan1)");
2908#endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2909}
2910
2911// Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2912typedef FloatingPointTest<double> DoubleTest;
2913
2914// Tests that the size of Double::Bits matches the size of double.
2915TEST_F(DoubleTest, Size) {
2916  TestSize();
2917}
2918
2919// Tests comparing with +0 and -0.
2920TEST_F(DoubleTest, Zeros) {
2921  EXPECT_DOUBLE_EQ(0.0, -0.0);
2922  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
2923                          "1.0");
2924  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
2925                       "1.0");
2926}
2927
2928// Tests comparing numbers close to 0.
2929//
2930// This ensures that *_DOUBLE_EQ handles the sign correctly and no
2931// overflow occurs when comparing numbers whose absolute value is very
2932// small.
2933TEST_F(DoubleTest, AlmostZeros) {
2934  // In C++Builder, names within local classes (such as used by
2935  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2936  // scoping class.  Use a static local alias as a workaround.
2937  // We use the assignment syntax since some compilers, like Sun Studio,
2938  // don't allow initializing references using construction syntax
2939  // (parentheses).
2940  static const DoubleTest::TestValues& v = this->values_;
2941
2942  EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2943  EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
2944  EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2945
2946  EXPECT_FATAL_FAILURE({  // NOLINT
2947    ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
2948                     v.further_from_negative_zero);
2949  }, "v.further_from_negative_zero");
2950}
2951
2952// Tests comparing numbers close to each other.
2953TEST_F(DoubleTest, SmallDiff) {
2954  EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
2955  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
2956                          "values_.further_from_one");
2957}
2958
2959// Tests comparing numbers far apart.
2960TEST_F(DoubleTest, LargeDiff) {
2961  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
2962                          "3.0");
2963}
2964
2965// Tests comparing with infinity.
2966//
2967// This ensures that no overflow occurs when comparing numbers whose
2968// absolute value is very large.
2969TEST_F(DoubleTest, Infinity) {
2970  EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
2971  EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
2972#if !GTEST_OS_SYMBIAN
2973  // Nokia's STLport crashes if we try to output infinity or NaN.
2974  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
2975                          "-values_.infinity");
2976
2977  // This is interesting as the representations of infinity_ and nan1_
2978  // are only 1 DLP apart.
2979  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
2980                          "values_.nan1");
2981#endif  // !GTEST_OS_SYMBIAN
2982}
2983
2984// Tests that comparing with NAN always returns false.
2985TEST_F(DoubleTest, NaN) {
2986#if !GTEST_OS_SYMBIAN
2987  // In C++Builder, names within local classes (such as used by
2988  // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2989  // scoping class.  Use a static local alias as a workaround.
2990  // We use the assignment syntax since some compilers, like Sun Studio,
2991  // don't allow initializing references using construction syntax
2992  // (parentheses).
2993  static const DoubleTest::TestValues& v = this->values_;
2994
2995  // Nokia's STLport crashes if we try to output infinity or NaN.
2996  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
2997                          "v.nan1");
2998  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
2999  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3000  EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3001                       "v.infinity");
3002#endif  // !GTEST_OS_SYMBIAN
3003}
3004
3005// Tests that *_DOUBLE_EQ are reflexive.
3006TEST_F(DoubleTest, Reflexive) {
3007  EXPECT_DOUBLE_EQ(0.0, 0.0);
3008  EXPECT_DOUBLE_EQ(1.0, 1.0);
3009#if !GTEST_OS_SYMBIAN
3010  // Nokia's STLport crashes if we try to output infinity or NaN.
3011  ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3012#endif  // !GTEST_OS_SYMBIAN
3013}
3014
3015// Tests that *_DOUBLE_EQ are commutative.
3016TEST_F(DoubleTest, Commutative) {
3017  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3018  EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3019
3020  // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3021  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3022                          "1.0");
3023}
3024
3025// Tests EXPECT_NEAR.
3026TEST_F(DoubleTest, EXPECT_NEAR) {
3027  EXPECT_NEAR(-1.0, -1.1, 0.2);
3028  EXPECT_NEAR(2.0, 3.0, 1.0);
3029  EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3030                          "The difference between 1.0 and 1.5 is 0.5, "
3031                          "which exceeds 0.25");
3032  // To work around a bug in gcc 2.95.0, there is intentionally no
3033  // space after the first comma in the previous statement.
3034}
3035
3036// Tests ASSERT_NEAR.
3037TEST_F(DoubleTest, ASSERT_NEAR) {
3038  ASSERT_NEAR(-1.0, -1.1, 0.2);
3039  ASSERT_NEAR(2.0, 3.0, 1.0);
3040  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3041                       "The difference between 1.0 and 1.5 is 0.5, "
3042                       "which exceeds 0.25");
3043  // To work around a bug in gcc 2.95.0, there is intentionally no
3044  // space after the first comma in the previous statement.
3045}
3046
3047// Tests the cases where DoubleLE() should succeed.
3048TEST_F(DoubleTest, DoubleLESucceeds) {
3049  EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3050  ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3051
3052  // or when val1 is greater than, but almost equals to, val2.
3053  EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3054}
3055
3056// Tests the cases where DoubleLE() should fail.
3057TEST_F(DoubleTest, DoubleLEFails) {
3058  // When val1 is greater than val2 by a large margin,
3059  EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3060                          "(2.0) <= (1.0)");
3061
3062  // or by a small yet non-negligible margin,
3063  EXPECT_NONFATAL_FAILURE({  // NOLINT
3064    EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3065  }, "(values_.further_from_one) <= (1.0)");
3066
3067#if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3068  // Nokia's STLport crashes if we try to output infinity or NaN.
3069  // C++Builder gives bad results for ordered comparisons involving NaNs
3070  // due to compiler bugs.
3071  EXPECT_NONFATAL_FAILURE({  // NOLINT
3072    EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3073  }, "(values_.nan1) <= (values_.infinity)");
3074  EXPECT_NONFATAL_FAILURE({  // NOLINT
3075    EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3076  }, " (-values_.infinity) <= (values_.nan1)");
3077  EXPECT_FATAL_FAILURE({  // NOLINT
3078    ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3079  }, "(values_.nan1) <= (values_.nan1)");
3080#endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3081}
3082
3083
3084// Verifies that a test or test case whose name starts with DISABLED_ is
3085// not run.
3086
3087// A test whose name starts with DISABLED_.
3088// Should not run.
3089TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3090  FAIL() << "Unexpected failure: Disabled test should not be run.";
3091}
3092
3093// A test whose name does not start with DISABLED_.
3094// Should run.
3095TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3096  EXPECT_EQ(1, 1);
3097}
3098
3099// A test case whose name starts with DISABLED_.
3100// Should not run.
3101TEST(DISABLED_TestCase, TestShouldNotRun) {
3102  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3103}
3104
3105// A test case and test whose names start with DISABLED_.
3106// Should not run.
3107TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
3108  FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3109}
3110
3111// Check that when all tests in a test case are disabled, SetupTestCase() and
3112// TearDownTestCase() are not called.
3113class DisabledTestsTest : public Test {
3114 protected:
3115  static void SetUpTestCase() {
3116    FAIL() << "Unexpected failure: All tests disabled in test case. "
3117              "SetupTestCase() should not be called.";
3118  }
3119
3120  static void TearDownTestCase() {
3121    FAIL() << "Unexpected failure: All tests disabled in test case. "
3122              "TearDownTestCase() should not be called.";
3123  }
3124};
3125
3126TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3127  FAIL() << "Unexpected failure: Disabled test should not be run.";
3128}
3129
3130TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3131  FAIL() << "Unexpected failure: Disabled test should not be run.";
3132}
3133
3134// Tests that disabled typed tests aren't run.
3135
3136#if GTEST_HAS_TYPED_TEST
3137
3138template <typename T>
3139class TypedTest : public Test {
3140};
3141
3142typedef testing::Types<int, double> NumericTypes;
3143TYPED_TEST_CASE(TypedTest, NumericTypes);
3144
3145TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3146  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3147}
3148
3149template <typename T>
3150class DISABLED_TypedTest : public Test {
3151};
3152
3153TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
3154
3155TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3156  FAIL() << "Unexpected failure: Disabled typed test should not run.";
3157}
3158
3159#endif  // GTEST_HAS_TYPED_TEST
3160
3161// Tests that disabled type-parameterized tests aren't run.
3162
3163#if GTEST_HAS_TYPED_TEST_P
3164
3165template <typename T>
3166class TypedTestP : public Test {
3167};
3168
3169TYPED_TEST_CASE_P(TypedTestP);
3170
3171TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3172  FAIL() << "Unexpected failure: "
3173         << "Disabled type-parameterized test should not run.";
3174}
3175
3176REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
3177
3178INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
3179
3180template <typename T>
3181class DISABLED_TypedTestP : public Test {
3182};
3183
3184TYPED_TEST_CASE_P(DISABLED_TypedTestP);
3185
3186TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3187  FAIL() << "Unexpected failure: "
3188         << "Disabled type-parameterized test should not run.";
3189}
3190
3191REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
3192
3193INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
3194
3195#endif  // GTEST_HAS_TYPED_TEST_P
3196
3197// Tests that assertion macros evaluate their arguments exactly once.
3198
3199class SingleEvaluationTest : public Test {
3200 public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3201  // This helper function is needed by the FailedASSERT_STREQ test
3202  // below.  It's public to work around C++Builder's bug with scoping local
3203  // classes.
3204  static void CompareAndIncrementCharPtrs() {
3205    ASSERT_STREQ(p1_++, p2_++);
3206  }
3207
3208  // This helper function is needed by the FailedASSERT_NE test below.  It's
3209  // public to work around C++Builder's bug with scoping local classes.
3210  static void CompareAndIncrementInts() {
3211    ASSERT_NE(a_++, b_++);
3212  }
3213
3214 protected:
3215  SingleEvaluationTest() {
3216    p1_ = s1_;
3217    p2_ = s2_;
3218    a_ = 0;
3219    b_ = 0;
3220  }
3221
3222  static const char* const s1_;
3223  static const char* const s2_;
3224  static const char* p1_;
3225  static const char* p2_;
3226
3227  static int a_;
3228  static int b_;
3229};
3230
3231const char* const SingleEvaluationTest::s1_ = "01234";
3232const char* const SingleEvaluationTest::s2_ = "abcde";
3233const char* SingleEvaluationTest::p1_;
3234const char* SingleEvaluationTest::p2_;
3235int SingleEvaluationTest::a_;
3236int SingleEvaluationTest::b_;
3237
3238// Tests that when ASSERT_STREQ fails, it evaluates its arguments
3239// exactly once.
3240TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3241  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3242                       "p2_++");
3243  EXPECT_EQ(s1_ + 1, p1_);
3244  EXPECT_EQ(s2_ + 1, p2_);
3245}
3246
3247// Tests that string assertion arguments are evaluated exactly once.
3248TEST_F(SingleEvaluationTest, ASSERT_STR) {
3249  // successful EXPECT_STRNE
3250  EXPECT_STRNE(p1_++, p2_++);
3251  EXPECT_EQ(s1_ + 1, p1_);
3252  EXPECT_EQ(s2_ + 1, p2_);
3253
3254  // failed EXPECT_STRCASEEQ
3255  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3256                          "ignoring case");
3257  EXPECT_EQ(s1_ + 2, p1_);
3258  EXPECT_EQ(s2_ + 2, p2_);
3259}
3260
3261// Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3262// once.
3263TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3264  EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3265                       "(a_++) != (b_++)");
3266  EXPECT_EQ(1, a_);
3267  EXPECT_EQ(1, b_);
3268}
3269
3270// Tests that assertion arguments are evaluated exactly once.
3271TEST_F(SingleEvaluationTest, OtherCases) {
3272  // successful EXPECT_TRUE
3273  EXPECT_TRUE(0 == a_++);  // NOLINT
3274  EXPECT_EQ(1, a_);
3275
3276  // failed EXPECT_TRUE
3277  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3278  EXPECT_EQ(2, a_);
3279
3280  // successful EXPECT_GT
3281  EXPECT_GT(a_++, b_++);
3282  EXPECT_EQ(3, a_);
3283  EXPECT_EQ(1, b_);
3284
3285  // failed EXPECT_LT
3286  EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3287  EXPECT_EQ(4, a_);
3288  EXPECT_EQ(2, b_);
3289
3290  // successful ASSERT_TRUE
3291  ASSERT_TRUE(0 < a_++);  // NOLINT
3292  EXPECT_EQ(5, a_);
3293
3294  // successful ASSERT_GT
3295  ASSERT_GT(a_++, b_++);
3296  EXPECT_EQ(6, a_);
3297  EXPECT_EQ(3, b_);
3298}
3299
3300#if GTEST_HAS_EXCEPTIONS
3301
3302void ThrowAnInteger() {
3303  throw 1;
3304}
3305
3306// Tests that assertion arguments are evaluated exactly once.
3307TEST_F(SingleEvaluationTest, ExceptionTests) {
3308  // successful EXPECT_THROW
3309  EXPECT_THROW({  // NOLINT
3310    a_++;
3311    ThrowAnInteger();
3312  }, int);
3313  EXPECT_EQ(1, a_);
3314
3315  // failed EXPECT_THROW, throws different
3316  EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3317    a_++;
3318    ThrowAnInteger();
3319  }, bool), "throws a different type");
3320  EXPECT_EQ(2, a_);
3321
3322  // failed EXPECT_THROW, throws nothing
3323  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3324  EXPECT_EQ(3, a_);
3325
3326  // successful EXPECT_NO_THROW
3327  EXPECT_NO_THROW(a_++);
3328  EXPECT_EQ(4, a_);
3329
3330  // failed EXPECT_NO_THROW
3331  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3332    a_++;
3333    ThrowAnInteger();
3334  }), "it throws");
3335  EXPECT_EQ(5, a_);
3336
3337  // successful EXPECT_ANY_THROW
3338  EXPECT_ANY_THROW({  // NOLINT
3339    a_++;
3340    ThrowAnInteger();
3341  });
3342  EXPECT_EQ(6, a_);
3343
3344  // failed EXPECT_ANY_THROW
3345  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3346  EXPECT_EQ(7, a_);
3347}
3348
3349#endif  // GTEST_HAS_EXCEPTIONS
3350
3351// Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3352class NoFatalFailureTest : public Test {
3353 protected:
3354  void Succeeds() {}
3355  void FailsNonFatal() {
3356    ADD_FAILURE() << "some non-fatal failure";
3357  }
3358  void Fails() {
3359    FAIL() << "some fatal failure";
3360  }
3361
3362  void DoAssertNoFatalFailureOnFails() {
3363    ASSERT_NO_FATAL_FAILURE(Fails());
3364    ADD_FAILURE() << "shold not reach here.";
3365  }
3366
3367  void DoExpectNoFatalFailureOnFails() {
3368    EXPECT_NO_FATAL_FAILURE(Fails());
3369    ADD_FAILURE() << "other failure";
3370  }
3371};
3372
3373TEST_F(NoFatalFailureTest, NoFailure) {
3374  EXPECT_NO_FATAL_FAILURE(Succeeds());
3375  ASSERT_NO_FATAL_FAILURE(Succeeds());
3376}
3377
3378TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3379  EXPECT_NONFATAL_FAILURE(
3380      EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3381      "some non-fatal failure");
3382  EXPECT_NONFATAL_FAILURE(
3383      ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3384      "some non-fatal failure");
3385}
3386
3387TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3388  TestPartResultArray gtest_failures;
3389  {
3390    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3391    DoAssertNoFatalFailureOnFails();
3392  }
3393  ASSERT_EQ(2, gtest_failures.size());
3394  EXPECT_EQ(TestPartResult::kFatalFailure,
3395            gtest_failures.GetTestPartResult(0).type());
3396  EXPECT_EQ(TestPartResult::kFatalFailure,
3397            gtest_failures.GetTestPartResult(1).type());
3398  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3399                      gtest_failures.GetTestPartResult(0).message());
3400  EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3401                      gtest_failures.GetTestPartResult(1).message());
3402}
3403
3404TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3405  TestPartResultArray gtest_failures;
3406  {
3407    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3408    DoExpectNoFatalFailureOnFails();
3409  }
3410  ASSERT_EQ(3, gtest_failures.size());
3411  EXPECT_EQ(TestPartResult::kFatalFailure,
3412            gtest_failures.GetTestPartResult(0).type());
3413  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3414            gtest_failures.GetTestPartResult(1).type());
3415  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3416            gtest_failures.GetTestPartResult(2).type());
3417  EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3418                      gtest_failures.GetTestPartResult(0).message());
3419  EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3420                      gtest_failures.GetTestPartResult(1).message());
3421  EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3422                      gtest_failures.GetTestPartResult(2).message());
3423}
3424
3425TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3426  TestPartResultArray gtest_failures;
3427  {
3428    ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3429    EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3430  }
3431  ASSERT_EQ(2, gtest_failures.size());
3432  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3433            gtest_failures.GetTestPartResult(0).type());
3434  EXPECT_EQ(TestPartResult::kNonFatalFailure,
3435            gtest_failures.GetTestPartResult(1).type());
3436  EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3437                      gtest_failures.GetTestPartResult(0).message());
3438  EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3439                      gtest_failures.GetTestPartResult(1).message());
3440}
3441
3442// Tests non-string assertions.
3443
3444// Tests EqFailure(), used for implementing *EQ* assertions.
3445TEST(AssertionTest, EqFailure) {
3446  const std::string foo_val("5"), bar_val("6");
3447  const std::string msg1(
3448      EqFailure("foo", "bar", foo_val, bar_val, false)
3449      .failure_message());
3450  EXPECT_STREQ(
3451      "Value of: bar\n"
3452      "  Actual: 6\n"
3453      "Expected: foo\n"
3454      "Which is: 5",
3455      msg1.c_str());
3456
3457  const std::string msg2(
3458      EqFailure("foo", "6", foo_val, bar_val, false)
3459      .failure_message());
3460  EXPECT_STREQ(
3461      "Value of: 6\n"
3462      "Expected: foo\n"
3463      "Which is: 5",
3464      msg2.c_str());
3465
3466  const std::string msg3(
3467      EqFailure("5", "bar", foo_val, bar_val, false)
3468      .failure_message());
3469  EXPECT_STREQ(
3470      "Value of: bar\n"
3471      "  Actual: 6\n"
3472      "Expected: 5",
3473      msg3.c_str());
3474
3475  const std::string msg4(
3476      EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3477  EXPECT_STREQ(
3478      "Value of: 6\n"
3479      "Expected: 5",
3480      msg4.c_str());
3481
3482  const std::string msg5(
3483      EqFailure("foo", "bar",
3484                std::string("\"x\""), std::string("\"y\""),
3485                true).failure_message());
3486  EXPECT_STREQ(
3487      "Value of: bar\n"
3488      "  Actual: \"y\"\n"
3489      "Expected: foo (ignoring case)\n"
3490      "Which is: \"x\"",
3491      msg5.c_str());
3492}
3493
3494// Tests AppendUserMessage(), used for implementing the *EQ* macros.
3495TEST(AssertionTest, AppendUserMessage) {
3496  const std::string foo("foo");
3497
3498  Message msg;
3499  EXPECT_STREQ("foo",
3500               AppendUserMessage(foo, msg).c_str());
3501
3502  msg << "bar";
3503  EXPECT_STREQ("foo\nbar",
3504               AppendUserMessage(foo, msg).c_str());
3505}
3506
3507#ifdef __BORLANDC__
3508// Silences warnings: "Condition is always true", "Unreachable code"
3509# pragma option push -w-ccc -w-rch
3510#endif
3511
3512// Tests ASSERT_TRUE.
3513TEST(AssertionTest, ASSERT_TRUE) {
3514  ASSERT_TRUE(2 > 1);  // NOLINT
3515  EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3516                       "2 < 1");
3517}
3518
3519// Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
3520TEST(AssertionTest, AssertTrueWithAssertionResult) {
3521  ASSERT_TRUE(ResultIsEven(2));
3522#ifndef __BORLANDC__
3523  // ICE's in C++Builder.
3524  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3525                       "Value of: ResultIsEven(3)\n"
3526                       "  Actual: false (3 is odd)\n"
3527                       "Expected: true");
3528#endif
3529  ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3530  EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3531                       "Value of: ResultIsEvenNoExplanation(3)\n"
3532                       "  Actual: false (3 is odd)\n"
3533                       "Expected: true");
3534}
3535
3536// Tests ASSERT_FALSE.
3537TEST(AssertionTest, ASSERT_FALSE) {
3538  ASSERT_FALSE(2 < 1);  // NOLINT
3539  EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3540                       "Value of: 2 > 1\n"
3541                       "  Actual: true\n"
3542                       "Expected: false");
3543}
3544
3545// Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
3546TEST(AssertionTest, AssertFalseWithAssertionResult) {
3547  ASSERT_FALSE(ResultIsEven(3));
3548#ifndef __BORLANDC__
3549  // ICE's in C++Builder.
3550  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3551                       "Value of: ResultIsEven(2)\n"
3552                       "  Actual: true (2 is even)\n"
3553                       "Expected: false");
3554#endif
3555  ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3556  EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3557                       "Value of: ResultIsEvenNoExplanation(2)\n"
3558                       "  Actual: true\n"
3559                       "Expected: false");
3560}
3561
3562#ifdef __BORLANDC__
3563// Restores warnings after previous "#pragma option push" supressed them
3564# pragma option pop
3565#endif
3566
3567// Tests using ASSERT_EQ on double values.  The purpose is to make
3568// sure that the specialization we did for integer and anonymous enums
3569// isn't used for double arguments.
3570TEST(ExpectTest, ASSERT_EQ_Double) {
3571  // A success.
3572  ASSERT_EQ(5.6, 5.6);
3573
3574  // A failure.
3575  EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3576                       "5.1");
3577}
3578
3579// Tests ASSERT_EQ.
3580TEST(AssertionTest, ASSERT_EQ) {
3581  ASSERT_EQ(5, 2 + 3);
3582  EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3583                       "Value of: 2*3\n"
3584                       "  Actual: 6\n"
3585                       "Expected: 5");
3586}
3587
3588// Tests ASSERT_EQ(NULL, pointer).
3589#if GTEST_CAN_COMPARE_NULL
3590TEST(AssertionTest, ASSERT_EQ_NULL) {
3591  // A success.
3592  const char* p = NULL;
3593  // Some older GCC versions may issue a spurious waring in this or the next
3594  // assertion statement. This warning should not be suppressed with
3595  // static_cast since the test verifies the ability to use bare NULL as the
3596  // expected parameter to the macro.
3597  ASSERT_EQ(NULL, p);
3598
3599  // A failure.
3600  static int n = 0;
3601  EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
3602                       "Value of: &n\n");
3603}
3604#endif  // GTEST_CAN_COMPARE_NULL
3605
3606// Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3607// treated as a null pointer by the compiler, we need to make sure
3608// that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3609// ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
3610TEST(ExpectTest, ASSERT_EQ_0) {
3611  int n = 0;
3612
3613  // A success.
3614  ASSERT_EQ(0, n);
3615
3616  // A failure.
3617  EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3618                       "Expected: 0");
3619}
3620
3621// Tests ASSERT_NE.
3622TEST(AssertionTest, ASSERT_NE) {
3623  ASSERT_NE(6, 7);
3624  EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3625                       "Expected: ('a') != ('a'), "
3626                       "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3627}
3628
3629// Tests ASSERT_LE.
3630TEST(AssertionTest, ASSERT_LE) {
3631  ASSERT_LE(2, 3);
3632  ASSERT_LE(2, 2);
3633  EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3634                       "Expected: (2) <= (0), actual: 2 vs 0");
3635}
3636
3637// Tests ASSERT_LT.
3638TEST(AssertionTest, ASSERT_LT) {
3639  ASSERT_LT(2, 3);
3640  EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3641                       "Expected: (2) < (2), actual: 2 vs 2");
3642}
3643
3644// Tests ASSERT_GE.
3645TEST(AssertionTest, ASSERT_GE) {
3646  ASSERT_GE(2, 1);
3647  ASSERT_GE(2, 2);
3648  EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3649                       "Expected: (2) >= (3), actual: 2 vs 3");
3650}
3651
3652// Tests ASSERT_GT.
3653TEST(AssertionTest, ASSERT_GT) {
3654  ASSERT_GT(2, 1);
3655  EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3656                       "Expected: (2) > (2), actual: 2 vs 2");
3657}
3658
3659#if GTEST_HAS_EXCEPTIONS
3660
3661void ThrowNothing() {}
3662
3663// Tests ASSERT_THROW.
3664TEST(AssertionTest, ASSERT_THROW) {
3665  ASSERT_THROW(ThrowAnInteger(), int);
3666
3667# ifndef __BORLANDC__
3668
3669  // ICE's in C++Builder 2007 and 2009.
3670  EXPECT_FATAL_FAILURE(
3671      ASSERT_THROW(ThrowAnInteger(), bool),
3672      "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3673      "  Actual: it throws a different type.");
3674# endif
3675
3676  EXPECT_FATAL_FAILURE(
3677      ASSERT_THROW(ThrowNothing(), bool),
3678      "Expected: ThrowNothing() throws an exception of type bool.\n"
3679      "  Actual: it throws nothing.");
3680}
3681
3682// Tests ASSERT_NO_THROW.
3683TEST(AssertionTest, ASSERT_NO_THROW) {
3684  ASSERT_NO_THROW(ThrowNothing());
3685  EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3686                       "Expected: ThrowAnInteger() doesn't throw an exception."
3687                       "\n  Actual: it throws.");
3688}
3689
3690// Tests ASSERT_ANY_THROW.
3691TEST(AssertionTest, ASSERT_ANY_THROW) {
3692  ASSERT_ANY_THROW(ThrowAnInteger());
3693  EXPECT_FATAL_FAILURE(
3694      ASSERT_ANY_THROW(ThrowNothing()),
3695      "Expected: ThrowNothing() throws an exception.\n"
3696      "  Actual: it doesn't.");
3697}
3698
3699#endif  // GTEST_HAS_EXCEPTIONS
3700
3701// Makes sure we deal with the precedence of <<.  This test should
3702// compile.
3703TEST(AssertionTest, AssertPrecedence) {
3704  ASSERT_EQ(1 < 2, true);
3705  bool false_value = false;
3706  ASSERT_EQ(true && false_value, false);
3707}
3708
3709// A subroutine used by the following test.
3710void TestEq1(int x) {
3711  ASSERT_EQ(1, x);
3712}
3713
3714// Tests calling a test subroutine that's not part of a fixture.
3715TEST(AssertionTest, NonFixtureSubroutine) {
3716  EXPECT_FATAL_FAILURE(TestEq1(2),
3717                       "Value of: x");
3718}
3719
3720// An uncopyable class.
3721class Uncopyable {
3722 public:
3723  explicit Uncopyable(int a_value) : value_(a_value) {}
3724
3725  int value() const { return value_; }
3726  bool operator==(const Uncopyable& rhs) const {
3727    return value() == rhs.value();
3728  }
3729 private:
3730  // This constructor deliberately has no implementation, as we don't
3731  // want this class to be copyable.
3732  Uncopyable(const Uncopyable&);  // NOLINT
3733
3734  int value_;
3735};
3736
3737::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3738  return os << value.value();
3739}
3740
3741
3742bool IsPositiveUncopyable(const Uncopyable& x) {
3743  return x.value() > 0;
3744}
3745
3746// A subroutine used by the following test.
3747void TestAssertNonPositive() {
3748  Uncopyable y(-1);
3749  ASSERT_PRED1(IsPositiveUncopyable, y);
3750}
3751// A subroutine used by the following test.
3752void TestAssertEqualsUncopyable() {
3753  Uncopyable x(5);
3754  Uncopyable y(-1);
3755  ASSERT_EQ(x, y);
3756}
3757
3758// Tests that uncopyable objects can be used in assertions.
3759TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3760  Uncopyable x(5);
3761  ASSERT_PRED1(IsPositiveUncopyable, x);
3762  ASSERT_EQ(x, x);
3763  EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3764    "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3765  EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3766    "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3767}
3768
3769// Tests that uncopyable objects can be used in expects.
3770TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3771  Uncopyable x(5);
3772  EXPECT_PRED1(IsPositiveUncopyable, x);
3773  Uncopyable y(-1);
3774  EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3775    "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3776  EXPECT_EQ(x, x);
3777  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3778    "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3779}
3780
3781enum NamedEnum {
3782  kE1 = 0,
3783  kE2 = 1
3784};
3785
3786TEST(AssertionTest, NamedEnum) {
3787  EXPECT_EQ(kE1, kE1);
3788  EXPECT_LT(kE1, kE2);
3789  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3790  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
3791}
3792
3793// The version of gcc used in XCode 2.2 has a bug and doesn't allow
3794// anonymous enums in assertions.  Therefore the following test is not
3795// done on Mac.
3796// Sun Studio and HP aCC also reject this code.
3797#if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3798
3799// Tests using assertions with anonymous enums.
3800enum {
3801  kCaseA = -1,
3802
3803# if GTEST_OS_LINUX
3804
3805  // We want to test the case where the size of the anonymous enum is
3806  // larger than sizeof(int), to make sure our implementation of the
3807  // assertions doesn't truncate the enums.  However, MSVC
3808  // (incorrectly) doesn't allow an enum value to exceed the range of
3809  // an int, so this has to be conditionally compiled.
3810  //
3811  // On Linux, kCaseB and kCaseA have the same value when truncated to
3812  // int size.  We want to test whether this will confuse the
3813  // assertions.
3814  kCaseB = testing::internal::kMaxBiggestInt,
3815
3816# else
3817
3818  kCaseB = INT_MAX,
3819
3820# endif  // GTEST_OS_LINUX
3821
3822  kCaseC = 42
3823};
3824
3825TEST(AssertionTest, AnonymousEnum) {
3826# if GTEST_OS_LINUX
3827
3828  EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3829
3830# endif  // GTEST_OS_LINUX
3831
3832  EXPECT_EQ(kCaseA, kCaseA);
3833  EXPECT_NE(kCaseA, kCaseB);
3834  EXPECT_LT(kCaseA, kCaseB);
3835  EXPECT_LE(kCaseA, kCaseB);
3836  EXPECT_GT(kCaseB, kCaseA);
3837  EXPECT_GE(kCaseA, kCaseA);
3838  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3839                          "(kCaseA) >= (kCaseB)");
3840  EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3841                          "-1 vs 42");
3842
3843  ASSERT_EQ(kCaseA, kCaseA);
3844  ASSERT_NE(kCaseA, kCaseB);
3845  ASSERT_LT(kCaseA, kCaseB);
3846  ASSERT_LE(kCaseA, kCaseB);
3847  ASSERT_GT(kCaseB, kCaseA);
3848  ASSERT_GE(kCaseA, kCaseA);
3849
3850# ifndef __BORLANDC__
3851
3852  // ICE's in C++Builder.
3853  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
3854                       "Value of: kCaseB");
3855  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3856                       "Actual: 42");
3857# endif
3858
3859  EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3860                       "Which is: -1");
3861}
3862
3863#endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3864
3865#if GTEST_OS_WINDOWS
3866
3867static HRESULT UnexpectedHRESULTFailure() {
3868  return E_UNEXPECTED;
3869}
3870
3871static HRESULT OkHRESULTSuccess() {
3872  return S_OK;
3873}
3874
3875static HRESULT FalseHRESULTSuccess() {
3876  return S_FALSE;
3877}
3878
3879// HRESULT assertion tests test both zero and non-zero
3880// success codes as well as failure message for each.
3881//
3882// Windows CE doesn't support message texts.
3883TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
3884  EXPECT_HRESULT_SUCCEEDED(S_OK);
3885  EXPECT_HRESULT_SUCCEEDED(S_FALSE);
3886
3887  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3888    "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3889    "  Actual: 0x8000FFFF");
3890}
3891
3892TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
3893  ASSERT_HRESULT_SUCCEEDED(S_OK);
3894  ASSERT_HRESULT_SUCCEEDED(S_FALSE);
3895
3896  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3897    "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3898    "  Actual: 0x8000FFFF");
3899}
3900
3901TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
3902  EXPECT_HRESULT_FAILED(E_UNEXPECTED);
3903
3904  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
3905    "Expected: (OkHRESULTSuccess()) fails.\n"
3906    "  Actual: 0x0");
3907  EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
3908    "Expected: (FalseHRESULTSuccess()) fails.\n"
3909    "  Actual: 0x1");
3910}
3911
3912TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
3913  ASSERT_HRESULT_FAILED(E_UNEXPECTED);
3914
3915# ifndef __BORLANDC__
3916
3917  // ICE's in C++Builder 2007 and 2009.
3918  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
3919    "Expected: (OkHRESULTSuccess()) fails.\n"
3920    "  Actual: 0x0");
3921# endif
3922
3923  EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
3924    "Expected: (FalseHRESULTSuccess()) fails.\n"
3925    "  Actual: 0x1");
3926}
3927
3928// Tests that streaming to the HRESULT macros works.
3929TEST(HRESULTAssertionTest, Streaming) {
3930  EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3931  ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3932  EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3933  ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3934
3935  EXPECT_NONFATAL_FAILURE(
3936      EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3937      "expected failure");
3938
3939# ifndef __BORLANDC__
3940
3941  // ICE's in C++Builder 2007 and 2009.
3942  EXPECT_FATAL_FAILURE(
3943      ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3944      "expected failure");
3945# endif
3946
3947  EXPECT_NONFATAL_FAILURE(
3948      EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
3949      "expected failure");
3950
3951  EXPECT_FATAL_FAILURE(
3952      ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
3953      "expected failure");
3954}
3955
3956#endif  // GTEST_OS_WINDOWS
3957
3958#ifdef __BORLANDC__
3959// Silences warnings: "Condition is always true", "Unreachable code"
3960# pragma option push -w-ccc -w-rch
3961#endif
3962
3963// Tests that the assertion macros behave like single statements.
3964TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
3965  if (AlwaysFalse())
3966    ASSERT_TRUE(false) << "This should never be executed; "
3967                          "It's a compilation test only.";
3968
3969  if (AlwaysTrue())
3970    EXPECT_FALSE(false);
3971  else
3972    ;  // NOLINT
3973
3974  if (AlwaysFalse())
3975    ASSERT_LT(1, 3);
3976
3977  if (AlwaysFalse())
3978    ;  // NOLINT
3979  else
3980    EXPECT_GT(3, 2) << "";
3981}
3982
3983#if GTEST_HAS_EXCEPTIONS
3984// Tests that the compiler will not complain about unreachable code in the
3985// EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
3986TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
3987  int n = 0;
3988
3989  EXPECT_THROW(throw 1, int);
3990  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
3991  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
3992  EXPECT_NO_THROW(n++);
3993  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
3994  EXPECT_ANY_THROW(throw 1);
3995  EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
3996}
3997
3998TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
3999  if (AlwaysFalse())
4000    EXPECT_THROW(ThrowNothing(), bool);
4001
4002  if (AlwaysTrue())
4003    EXPECT_THROW(ThrowAnInteger(), int);
4004  else
4005    ;  // NOLINT
4006
4007  if (AlwaysFalse())
4008    EXPECT_NO_THROW(ThrowAnInteger());
4009
4010  if (AlwaysTrue())
4011    EXPECT_NO_THROW(ThrowNothing());
4012  else
4013    ;  // NOLINT
4014
4015  if (AlwaysFalse())
4016    EXPECT_ANY_THROW(ThrowNothing());
4017
4018  if (AlwaysTrue())
4019    EXPECT_ANY_THROW(ThrowAnInteger());
4020  else
4021    ;  // NOLINT
4022}
4023#endif  // GTEST_HAS_EXCEPTIONS
4024
4025TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4026  if (AlwaysFalse())
4027    EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4028                                    << "It's a compilation test only.";
4029  else
4030    ;  // NOLINT
4031
4032  if (AlwaysFalse())
4033    ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4034  else
4035    ;  // NOLINT
4036
4037  if (AlwaysTrue())
4038    EXPECT_NO_FATAL_FAILURE(SUCCEED());
4039  else
4040    ;  // NOLINT
4041
4042  if (AlwaysFalse())
4043    ;  // NOLINT
4044  else
4045    ASSERT_NO_FATAL_FAILURE(SUCCEED());
4046}
4047
4048// Tests that the assertion macros work well with switch statements.
4049TEST(AssertionSyntaxTest, WorksWithSwitch) {
4050  switch (0) {
4051    case 1:
4052      break;
4053    default:
4054      ASSERT_TRUE(true);
4055  }
4056
4057  switch (0)
4058    case 0:
4059      EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4060
4061  // Binary assertions are implemented using a different code path
4062  // than the Boolean assertions.  Hence we test them separately.
4063  switch (0) {
4064    case 1:
4065    default:
4066      ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4067  }
4068
4069  switch (0)
4070    case 0:
4071      EXPECT_NE(1, 2);
4072}
4073
4074#if GTEST_HAS_EXCEPTIONS
4075
4076void ThrowAString() {
4077    throw "std::string";
4078}
4079
4080// Test that the exception assertion macros compile and work with const
4081// type qualifier.
4082TEST(AssertionSyntaxTest, WorksWithConst) {
4083    ASSERT_THROW(ThrowAString(), const char*);
4084
4085    EXPECT_THROW(ThrowAString(), const char*);
4086}
4087
4088#endif  // GTEST_HAS_EXCEPTIONS
4089
4090}  // namespace
4091
4092namespace testing {
4093
4094// Tests that Google Test tracks SUCCEED*.
4095TEST(SuccessfulAssertionTest, SUCCEED) {
4096  SUCCEED();
4097  SUCCEED() << "OK";
4098  EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4099}
4100
4101// Tests that Google Test doesn't track successful EXPECT_*.
4102TEST(SuccessfulAssertionTest, EXPECT) {
4103  EXPECT_TRUE(true);
4104  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4105}
4106
4107// Tests that Google Test doesn't track successful EXPECT_STR*.
4108TEST(SuccessfulAssertionTest, EXPECT_STR) {
4109  EXPECT_STREQ("", "");
4110  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4111}
4112
4113// Tests that Google Test doesn't track successful ASSERT_*.
4114TEST(SuccessfulAssertionTest, ASSERT) {
4115  ASSERT_TRUE(true);
4116  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4117}
4118
4119// Tests that Google Test doesn't track successful ASSERT_STR*.
4120TEST(SuccessfulAssertionTest, ASSERT_STR) {
4121  ASSERT_STREQ("", "");
4122  EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4123}
4124
4125}  // namespace testing
4126
4127namespace {
4128
4129// Tests the message streaming variation of assertions.
4130
4131TEST(AssertionWithMessageTest, EXPECT) {
4132  EXPECT_EQ(1, 1) << "This should succeed.";
4133  EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4134                          "Expected failure #1");
4135  EXPECT_LE(1, 2) << "This should succeed.";
4136  EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4137                          "Expected failure #2.");
4138  EXPECT_GE(1, 0) << "This should succeed.";
4139  EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4140                          "Expected failure #3.");
4141
4142  EXPECT_STREQ("1", "1") << "This should succeed.";
4143  EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4144                          "Expected failure #4.");
4145  EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4146  EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4147                          "Expected failure #5.");
4148
4149  EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4150  EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4151                          "Expected failure #6.");
4152  EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4153}
4154
4155TEST(AssertionWithMessageTest, ASSERT) {
4156  ASSERT_EQ(1, 1) << "This should succeed.";
4157  ASSERT_NE(1, 2) << "This should succeed.";
4158  ASSERT_LE(1, 2) << "This should succeed.";
4159  ASSERT_LT(1, 2) << "This should succeed.";
4160  ASSERT_GE(1, 0) << "This should succeed.";
4161  EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4162                       "Expected failure.");
4163}
4164
4165TEST(AssertionWithMessageTest, ASSERT_STR) {
4166  ASSERT_STREQ("1", "1") << "This should succeed.";
4167  ASSERT_STRNE("1", "2") << "This should succeed.";
4168  ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4169  EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4170                       "Expected failure.");
4171}
4172
4173TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4174  ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4175  ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4176  EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
4177                       "Expect failure.");
4178  // To work around a bug in gcc 2.95.0, there is intentionally no
4179  // space after the first comma in the previous statement.
4180}
4181
4182// Tests using ASSERT_FALSE with a streamed message.
4183TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4184  ASSERT_FALSE(false) << "This shouldn't fail.";
4185  EXPECT_FATAL_FAILURE({  // NOLINT
4186    ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4187                       << " evaluates to " << true;
4188  }, "Expected failure");
4189}
4190
4191// Tests using FAIL with a streamed message.
4192TEST(AssertionWithMessageTest, FAIL) {
4193  EXPECT_FATAL_FAILURE(FAIL() << 0,
4194                       "0");
4195}
4196
4197// Tests using SUCCEED with a streamed message.
4198TEST(AssertionWithMessageTest, SUCCEED) {
4199  SUCCEED() << "Success == " << 1;
4200}
4201
4202// Tests using ASSERT_TRUE with a streamed message.
4203TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4204  ASSERT_TRUE(true) << "This should succeed.";
4205  ASSERT_TRUE(true) << true;
4206  EXPECT_FATAL_FAILURE({  // NOLINT
4207    ASSERT_TRUE(false) << static_cast<const char *>(NULL)
4208                       << static_cast<char *>(NULL);
4209  }, "(null)(null)");
4210}
4211
4212#if GTEST_OS_WINDOWS
4213// Tests using wide strings in assertion messages.
4214TEST(AssertionWithMessageTest, WideStringMessage) {
4215  EXPECT_NONFATAL_FAILURE({  // NOLINT
4216    EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4217  }, "This failure is expected.");
4218  EXPECT_FATAL_FAILURE({  // NOLINT
4219    ASSERT_EQ(1, 2) << "This failure is "
4220                    << L"expected too.\x8120";
4221  }, "This failure is expected too.");
4222}
4223#endif  // GTEST_OS_WINDOWS
4224
4225// Tests EXPECT_TRUE.
4226TEST(ExpectTest, EXPECT_TRUE) {
4227  EXPECT_TRUE(true) << "Intentional success";
4228  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4229                          "Intentional failure #1.");
4230  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4231                          "Intentional failure #2.");
4232  EXPECT_TRUE(2 > 1);  // NOLINT
4233  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4234                          "Value of: 2 < 1\n"
4235                          "  Actual: false\n"
4236                          "Expected: true");
4237  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4238                          "2 > 3");
4239}
4240
4241// Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
4242TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4243  EXPECT_TRUE(ResultIsEven(2));
4244  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4245                          "Value of: ResultIsEven(3)\n"
4246                          "  Actual: false (3 is odd)\n"
4247                          "Expected: true");
4248  EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4249  EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4250                          "Value of: ResultIsEvenNoExplanation(3)\n"
4251                          "  Actual: false (3 is odd)\n"
4252                          "Expected: true");
4253}
4254
4255// Tests EXPECT_FALSE with a streamed message.
4256TEST(ExpectTest, EXPECT_FALSE) {
4257  EXPECT_FALSE(2 < 1);  // NOLINT
4258  EXPECT_FALSE(false) << "Intentional success";
4259  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4260                          "Intentional failure #1.");
4261  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4262                          "Intentional failure #2.");
4263  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4264                          "Value of: 2 > 1\n"
4265                          "  Actual: true\n"
4266                          "Expected: false");
4267  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4268                          "2 < 3");
4269}
4270
4271// Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
4272TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4273  EXPECT_FALSE(ResultIsEven(3));
4274  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4275                          "Value of: ResultIsEven(2)\n"
4276                          "  Actual: true (2 is even)\n"
4277                          "Expected: false");
4278  EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4279  EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4280                          "Value of: ResultIsEvenNoExplanation(2)\n"
4281                          "  Actual: true\n"
4282                          "Expected: false");
4283}
4284
4285#ifdef __BORLANDC__
4286// Restores warnings after previous "#pragma option push" supressed them
4287# pragma option pop
4288#endif
4289
4290// Tests EXPECT_EQ.
4291TEST(ExpectTest, EXPECT_EQ) {
4292  EXPECT_EQ(5, 2 + 3);
4293  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4294                          "Value of: 2*3\n"
4295                          "  Actual: 6\n"
4296                          "Expected: 5");
4297  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4298                          "2 - 3");
4299}
4300
4301// Tests using EXPECT_EQ on double values.  The purpose is to make
4302// sure that the specialization we did for integer and anonymous enums
4303// isn't used for double arguments.
4304TEST(ExpectTest, EXPECT_EQ_Double) {
4305  // A success.
4306  EXPECT_EQ(5.6, 5.6);
4307
4308  // A failure.
4309  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4310                          "5.1");
4311}
4312
4313#if GTEST_CAN_COMPARE_NULL
4314// Tests EXPECT_EQ(NULL, pointer).
4315TEST(ExpectTest, EXPECT_EQ_NULL) {
4316  // A success.
4317  const char* p = NULL;
4318  // Some older GCC versions may issue a spurious warning in this or the next
4319  // assertion statement. This warning should not be suppressed with
4320  // static_cast since the test verifies the ability to use bare NULL as the
4321  // expected parameter to the macro.
4322  EXPECT_EQ(NULL, p);
4323
4324  // A failure.
4325  int n = 0;
4326  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
4327                          "Value of: &n\n");
4328}
4329#endif  // GTEST_CAN_COMPARE_NULL
4330
4331// Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4332// treated as a null pointer by the compiler, we need to make sure
4333// that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4334// EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
4335TEST(ExpectTest, EXPECT_EQ_0) {
4336  int n = 0;
4337
4338  // A success.
4339  EXPECT_EQ(0, n);
4340
4341  // A failure.
4342  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4343                          "Expected: 0");
4344}
4345
4346// Tests EXPECT_NE.
4347TEST(ExpectTest, EXPECT_NE) {
4348  EXPECT_NE(6, 7);
4349
4350  EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4351                          "Expected: ('a') != ('a'), "
4352                          "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4353  EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4354                          "2");
4355  char* const p0 = NULL;
4356  EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4357                          "p0");
4358  // Only way to get the Nokia compiler to compile the cast
4359  // is to have a separate void* variable first. Putting
4360  // the two casts on the same line doesn't work, neither does
4361  // a direct C-style to char*.
4362  void* pv1 = (void*)0x1234;  // NOLINT
4363  char* const p1 = reinterpret_cast<char*>(pv1);
4364  EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4365                          "p1");
4366}
4367
4368// Tests EXPECT_LE.
4369TEST(ExpectTest, EXPECT_LE) {
4370  EXPECT_LE(2, 3);
4371  EXPECT_LE(2, 2);
4372  EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4373                          "Expected: (2) <= (0), actual: 2 vs 0");
4374  EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4375                          "(1.1) <= (0.9)");
4376}
4377
4378// Tests EXPECT_LT.
4379TEST(ExpectTest, EXPECT_LT) {
4380  EXPECT_LT(2, 3);
4381  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4382                          "Expected: (2) < (2), actual: 2 vs 2");
4383  EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4384                          "(2) < (1)");
4385}
4386
4387// Tests EXPECT_GE.
4388TEST(ExpectTest, EXPECT_GE) {
4389  EXPECT_GE(2, 1);
4390  EXPECT_GE(2, 2);
4391  EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4392                          "Expected: (2) >= (3), actual: 2 vs 3");
4393  EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4394                          "(0.9) >= (1.1)");
4395}
4396
4397// Tests EXPECT_GT.
4398TEST(ExpectTest, EXPECT_GT) {
4399  EXPECT_GT(2, 1);
4400  EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4401                          "Expected: (2) > (2), actual: 2 vs 2");
4402  EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4403                          "(2) > (3)");
4404}
4405
4406#if GTEST_HAS_EXCEPTIONS
4407
4408// Tests EXPECT_THROW.
4409TEST(ExpectTest, EXPECT_THROW) {
4410  EXPECT_THROW(ThrowAnInteger(), int);
4411  EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4412                          "Expected: ThrowAnInteger() throws an exception of "
4413                          "type bool.\n  Actual: it throws a different type.");
4414  EXPECT_NONFATAL_FAILURE(
4415      EXPECT_THROW(ThrowNothing(), bool),
4416      "Expected: ThrowNothing() throws an exception of type bool.\n"
4417      "  Actual: it throws nothing.");
4418}
4419
4420// Tests EXPECT_NO_THROW.
4421TEST(ExpectTest, EXPECT_NO_THROW) {
4422  EXPECT_NO_THROW(ThrowNothing());
4423  EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4424                          "Expected: ThrowAnInteger() doesn't throw an "
4425                          "exception.\n  Actual: it throws.");
4426}
4427
4428// Tests EXPECT_ANY_THROW.
4429TEST(ExpectTest, EXPECT_ANY_THROW) {
4430  EXPECT_ANY_THROW(ThrowAnInteger());
4431  EXPECT_NONFATAL_FAILURE(
4432      EXPECT_ANY_THROW(ThrowNothing()),
4433      "Expected: ThrowNothing() throws an exception.\n"
4434      "  Actual: it doesn't.");
4435}
4436
4437#endif  // GTEST_HAS_EXCEPTIONS
4438
4439// Make sure we deal with the precedence of <<.
4440TEST(ExpectTest, ExpectPrecedence) {
4441  EXPECT_EQ(1 < 2, true);
4442  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4443                          "Value of: true && false");
4444}
4445
4446
4447// Tests the StreamableToString() function.
4448
4449// Tests using StreamableToString() on a scalar.
4450TEST(StreamableToStringTest, Scalar) {
4451  EXPECT_STREQ("5", StreamableToString(5).c_str());
4452}
4453
4454// Tests using StreamableToString() on a non-char pointer.
4455TEST(StreamableToStringTest, Pointer) {
4456  int n = 0;
4457  int* p = &n;
4458  EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4459}
4460
4461// Tests using StreamableToString() on a NULL non-char pointer.
4462TEST(StreamableToStringTest, NullPointer) {
4463  int* p = NULL;
4464  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4465}
4466
4467// Tests using StreamableToString() on a C string.
4468TEST(StreamableToStringTest, CString) {
4469  EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4470}
4471
4472// Tests using StreamableToString() on a NULL C string.
4473TEST(StreamableToStringTest, NullCString) {
4474  char* p = NULL;
4475  EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4476}
4477
4478// Tests using streamable values as assertion messages.
4479
4480// Tests using std::string as an assertion message.
4481TEST(StreamableTest, string) {
4482  static const std::string str(
4483      "This failure message is a std::string, and is expected.");
4484  EXPECT_FATAL_FAILURE(FAIL() << str,
4485                       str.c_str());
4486}
4487
4488// Tests that we can output strings containing embedded NULs.
4489// Limited to Linux because we can only do this with std::string's.
4490TEST(StreamableTest, stringWithEmbeddedNUL) {
4491  static const char char_array_with_nul[] =
4492      "Here's a NUL\0 and some more string";
4493  static const std::string string_with_nul(char_array_with_nul,
4494                                           sizeof(char_array_with_nul)
4495                                           - 1);  // drops the trailing NUL
4496  EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4497                       "Here's a NUL\\0 and some more string");
4498}
4499
4500// Tests that we can output a NUL char.
4501TEST(StreamableTest, NULChar) {
4502  EXPECT_FATAL_FAILURE({  // NOLINT
4503    FAIL() << "A NUL" << '\0' << " and some more string";
4504  }, "A NUL\\0 and some more string");
4505}
4506
4507// Tests using int as an assertion message.
4508TEST(StreamableTest, int) {
4509  EXPECT_FATAL_FAILURE(FAIL() << 900913,
4510                       "900913");
4511}
4512
4513// Tests using NULL char pointer as an assertion message.
4514//
4515// In MSVC, streaming a NULL char * causes access violation.  Google Test
4516// implemented a workaround (substituting "(null)" for NULL).  This
4517// tests whether the workaround works.
4518TEST(StreamableTest, NullCharPtr) {
4519  EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
4520                       "(null)");
4521}
4522
4523// Tests that basic IO manipulators (endl, ends, and flush) can be
4524// streamed to testing::Message.
4525TEST(StreamableTest, BasicIoManip) {
4526  EXPECT_FATAL_FAILURE({  // NOLINT
4527    FAIL() << "Line 1." << std::endl
4528           << "A NUL char " << std::ends << std::flush << " in line 2.";
4529  }, "Line 1.\nA NUL char \\0 in line 2.");
4530}
4531
4532// Tests the macros that haven't been covered so far.
4533
4534void AddFailureHelper(bool* aborted) {
4535  *aborted = true;
4536  ADD_FAILURE() << "Intentional failure.";
4537  *aborted = false;
4538}
4539
4540// Tests ADD_FAILURE.
4541TEST(MacroTest, ADD_FAILURE) {
4542  bool aborted = true;
4543  EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4544                          "Intentional failure.");
4545  EXPECT_FALSE(aborted);
4546}
4547
4548// Tests ADD_FAILURE_AT.
4549TEST(MacroTest, ADD_FAILURE_AT) {
4550  // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4551  // the failure message contains the user-streamed part.
4552  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4553
4554  // Verifies that the user-streamed part is optional.
4555  EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4556
4557  // Unfortunately, we cannot verify that the failure message contains
4558  // the right file path and line number the same way, as
4559  // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4560  // line number.  Instead, we do that in gtest_output_test_.cc.
4561}
4562
4563// Tests FAIL.
4564TEST(MacroTest, FAIL) {
4565  EXPECT_FATAL_FAILURE(FAIL(),
4566                       "Failed");
4567  EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4568                       "Intentional failure.");
4569}
4570
4571// Tests SUCCEED
4572TEST(MacroTest, SUCCEED) {
4573  SUCCEED();
4574  SUCCEED() << "Explicit success.";
4575}
4576
4577// Tests for EXPECT_EQ() and ASSERT_EQ().
4578//
4579// These tests fail *intentionally*, s.t. the failure messages can be
4580// generated and tested.
4581//
4582// We have different tests for different argument types.
4583
4584// Tests using bool values in {EXPECT|ASSERT}_EQ.
4585TEST(EqAssertionTest, Bool) {
4586  EXPECT_EQ(true,  true);
4587  EXPECT_FATAL_FAILURE({
4588      bool false_value = false;
4589      ASSERT_EQ(false_value, true);
4590    }, "Value of: true");
4591}
4592
4593// Tests using int values in {EXPECT|ASSERT}_EQ.
4594TEST(EqAssertionTest, Int) {
4595  ASSERT_EQ(32, 32);
4596  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4597                          "33");
4598}
4599
4600// Tests using time_t values in {EXPECT|ASSERT}_EQ.
4601TEST(EqAssertionTest, Time_T) {
4602  EXPECT_EQ(static_cast<time_t>(0),
4603            static_cast<time_t>(0));
4604  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4605                                 static_cast<time_t>(1234)),
4606                       "1234");
4607}
4608
4609// Tests using char values in {EXPECT|ASSERT}_EQ.
4610TEST(EqAssertionTest, Char) {
4611  ASSERT_EQ('z', 'z');
4612  const char ch = 'b';
4613  EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4614                          "ch");
4615  EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4616                          "ch");
4617}
4618
4619// Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
4620TEST(EqAssertionTest, WideChar) {
4621  EXPECT_EQ(L'b', L'b');
4622
4623  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4624                          "Value of: L'x'\n"
4625                          "  Actual: L'x' (120, 0x78)\n"
4626                          "Expected: L'\0'\n"
4627                          "Which is: L'\0' (0, 0x0)");
4628
4629  static wchar_t wchar;
4630  wchar = L'b';
4631  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4632                          "wchar");
4633  wchar = 0x8119;
4634  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4635                       "Value of: wchar");
4636}
4637
4638// Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
4639TEST(EqAssertionTest, StdString) {
4640  // Compares a const char* to an std::string that has identical
4641  // content.
4642  ASSERT_EQ("Test", ::std::string("Test"));
4643
4644  // Compares two identical std::strings.
4645  static const ::std::string str1("A * in the middle");
4646  static const ::std::string str2(str1);
4647  EXPECT_EQ(str1, str2);
4648
4649  // Compares a const char* to an std::string that has different
4650  // content
4651  EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4652                          "\"test\"");
4653
4654  // Compares an std::string to a char* that has different content.
4655  char* const p1 = const_cast<char*>("foo");
4656  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4657                          "p1");
4658
4659  // Compares two std::strings that have different contents, one of
4660  // which having a NUL character in the middle.  This should fail.
4661  static ::std::string str3(str1);
4662  str3.at(2) = '\0';
4663  EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4664                       "Value of: str3\n"
4665                       "  Actual: \"A \\0 in the middle\"");
4666}
4667
4668#if GTEST_HAS_STD_WSTRING
4669
4670// Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
4671TEST(EqAssertionTest, StdWideString) {
4672  // Compares two identical std::wstrings.
4673  const ::std::wstring wstr1(L"A * in the middle");
4674  const ::std::wstring wstr2(wstr1);
4675  ASSERT_EQ(wstr1, wstr2);
4676
4677  // Compares an std::wstring to a const wchar_t* that has identical
4678  // content.
4679  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4680  EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4681
4682  // Compares an std::wstring to a const wchar_t* that has different
4683  // content.
4684  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4685  EXPECT_NONFATAL_FAILURE({  // NOLINT
4686    EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4687  }, "kTestX8120");
4688
4689  // Compares two std::wstrings that have different contents, one of
4690  // which having a NUL character in the middle.
4691  ::std::wstring wstr3(wstr1);
4692  wstr3.at(2) = L'\0';
4693  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4694                          "wstr3");
4695
4696  // Compares a wchar_t* to an std::wstring that has different
4697  // content.
4698  EXPECT_FATAL_FAILURE({  // NOLINT
4699    ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4700  }, "");
4701}
4702
4703#endif  // GTEST_HAS_STD_WSTRING
4704
4705#if GTEST_HAS_GLOBAL_STRING
4706// Tests using ::string values in {EXPECT|ASSERT}_EQ.
4707TEST(EqAssertionTest, GlobalString) {
4708  // Compares a const char* to a ::string that has identical content.
4709  EXPECT_EQ("Test", ::string("Test"));
4710
4711  // Compares two identical ::strings.
4712  const ::string str1("A * in the middle");
4713  const ::string str2(str1);
4714  ASSERT_EQ(str1, str2);
4715
4716  // Compares a ::string to a const char* that has different content.
4717  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4718                          "test");
4719
4720  // Compares two ::strings that have different contents, one of which
4721  // having a NUL character in the middle.
4722  ::string str3(str1);
4723  str3.at(2) = '\0';
4724  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4725                          "str3");
4726
4727  // Compares a ::string to a char* that has different content.
4728  EXPECT_FATAL_FAILURE({  // NOLINT
4729    ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4730  }, "");
4731}
4732
4733#endif  // GTEST_HAS_GLOBAL_STRING
4734
4735#if GTEST_HAS_GLOBAL_WSTRING
4736
4737// Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
4738TEST(EqAssertionTest, GlobalWideString) {
4739  // Compares two identical ::wstrings.
4740  static const ::wstring wstr1(L"A * in the middle");
4741  static const ::wstring wstr2(wstr1);
4742  EXPECT_EQ(wstr1, wstr2);
4743
4744  // Compares a const wchar_t* to a ::wstring that has identical content.
4745  const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4746  ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4747
4748  // Compares a const wchar_t* to a ::wstring that has different
4749  // content.
4750  const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4751  EXPECT_NONFATAL_FAILURE({  // NOLINT
4752    EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4753  }, "Test\\x8119");
4754
4755  // Compares a wchar_t* to a ::wstring that has different content.
4756  wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4757  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4758                          "bar");
4759
4760  // Compares two ::wstrings that have different contents, one of which
4761  // having a NUL character in the middle.
4762  static ::wstring wstr3;
4763  wstr3 = wstr1;
4764  wstr3.at(2) = L'\0';
4765  EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4766                       "wstr3");
4767}
4768
4769#endif  // GTEST_HAS_GLOBAL_WSTRING
4770
4771// Tests using char pointers in {EXPECT|ASSERT}_EQ.
4772TEST(EqAssertionTest, CharPointer) {
4773  char* const p0 = NULL;
4774  // Only way to get the Nokia compiler to compile the cast
4775  // is to have a separate void* variable first. Putting
4776  // the two casts on the same line doesn't work, neither does
4777  // a direct C-style to char*.
4778  void* pv1 = (void*)0x1234;  // NOLINT
4779  void* pv2 = (void*)0xABC0;  // NOLINT
4780  char* const p1 = reinterpret_cast<char*>(pv1);
4781  char* const p2 = reinterpret_cast<char*>(pv2);
4782  ASSERT_EQ(p1, p1);
4783
4784  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4785                          "Value of: p2");
4786  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4787                          "p2");
4788  EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4789                                 reinterpret_cast<char*>(0xABC0)),
4790                       "ABC0");
4791}
4792
4793// Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
4794TEST(EqAssertionTest, WideCharPointer) {
4795  wchar_t* const p0 = NULL;
4796  // Only way to get the Nokia compiler to compile the cast
4797  // is to have a separate void* variable first. Putting
4798  // the two casts on the same line doesn't work, neither does
4799  // a direct C-style to char*.
4800  void* pv1 = (void*)0x1234;  // NOLINT
4801  void* pv2 = (void*)0xABC0;  // NOLINT
4802  wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4803  wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4804  EXPECT_EQ(p0, p0);
4805
4806  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4807                          "Value of: p2");
4808  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4809                          "p2");
4810  void* pv3 = (void*)0x1234;  // NOLINT
4811  void* pv4 = (void*)0xABC0;  // NOLINT
4812  const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4813  const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4814  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4815                          "p4");
4816}
4817
4818// Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
4819TEST(EqAssertionTest, OtherPointer) {
4820  ASSERT_EQ(static_cast<const int*>(NULL),
4821            static_cast<const int*>(NULL));
4822  EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
4823                                 reinterpret_cast<const int*>(0x1234)),
4824                       "0x1234");
4825}
4826
4827// A class that supports binary comparison operators but not streaming.
4828class UnprintableChar {
4829 public:
4830  explicit UnprintableChar(char ch) : char_(ch) {}
4831
4832  bool operator==(const UnprintableChar& rhs) const {
4833    return char_ == rhs.char_;
4834  }
4835  bool operator!=(const UnprintableChar& rhs) const {
4836    return char_ != rhs.char_;
4837  }
4838  bool operator<(const UnprintableChar& rhs) const {
4839    return char_ < rhs.char_;
4840  }
4841  bool operator<=(const UnprintableChar& rhs) const {
4842    return char_ <= rhs.char_;
4843  }
4844  bool operator>(const UnprintableChar& rhs) const {
4845    return char_ > rhs.char_;
4846  }
4847  bool operator>=(const UnprintableChar& rhs) const {
4848    return char_ >= rhs.char_;
4849  }
4850
4851 private:
4852  char char_;
4853};
4854
4855// Tests that ASSERT_EQ() and friends don't require the arguments to
4856// be printable.
4857TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4858  const UnprintableChar x('x'), y('y');
4859  ASSERT_EQ(x, x);
4860  EXPECT_NE(x, y);
4861  ASSERT_LT(x, y);
4862  EXPECT_LE(x, y);
4863  ASSERT_GT(y, x);
4864  EXPECT_GE(x, x);
4865
4866  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4867  EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4868  EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4869  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4870  EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4871
4872  // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4873  // variables, so we have to write UnprintableChar('x') instead of x.
4874#ifndef __BORLANDC__
4875  // ICE's in C++Builder.
4876  EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4877                       "1-byte object <78>");
4878  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4879                       "1-byte object <78>");
4880#endif
4881  EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4882                       "1-byte object <79>");
4883  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4884                       "1-byte object <78>");
4885  EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4886                       "1-byte object <79>");
4887}
4888
4889// Tests the FRIEND_TEST macro.
4890
4891// This class has a private member we want to test.  We will test it
4892// both in a TEST and in a TEST_F.
4893class Foo {
4894 public:
4895  Foo() {}
4896
4897 private:
4898  int Bar() const { return 1; }
4899
4900  // Declares the friend tests that can access the private member
4901  // Bar().
4902  FRIEND_TEST(FRIEND_TEST_Test, TEST);
4903  FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4904};
4905
4906// Tests that the FRIEND_TEST declaration allows a TEST to access a
4907// class's private members.  This should compile.
4908TEST(FRIEND_TEST_Test, TEST) {
4909  ASSERT_EQ(1, Foo().Bar());
4910}
4911
4912// The fixture needed to test using FRIEND_TEST with TEST_F.
4913class FRIEND_TEST_Test2 : public Test {
4914 protected:
4915  Foo foo;
4916};
4917
4918// Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4919// class's private members.  This should compile.
4920TEST_F(FRIEND_TEST_Test2, TEST_F) {
4921  ASSERT_EQ(1, foo.Bar());
4922}
4923
4924// Tests the life cycle of Test objects.
4925
4926// The test fixture for testing the life cycle of Test objects.
4927//
4928// This class counts the number of live test objects that uses this
4929// fixture.
4930class TestLifeCycleTest : public Test {
4931 protected:
4932  // Constructor.  Increments the number of test objects that uses
4933  // this fixture.
4934  TestLifeCycleTest() { count_++; }
4935
4936  // Destructor.  Decrements the number of test objects that uses this
4937  // fixture.
4938  ~TestLifeCycleTest() { count_--; }
4939
4940  // Returns the number of live test objects that uses this fixture.
4941  int count() const { return count_; }
4942
4943 private:
4944  static int count_;
4945};
4946
4947int TestLifeCycleTest::count_ = 0;
4948
4949// Tests the life cycle of test objects.
4950TEST_F(TestLifeCycleTest, Test1) {
4951  // There should be only one test object in this test case that's
4952  // currently alive.
4953  ASSERT_EQ(1, count());
4954}
4955
4956// Tests the life cycle of test objects.
4957TEST_F(TestLifeCycleTest, Test2) {
4958  // After Test1 is done and Test2 is started, there should still be
4959  // only one live test object, as the object for Test1 should've been
4960  // deleted.
4961  ASSERT_EQ(1, count());
4962}
4963
4964}  // namespace
4965
4966// Tests that the copy constructor works when it is NOT optimized away by
4967// the compiler.
4968TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
4969  // Checks that the copy constructor doesn't try to dereference NULL pointers
4970  // in the source object.
4971  AssertionResult r1 = AssertionSuccess();
4972  AssertionResult r2 = r1;
4973  // The following line is added to prevent the compiler from optimizing
4974  // away the constructor call.
4975  r1 << "abc";
4976
4977  AssertionResult r3 = r1;
4978  EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
4979  EXPECT_STREQ("abc", r1.message());
4980}
4981
4982// Tests that AssertionSuccess and AssertionFailure construct
4983// AssertionResult objects as expected.
4984TEST(AssertionResultTest, ConstructionWorks) {
4985  AssertionResult r1 = AssertionSuccess();
4986  EXPECT_TRUE(r1);
4987  EXPECT_STREQ("", r1.message());
4988
4989  AssertionResult r2 = AssertionSuccess() << "abc";
4990  EXPECT_TRUE(r2);
4991  EXPECT_STREQ("abc", r2.message());
4992
4993  AssertionResult r3 = AssertionFailure();
4994  EXPECT_FALSE(r3);
4995  EXPECT_STREQ("", r3.message());
4996
4997  AssertionResult r4 = AssertionFailure() << "def";
4998  EXPECT_FALSE(r4);
4999  EXPECT_STREQ("def", r4.message());
5000
5001  AssertionResult r5 = AssertionFailure(Message() << "ghi");
5002  EXPECT_FALSE(r5);
5003  EXPECT_STREQ("ghi", r5.message());
5004}
5005
5006// Tests that the negation flips the predicate result but keeps the message.
5007TEST(AssertionResultTest, NegationWorks) {
5008  AssertionResult r1 = AssertionSuccess() << "abc";
5009  EXPECT_FALSE(!r1);
5010  EXPECT_STREQ("abc", (!r1).message());
5011
5012  AssertionResult r2 = AssertionFailure() << "def";
5013  EXPECT_TRUE(!r2);
5014  EXPECT_STREQ("def", (!r2).message());
5015}
5016
5017TEST(AssertionResultTest, StreamingWorks) {
5018  AssertionResult r = AssertionSuccess();
5019  r << "abc" << 'd' << 0 << true;
5020  EXPECT_STREQ("abcd0true", r.message());
5021}
5022
5023TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5024  AssertionResult r = AssertionSuccess();
5025  r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5026  EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5027}
5028
5029// Tests streaming a user type whose definition and operator << are
5030// both in the global namespace.
5031class Base {
5032 public:
5033  explicit Base(int an_x) : x_(an_x) {}
5034  int x() const { return x_; }
5035 private:
5036  int x_;
5037};
5038std::ostream& operator<<(std::ostream& os,
5039                         const Base& val) {
5040  return os << val.x();
5041}
5042std::ostream& operator<<(std::ostream& os,
5043                         const Base* pointer) {
5044  return os << "(" << pointer->x() << ")";
5045}
5046
5047TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5048  Message msg;
5049  Base a(1);
5050
5051  msg << a << &a;  // Uses ::operator<<.
5052  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5053}
5054
5055// Tests streaming a user type whose definition and operator<< are
5056// both in an unnamed namespace.
5057namespace {
5058class MyTypeInUnnamedNameSpace : public Base {
5059 public:
5060  explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5061};
5062std::ostream& operator<<(std::ostream& os,
5063                         const MyTypeInUnnamedNameSpace& val) {
5064  return os << val.x();
5065}
5066std::ostream& operator<<(std::ostream& os,
5067                         const MyTypeInUnnamedNameSpace* pointer) {
5068  return os << "(" << pointer->x() << ")";
5069}
5070}  // namespace
5071
5072TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5073  Message msg;
5074  MyTypeInUnnamedNameSpace a(1);
5075
5076  msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5077  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5078}
5079
5080// Tests streaming a user type whose definition and operator<< are
5081// both in a user namespace.
5082namespace namespace1 {
5083class MyTypeInNameSpace1 : public Base {
5084 public:
5085  explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5086};
5087std::ostream& operator<<(std::ostream& os,
5088                         const MyTypeInNameSpace1& val) {
5089  return os << val.x();
5090}
5091std::ostream& operator<<(std::ostream& os,
5092                         const MyTypeInNameSpace1* pointer) {
5093  return os << "(" << pointer->x() << ")";
5094}
5095}  // namespace namespace1
5096
5097TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5098  Message msg;
5099  namespace1::MyTypeInNameSpace1 a(1);
5100
5101  msg << a << &a;  // Uses namespace1::operator<<.
5102  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5103}
5104
5105// Tests streaming a user type whose definition is in a user namespace
5106// but whose operator<< is in the global namespace.
5107namespace namespace2 {
5108class MyTypeInNameSpace2 : public ::Base {
5109 public:
5110  explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5111};
5112}  // namespace namespace2
5113std::ostream& operator<<(std::ostream& os,
5114                         const namespace2::MyTypeInNameSpace2& val) {
5115  return os << val.x();
5116}
5117std::ostream& operator<<(std::ostream& os,
5118                         const namespace2::MyTypeInNameSpace2* pointer) {
5119  return os << "(" << pointer->x() << ")";
5120}
5121
5122TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5123  Message msg;
5124  namespace2::MyTypeInNameSpace2 a(1);
5125
5126  msg << a << &a;  // Uses ::operator<<.
5127  EXPECT_STREQ("1(1)", msg.GetString().c_str());
5128}
5129
5130// Tests streaming NULL pointers to testing::Message.
5131TEST(MessageTest, NullPointers) {
5132  Message msg;
5133  char* const p1 = NULL;
5134  unsigned char* const p2 = NULL;
5135  int* p3 = NULL;
5136  double* p4 = NULL;
5137  bool* p5 = NULL;
5138  Message* p6 = NULL;
5139
5140  msg << p1 << p2 << p3 << p4 << p5 << p6;
5141  ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5142               msg.GetString().c_str());
5143}
5144
5145// Tests streaming wide strings to testing::Message.
5146TEST(MessageTest, WideStrings) {
5147  // Streams a NULL of type const wchar_t*.
5148  const wchar_t* const_wstr = NULL;
5149  EXPECT_STREQ("(null)",
5150               (Message() << const_wstr).GetString().c_str());
5151
5152  // Streams a NULL of type wchar_t*.
5153  wchar_t* wstr = NULL;
5154  EXPECT_STREQ("(null)",
5155               (Message() << wstr).GetString().c_str());
5156
5157  // Streams a non-NULL of type const wchar_t*.
5158  const_wstr = L"abc\x8119";
5159  EXPECT_STREQ("abc\xe8\x84\x99",
5160               (Message() << const_wstr).GetString().c_str());
5161
5162  // Streams a non-NULL of type wchar_t*.
5163  wstr = const_cast<wchar_t*>(const_wstr);
5164  EXPECT_STREQ("abc\xe8\x84\x99",
5165               (Message() << wstr).GetString().c_str());
5166}
5167
5168
5169// This line tests that we can define tests in the testing namespace.
5170namespace testing {
5171
5172// Tests the TestInfo class.
5173
5174class TestInfoTest : public Test {
5175 protected:
5176  static const TestInfo* GetTestInfo(const char* test_name) {
5177    const TestCase* const test_case = GetUnitTestImpl()->
5178        GetTestCase("TestInfoTest", "", NULL, NULL);
5179
5180    for (int i = 0; i < test_case->total_test_count(); ++i) {
5181      const TestInfo* const test_info = test_case->GetTestInfo(i);
5182      if (strcmp(test_name, test_info->name()) == 0)
5183        return test_info;
5184    }
5185    return NULL;
5186  }
5187
5188  static const TestResult* GetTestResult(
5189      const TestInfo* test_info) {
5190    return test_info->result();
5191  }
5192};
5193
5194// Tests TestInfo::test_case_name() and TestInfo::name().
5195TEST_F(TestInfoTest, Names) {
5196  const TestInfo* const test_info = GetTestInfo("Names");
5197
5198  ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5199  ASSERT_STREQ("Names", test_info->name());
5200}
5201
5202// Tests TestInfo::result().
5203TEST_F(TestInfoTest, result) {
5204  const TestInfo* const test_info = GetTestInfo("result");
5205
5206  // Initially, there is no TestPartResult for this test.
5207  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5208
5209  // After the previous assertion, there is still none.
5210  ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5211}
5212
5213// Tests setting up and tearing down a test case.
5214
5215class SetUpTestCaseTest : public Test {
5216 protected:
5217  // This will be called once before the first test in this test case
5218  // is run.
5219  static void SetUpTestCase() {
5220    printf("Setting up the test case . . .\n");
5221
5222    // Initializes some shared resource.  In this simple example, we
5223    // just create a C string.  More complex stuff can be done if
5224    // desired.
5225    shared_resource_ = "123";
5226
5227    // Increments the number of test cases that have been set up.
5228    counter_++;
5229
5230    // SetUpTestCase() should be called only once.
5231    EXPECT_EQ(1, counter_);
5232  }
5233
5234  // This will be called once after the last test in this test case is
5235  // run.
5236  static void TearDownTestCase() {
5237    printf("Tearing down the test case . . .\n");
5238
5239    // Decrements the number of test cases that have been set up.
5240    counter_--;
5241
5242    // TearDownTestCase() should be called only once.
5243    EXPECT_EQ(0, counter_);
5244
5245    // Cleans up the shared resource.
5246    shared_resource_ = NULL;
5247  }
5248
5249  // This will be called before each test in this test case.
5250  virtual void SetUp() {
5251    // SetUpTestCase() should be called only once, so counter_ should
5252    // always be 1.
5253    EXPECT_EQ(1, counter_);
5254  }
5255
5256  // Number of test cases that have been set up.
5257  static int counter_;
5258
5259  // Some resource to be shared by all tests in this test case.
5260  static const char* shared_resource_;
5261};
5262
5263int SetUpTestCaseTest::counter_ = 0;
5264const char* SetUpTestCaseTest::shared_resource_ = NULL;
5265
5266// A test that uses the shared resource.
5267TEST_F(SetUpTestCaseTest, Test1) {
5268  EXPECT_STRNE(NULL, shared_resource_);
5269}
5270
5271// Another test that uses the shared resource.
5272TEST_F(SetUpTestCaseTest, Test2) {
5273  EXPECT_STREQ("123", shared_resource_);
5274}
5275
5276// The InitGoogleTestTest test case tests testing::InitGoogleTest().
5277
5278// The Flags struct stores a copy of all Google Test flags.
5279struct Flags {
5280  // Constructs a Flags struct where each flag has its default value.
5281  Flags() : also_run_disabled_tests(false),
5282            break_on_failure(false),
5283            catch_exceptions(false),
5284            death_test_use_fork(false),
5285            filter(""),
5286            list_tests(false),
5287            output(""),
5288            print_time(true),
5289            random_seed(0),
5290            repeat(1),
5291            shuffle(false),
5292            stack_trace_depth(kMaxStackTraceDepth),
5293            stream_result_to(""),
5294            throw_on_failure(false) {}
5295
5296  // Factory methods.
5297
5298  // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5299  // the given value.
5300  static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5301    Flags flags;
5302    flags.also_run_disabled_tests = also_run_disabled_tests;
5303    return flags;
5304  }
5305
5306  // Creates a Flags struct where the gtest_break_on_failure flag has
5307  // the given value.
5308  static Flags BreakOnFailure(bool break_on_failure) {
5309    Flags flags;
5310    flags.break_on_failure = break_on_failure;
5311    return flags;
5312  }
5313
5314  // Creates a Flags struct where the gtest_catch_exceptions flag has
5315  // the given value.
5316  static Flags CatchExceptions(bool catch_exceptions) {
5317    Flags flags;
5318    flags.catch_exceptions = catch_exceptions;
5319    return flags;
5320  }
5321
5322  // Creates a Flags struct where the gtest_death_test_use_fork flag has
5323  // the given value.
5324  static Flags DeathTestUseFork(bool death_test_use_fork) {
5325    Flags flags;
5326    flags.death_test_use_fork = death_test_use_fork;
5327    return flags;
5328  }
5329
5330  // Creates a Flags struct where the gtest_filter flag has the given
5331  // value.
5332  static Flags Filter(const char* filter) {
5333    Flags flags;
5334    flags.filter = filter;
5335    return flags;
5336  }
5337
5338  // Creates a Flags struct where the gtest_list_tests flag has the
5339  // given value.
5340  static Flags ListTests(bool list_tests) {
5341    Flags flags;
5342    flags.list_tests = list_tests;
5343    return flags;
5344  }
5345
5346  // Creates a Flags struct where the gtest_output flag has the given
5347  // value.
5348  static Flags Output(const char* output) {
5349    Flags flags;
5350    flags.output = output;
5351    return flags;
5352  }
5353
5354  // Creates a Flags struct where the gtest_print_time flag has the given
5355  // value.
5356  static Flags PrintTime(bool print_time) {
5357    Flags flags;
5358    flags.print_time = print_time;
5359    return flags;
5360  }
5361
5362  // Creates a Flags struct where the gtest_random_seed flag has
5363  // the given value.
5364  static Flags RandomSeed(Int32 random_seed) {
5365    Flags flags;
5366    flags.random_seed = random_seed;
5367    return flags;
5368  }
5369
5370  // Creates a Flags struct where the gtest_repeat flag has the given
5371  // value.
5372  static Flags Repeat(Int32 repeat) {
5373    Flags flags;
5374    flags.repeat = repeat;
5375    return flags;
5376  }
5377
5378  // Creates a Flags struct where the gtest_shuffle flag has
5379  // the given value.
5380  static Flags Shuffle(bool shuffle) {
5381    Flags flags;
5382    flags.shuffle = shuffle;
5383    return flags;
5384  }
5385
5386  // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5387  // the given value.
5388  static Flags StackTraceDepth(Int32 stack_trace_depth) {
5389    Flags flags;
5390    flags.stack_trace_depth = stack_trace_depth;
5391    return flags;
5392  }
5393
5394  // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5395  // the given value.
5396  static Flags StreamResultTo(const char* stream_result_to) {
5397    Flags flags;
5398    flags.stream_result_to = stream_result_to;
5399    return flags;
5400  }
5401
5402  // Creates a Flags struct where the gtest_throw_on_failure flag has
5403  // the given value.
5404  static Flags ThrowOnFailure(bool throw_on_failure) {
5405    Flags flags;
5406    flags.throw_on_failure = throw_on_failure;
5407    return flags;
5408  }
5409
5410  // These fields store the flag values.
5411  bool also_run_disabled_tests;
5412  bool break_on_failure;
5413  bool catch_exceptions;
5414  bool death_test_use_fork;
5415  const char* filter;
5416  bool list_tests;
5417  const char* output;
5418  bool print_time;
5419  Int32 random_seed;
5420  Int32 repeat;
5421  bool shuffle;
5422  Int32 stack_trace_depth;
5423  const char* stream_result_to;
5424  bool throw_on_failure;
5425};
5426
5427// Fixture for testing InitGoogleTest().
5428class InitGoogleTestTest : public Test {
5429 protected:
5430  // Clears the flags before each test.
5431  virtual void SetUp() {
5432    GTEST_FLAG(also_run_disabled_tests) = false;
5433    GTEST_FLAG(break_on_failure) = false;
5434    GTEST_FLAG(catch_exceptions) = false;
5435    GTEST_FLAG(death_test_use_fork) = false;
5436    GTEST_FLAG(filter) = "";
5437    GTEST_FLAG(list_tests) = false;
5438    GTEST_FLAG(output) = "";
5439    GTEST_FLAG(print_time) = true;
5440    GTEST_FLAG(random_seed) = 0;
5441    GTEST_FLAG(repeat) = 1;
5442    GTEST_FLAG(shuffle) = false;
5443    GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5444    GTEST_FLAG(stream_result_to) = "";
5445    GTEST_FLAG(throw_on_failure) = false;
5446  }
5447
5448  // Asserts that two narrow or wide string arrays are equal.
5449  template <typename CharType>
5450  static void AssertStringArrayEq(size_t size1, CharType** array1,
5451                                  size_t size2, CharType** array2) {
5452    ASSERT_EQ(size1, size2) << " Array sizes different.";
5453
5454    for (size_t i = 0; i != size1; i++) {
5455      ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5456    }
5457  }
5458
5459  // Verifies that the flag values match the expected values.
5460  static void CheckFlags(const Flags& expected) {
5461    EXPECT_EQ(expected.also_run_disabled_tests,
5462              GTEST_FLAG(also_run_disabled_tests));
5463    EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5464    EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5465    EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5466    EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5467    EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5468    EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5469    EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5470    EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5471    EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5472    EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5473    EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5474    EXPECT_STREQ(expected.stream_result_to,
5475                 GTEST_FLAG(stream_result_to).c_str());
5476    EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5477  }
5478
5479  // Parses a command line (specified by argc1 and argv1), then
5480  // verifies that the flag values are expected and that the
5481  // recognized flags are removed from the command line.
5482  template <typename CharType>
5483  static void TestParsingFlags(int argc1, const CharType** argv1,
5484                               int argc2, const CharType** argv2,
5485                               const Flags& expected, bool should_print_help) {
5486    const bool saved_help_flag = ::testing::internal::g_help_flag;
5487    ::testing::internal::g_help_flag = false;
5488
5489#if GTEST_HAS_STREAM_REDIRECTION
5490    CaptureStdout();
5491#endif
5492
5493    // Parses the command line.
5494    internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5495
5496#if GTEST_HAS_STREAM_REDIRECTION
5497    const std::string captured_stdout = GetCapturedStdout();
5498#endif
5499
5500    // Verifies the flag values.
5501    CheckFlags(expected);
5502
5503    // Verifies that the recognized flags are removed from the command
5504    // line.
5505    AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5506
5507    // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5508    // help message for the flags it recognizes.
5509    EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5510
5511#if GTEST_HAS_STREAM_REDIRECTION
5512    const char* const expected_help_fragment =
5513        "This program contains tests written using";
5514    if (should_print_help) {
5515      EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5516    } else {
5517      EXPECT_PRED_FORMAT2(IsNotSubstring,
5518                          expected_help_fragment, captured_stdout);
5519    }
5520#endif  // GTEST_HAS_STREAM_REDIRECTION
5521
5522    ::testing::internal::g_help_flag = saved_help_flag;
5523  }
5524
5525  // This macro wraps TestParsingFlags s.t. the user doesn't need
5526  // to specify the array sizes.
5527
5528#define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5529  TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5530                   sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5531                   expected, should_print_help)
5532};
5533
5534// Tests parsing an empty command line.
5535TEST_F(InitGoogleTestTest, Empty) {
5536  const char* argv[] = {
5537    NULL
5538  };
5539
5540  const char* argv2[] = {
5541    NULL
5542  };
5543
5544  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5545}
5546
5547// Tests parsing a command line that has no flag.
5548TEST_F(InitGoogleTestTest, NoFlag) {
5549  const char* argv[] = {
5550    "foo.exe",
5551    NULL
5552  };
5553
5554  const char* argv2[] = {
5555    "foo.exe",
5556    NULL
5557  };
5558
5559  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5560}
5561
5562// Tests parsing a bad --gtest_filter flag.
5563TEST_F(InitGoogleTestTest, FilterBad) {
5564  const char* argv[] = {
5565    "foo.exe",
5566    "--gtest_filter",
5567    NULL
5568  };
5569
5570  const char* argv2[] = {
5571    "foo.exe",
5572    "--gtest_filter",
5573    NULL
5574  };
5575
5576  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5577}
5578
5579// Tests parsing an empty --gtest_filter flag.
5580TEST_F(InitGoogleTestTest, FilterEmpty) {
5581  const char* argv[] = {
5582    "foo.exe",
5583    "--gtest_filter=",
5584    NULL
5585  };
5586
5587  const char* argv2[] = {
5588    "foo.exe",
5589    NULL
5590  };
5591
5592  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5593}
5594
5595// Tests parsing a non-empty --gtest_filter flag.
5596TEST_F(InitGoogleTestTest, FilterNonEmpty) {
5597  const char* argv[] = {
5598    "foo.exe",
5599    "--gtest_filter=abc",
5600    NULL
5601  };
5602
5603  const char* argv2[] = {
5604    "foo.exe",
5605    NULL
5606  };
5607
5608  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5609}
5610
5611// Tests parsing --gtest_break_on_failure.
5612TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
5613  const char* argv[] = {
5614    "foo.exe",
5615    "--gtest_break_on_failure",
5616    NULL
5617};
5618
5619  const char* argv2[] = {
5620    "foo.exe",
5621    NULL
5622  };
5623
5624  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5625}
5626
5627// Tests parsing --gtest_break_on_failure=0.
5628TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
5629  const char* argv[] = {
5630    "foo.exe",
5631    "--gtest_break_on_failure=0",
5632    NULL
5633  };
5634
5635  const char* argv2[] = {
5636    "foo.exe",
5637    NULL
5638  };
5639
5640  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5641}
5642
5643// Tests parsing --gtest_break_on_failure=f.
5644TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
5645  const char* argv[] = {
5646    "foo.exe",
5647    "--gtest_break_on_failure=f",
5648    NULL
5649  };
5650
5651  const char* argv2[] = {
5652    "foo.exe",
5653    NULL
5654  };
5655
5656  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5657}
5658
5659// Tests parsing --gtest_break_on_failure=F.
5660TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
5661  const char* argv[] = {
5662    "foo.exe",
5663    "--gtest_break_on_failure=F",
5664    NULL
5665  };
5666
5667  const char* argv2[] = {
5668    "foo.exe",
5669    NULL
5670  };
5671
5672  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5673}
5674
5675// Tests parsing a --gtest_break_on_failure flag that has a "true"
5676// definition.
5677TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
5678  const char* argv[] = {
5679    "foo.exe",
5680    "--gtest_break_on_failure=1",
5681    NULL
5682  };
5683
5684  const char* argv2[] = {
5685    "foo.exe",
5686    NULL
5687  };
5688
5689  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5690}
5691
5692// Tests parsing --gtest_catch_exceptions.
5693TEST_F(InitGoogleTestTest, CatchExceptions) {
5694  const char* argv[] = {
5695    "foo.exe",
5696    "--gtest_catch_exceptions",
5697    NULL
5698  };
5699
5700  const char* argv2[] = {
5701    "foo.exe",
5702    NULL
5703  };
5704
5705  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5706}
5707
5708// Tests parsing --gtest_death_test_use_fork.
5709TEST_F(InitGoogleTestTest, DeathTestUseFork) {
5710  const char* argv[] = {
5711    "foo.exe",
5712    "--gtest_death_test_use_fork",
5713    NULL
5714  };
5715
5716  const char* argv2[] = {
5717    "foo.exe",
5718    NULL
5719  };
5720
5721  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5722}
5723
5724// Tests having the same flag twice with different values.  The
5725// expected behavior is that the one coming last takes precedence.
5726TEST_F(InitGoogleTestTest, DuplicatedFlags) {
5727  const char* argv[] = {
5728    "foo.exe",
5729    "--gtest_filter=a",
5730    "--gtest_filter=b",
5731    NULL
5732  };
5733
5734  const char* argv2[] = {
5735    "foo.exe",
5736    NULL
5737  };
5738
5739  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5740}
5741
5742// Tests having an unrecognized flag on the command line.
5743TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
5744  const char* argv[] = {
5745    "foo.exe",
5746    "--gtest_break_on_failure",
5747    "bar",  // Unrecognized by Google Test.
5748    "--gtest_filter=b",
5749    NULL
5750  };
5751
5752  const char* argv2[] = {
5753    "foo.exe",
5754    "bar",
5755    NULL
5756  };
5757
5758  Flags flags;
5759  flags.break_on_failure = true;
5760  flags.filter = "b";
5761  GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5762}
5763
5764// Tests having a --gtest_list_tests flag
5765TEST_F(InitGoogleTestTest, ListTestsFlag) {
5766    const char* argv[] = {
5767      "foo.exe",
5768      "--gtest_list_tests",
5769      NULL
5770    };
5771
5772    const char* argv2[] = {
5773      "foo.exe",
5774      NULL
5775    };
5776
5777    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5778}
5779
5780// Tests having a --gtest_list_tests flag with a "true" value
5781TEST_F(InitGoogleTestTest, ListTestsTrue) {
5782    const char* argv[] = {
5783      "foo.exe",
5784      "--gtest_list_tests=1",
5785      NULL
5786    };
5787
5788    const char* argv2[] = {
5789      "foo.exe",
5790      NULL
5791    };
5792
5793    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5794}
5795
5796// Tests having a --gtest_list_tests flag with a "false" value
5797TEST_F(InitGoogleTestTest, ListTestsFalse) {
5798    const char* argv[] = {
5799      "foo.exe",
5800      "--gtest_list_tests=0",
5801      NULL
5802    };
5803
5804    const char* argv2[] = {
5805      "foo.exe",
5806      NULL
5807    };
5808
5809    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5810}
5811
5812// Tests parsing --gtest_list_tests=f.
5813TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
5814  const char* argv[] = {
5815    "foo.exe",
5816    "--gtest_list_tests=f",
5817    NULL
5818  };
5819
5820  const char* argv2[] = {
5821    "foo.exe",
5822    NULL
5823  };
5824
5825  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5826}
5827
5828// Tests parsing --gtest_list_tests=F.
5829TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
5830  const char* argv[] = {
5831    "foo.exe",
5832    "--gtest_list_tests=F",
5833    NULL
5834  };
5835
5836  const char* argv2[] = {
5837    "foo.exe",
5838    NULL
5839  };
5840
5841  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5842}
5843
5844// Tests parsing --gtest_output (invalid).
5845TEST_F(InitGoogleTestTest, OutputEmpty) {
5846  const char* argv[] = {
5847    "foo.exe",
5848    "--gtest_output",
5849    NULL
5850  };
5851
5852  const char* argv2[] = {
5853    "foo.exe",
5854    "--gtest_output",
5855    NULL
5856  };
5857
5858  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
5859}
5860
5861// Tests parsing --gtest_output=xml
5862TEST_F(InitGoogleTestTest, OutputXml) {
5863  const char* argv[] = {
5864    "foo.exe",
5865    "--gtest_output=xml",
5866    NULL
5867  };
5868
5869  const char* argv2[] = {
5870    "foo.exe",
5871    NULL
5872  };
5873
5874  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5875}
5876
5877// Tests parsing --gtest_output=xml:file
5878TEST_F(InitGoogleTestTest, OutputXmlFile) {
5879  const char* argv[] = {
5880    "foo.exe",
5881    "--gtest_output=xml:file",
5882    NULL
5883  };
5884
5885  const char* argv2[] = {
5886    "foo.exe",
5887    NULL
5888  };
5889
5890  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5891}
5892
5893// Tests parsing --gtest_output=xml:directory/path/
5894TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
5895  const char* argv[] = {
5896    "foo.exe",
5897    "--gtest_output=xml:directory/path/",
5898    NULL
5899  };
5900
5901  const char* argv2[] = {
5902    "foo.exe",
5903    NULL
5904  };
5905
5906  GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5907                            Flags::Output("xml:directory/path/"), false);
5908}
5909
5910// Tests having a --gtest_print_time flag
5911TEST_F(InitGoogleTestTest, PrintTimeFlag) {
5912    const char* argv[] = {
5913      "foo.exe",
5914      "--gtest_print_time",
5915      NULL
5916    };
5917
5918    const char* argv2[] = {
5919      "foo.exe",
5920      NULL
5921    };
5922
5923    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5924}
5925
5926// Tests having a --gtest_print_time flag with a "true" value
5927TEST_F(InitGoogleTestTest, PrintTimeTrue) {
5928    const char* argv[] = {
5929      "foo.exe",
5930      "--gtest_print_time=1",
5931      NULL
5932    };
5933
5934    const char* argv2[] = {
5935      "foo.exe",
5936      NULL
5937    };
5938
5939    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5940}
5941
5942// Tests having a --gtest_print_time flag with a "false" value
5943TEST_F(InitGoogleTestTest, PrintTimeFalse) {
5944    const char* argv[] = {
5945      "foo.exe",
5946      "--gtest_print_time=0",
5947      NULL
5948    };
5949
5950    const char* argv2[] = {
5951      "foo.exe",
5952      NULL
5953    };
5954
5955    GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5956}
5957
5958// Tests parsing --gtest_print_time=f.
5959TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
5960  const char* argv[] = {
5961    "foo.exe",
5962    "--gtest_print_time=f",
5963    NULL
5964  };
5965
5966  const char* argv2[] = {
5967    "foo.exe",
5968    NULL
5969  };
5970
5971  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5972}
5973
5974// Tests parsing --gtest_print_time=F.
5975TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
5976  const char* argv[] = {
5977    "foo.exe",
5978    "--gtest_print_time=F",
5979    NULL
5980  };
5981
5982  const char* argv2[] = {
5983    "foo.exe",
5984    NULL
5985  };
5986
5987  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5988}
5989
5990// Tests parsing --gtest_random_seed=number
5991TEST_F(InitGoogleTestTest, RandomSeed) {
5992  const char* argv[] = {
5993    "foo.exe",
5994    "--gtest_random_seed=1000",
5995    NULL
5996  };
5997
5998  const char* argv2[] = {
5999    "foo.exe",
6000    NULL
6001  };
6002
6003  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6004}
6005
6006// Tests parsing --gtest_repeat=number
6007TEST_F(InitGoogleTestTest, Repeat) {
6008  const char* argv[] = {
6009    "foo.exe",
6010    "--gtest_repeat=1000",
6011    NULL
6012  };
6013
6014  const char* argv2[] = {
6015    "foo.exe",
6016    NULL
6017  };
6018
6019  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6020}
6021
6022// Tests having a --gtest_also_run_disabled_tests flag
6023TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
6024    const char* argv[] = {
6025      "foo.exe",
6026      "--gtest_also_run_disabled_tests",
6027      NULL
6028    };
6029
6030    const char* argv2[] = {
6031      "foo.exe",
6032      NULL
6033    };
6034
6035    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6036                              Flags::AlsoRunDisabledTests(true), false);
6037}
6038
6039// Tests having a --gtest_also_run_disabled_tests flag with a "true" value
6040TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
6041    const char* argv[] = {
6042      "foo.exe",
6043      "--gtest_also_run_disabled_tests=1",
6044      NULL
6045    };
6046
6047    const char* argv2[] = {
6048      "foo.exe",
6049      NULL
6050    };
6051
6052    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6053                              Flags::AlsoRunDisabledTests(true), false);
6054}
6055
6056// Tests having a --gtest_also_run_disabled_tests flag with a "false" value
6057TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
6058    const char* argv[] = {
6059      "foo.exe",
6060      "--gtest_also_run_disabled_tests=0",
6061      NULL
6062    };
6063
6064    const char* argv2[] = {
6065      "foo.exe",
6066      NULL
6067    };
6068
6069    GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6070                              Flags::AlsoRunDisabledTests(false), false);
6071}
6072
6073// Tests parsing --gtest_shuffle.
6074TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
6075  const char* argv[] = {
6076    "foo.exe",
6077    "--gtest_shuffle",
6078    NULL
6079};
6080
6081  const char* argv2[] = {
6082    "foo.exe",
6083    NULL
6084  };
6085
6086  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6087}
6088
6089// Tests parsing --gtest_shuffle=0.
6090TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
6091  const char* argv[] = {
6092    "foo.exe",
6093    "--gtest_shuffle=0",
6094    NULL
6095  };
6096
6097  const char* argv2[] = {
6098    "foo.exe",
6099    NULL
6100  };
6101
6102  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6103}
6104
6105// Tests parsing a --gtest_shuffle flag that has a "true"
6106// definition.
6107TEST_F(InitGoogleTestTest, ShuffleTrue) {
6108  const char* argv[] = {
6109    "foo.exe",
6110    "--gtest_shuffle=1",
6111    NULL
6112  };
6113
6114  const char* argv2[] = {
6115    "foo.exe",
6116    NULL
6117  };
6118
6119  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6120}
6121
6122// Tests parsing --gtest_stack_trace_depth=number.
6123TEST_F(InitGoogleTestTest, StackTraceDepth) {
6124  const char* argv[] = {
6125    "foo.exe",
6126    "--gtest_stack_trace_depth=5",
6127    NULL
6128  };
6129
6130  const char* argv2[] = {
6131    "foo.exe",
6132    NULL
6133  };
6134
6135  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6136}
6137
6138TEST_F(InitGoogleTestTest, StreamResultTo) {
6139  const char* argv[] = {
6140    "foo.exe",
6141    "--gtest_stream_result_to=localhost:1234",
6142    NULL
6143  };
6144
6145  const char* argv2[] = {
6146    "foo.exe",
6147    NULL
6148  };
6149
6150  GTEST_TEST_PARSING_FLAGS_(
6151      argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6152}
6153
6154// Tests parsing --gtest_throw_on_failure.
6155TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
6156  const char* argv[] = {
6157    "foo.exe",
6158    "--gtest_throw_on_failure",
6159    NULL
6160};
6161
6162  const char* argv2[] = {
6163    "foo.exe",
6164    NULL
6165  };
6166
6167  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6168}
6169
6170// Tests parsing --gtest_throw_on_failure=0.
6171TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
6172  const char* argv[] = {
6173    "foo.exe",
6174    "--gtest_throw_on_failure=0",
6175    NULL
6176  };
6177
6178  const char* argv2[] = {
6179    "foo.exe",
6180    NULL
6181  };
6182
6183  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6184}
6185
6186// Tests parsing a --gtest_throw_on_failure flag that has a "true"
6187// definition.
6188TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
6189  const char* argv[] = {
6190    "foo.exe",
6191    "--gtest_throw_on_failure=1",
6192    NULL
6193  };
6194
6195  const char* argv2[] = {
6196    "foo.exe",
6197    NULL
6198  };
6199
6200  GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6201}
6202
6203#if GTEST_OS_WINDOWS
6204// Tests parsing wide strings.
6205TEST_F(InitGoogleTestTest, WideStrings) {
6206  const wchar_t* argv[] = {
6207    L"foo.exe",
6208    L"--gtest_filter=Foo*",
6209    L"--gtest_list_tests=1",
6210    L"--gtest_break_on_failure",
6211    L"--non_gtest_flag",
6212    NULL
6213  };
6214
6215  const wchar_t* argv2[] = {
6216    L"foo.exe",
6217    L"--non_gtest_flag",
6218    NULL
6219  };
6220
6221  Flags expected_flags;
6222  expected_flags.break_on_failure = true;
6223  expected_flags.filter = "Foo*";
6224  expected_flags.list_tests = true;
6225
6226  GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6227}
6228#endif  // GTEST_OS_WINDOWS
6229
6230// Tests current_test_info() in UnitTest.
6231class CurrentTestInfoTest : public Test {
6232 protected:
6233  // Tests that current_test_info() returns NULL before the first test in
6234  // the test case is run.
6235  static void SetUpTestCase() {
6236    // There should be no tests running at this point.
6237    const TestInfo* test_info =
6238      UnitTest::GetInstance()->current_test_info();
6239    EXPECT_TRUE(test_info == NULL)
6240        << "There should be no tests running at this point.";
6241  }
6242
6243  // Tests that current_test_info() returns NULL after the last test in
6244  // the test case has run.
6245  static void TearDownTestCase() {
6246    const TestInfo* test_info =
6247      UnitTest::GetInstance()->current_test_info();
6248    EXPECT_TRUE(test_info == NULL)
6249        << "There should be no tests running at this point.";
6250  }
6251};
6252
6253// Tests that current_test_info() returns TestInfo for currently running
6254// test by checking the expected test name against the actual one.
6255TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
6256  const TestInfo* test_info =
6257    UnitTest::GetInstance()->current_test_info();
6258  ASSERT_TRUE(NULL != test_info)
6259      << "There is a test running so we should have a valid TestInfo.";
6260  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6261      << "Expected the name of the currently running test case.";
6262  EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
6263      << "Expected the name of the currently running test.";
6264}
6265
6266// Tests that current_test_info() returns TestInfo for currently running
6267// test by checking the expected test name against the actual one.  We
6268// use this test to see that the TestInfo object actually changed from
6269// the previous invocation.
6270TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
6271  const TestInfo* test_info =
6272    UnitTest::GetInstance()->current_test_info();
6273  ASSERT_TRUE(NULL != test_info)
6274      << "There is a test running so we should have a valid TestInfo.";
6275  EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6276      << "Expected the name of the currently running test case.";
6277  EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
6278      << "Expected the name of the currently running test.";
6279}
6280
6281}  // namespace testing
6282
6283// These two lines test that we can define tests in a namespace that
6284// has the name "testing" and is nested in another namespace.
6285namespace my_namespace {
6286namespace testing {
6287
6288// Makes sure that TEST knows to use ::testing::Test instead of
6289// ::my_namespace::testing::Test.
6290class Test {};
6291
6292// Makes sure that an assertion knows to use ::testing::Message instead of
62